kicad/thirdparty/nanosvg/nanosvg.cpp

3779 lines
100 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2013-14 Mikko Mononen memon@inside.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* The SVG parser is based on Anti-Grain Geometry 2.4 SVG example
* Copyright (C) 2002-2004 Maxim Shemanarev (McSeem) (http://www.antigrain.com/)
*
* Arc calculation code based on canvg (https://code.google.com/p/canvg/)
*
* Bounding box calculation based on http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
*
*/
#include "nanosvg.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#define NSVG_PI (3.14159265358979323846264338327f)
#define NSVG_KAPPA90 (0.5522847493f) // Length proportional to radius of a cubic bezier handle for 90deg arcs.
#define NSVG_ALIGN_MIN 0
#define NSVG_ALIGN_MID 1
#define NSVG_ALIGN_MAX 2
#define NSVG_ALIGN_NONE 0
#define NSVG_ALIGN_MEET 1
#define NSVG_ALIGN_SLICE 2
#define NSVG_NOTUSED( v ) do { (void) ( 1 ? (void) 0 : ( (void) (v) ) ); } \
while( 0 )
#define NSVG_RGB( r, g, \
b ) ( ( (unsigned int) r ) | ( (unsigned int) g << 8 ) | \
( (unsigned int) b << 16 ) )
#ifdef _MSC_VER
#pragma warning (disable: 4996) // Switch off security warnings
#pragma warning (disable: 4100) // Switch off unreferenced formal parameter warnings
#ifdef __cplusplus
#define NSVG_INLINE inline
#else
#define NSVG_INLINE
#endif
#else
#define NSVG_INLINE inline
#endif
static int nsvg__isspace( char c )
{
return strchr( " \t\n\v\f\r", c ) != 0;
}
static int nsvg__isdigit( char c )
{
return c >= '0' && c <= '9';
}
static int nsvg__isnum( char c )
{
return strchr( "0123456789+-.eE", c ) != 0;
}
static NSVG_INLINE float nsvg__minf( float a, float b )
{
return a < b ? a : b;
}
static NSVG_INLINE float nsvg__maxf( float a, float b )
{
return a > b ? a : b;
}
// Simple XML parser
#define NSVG_XML_TAG 1
#define NSVG_XML_CONTENT 2
#define NSVG_XML_MAX_ATTRIBS 256
static void nsvg__parseContent( char* s,
void (* contentCb)( void* ud, const char* s ),
void* ud )
{
// Trim start white spaces
while( *s && nsvg__isspace( *s ) )
s++;
if( !*s )
return;
if( contentCb )
(*contentCb)( ud, s );
}
static void nsvg__parseElement( char* s,
void (* startelCb)( void* ud, const char* el, const char** attr ),
void (* endelCb)( void* ud, const char* el ),
void* ud )
{
const char* attr[NSVG_XML_MAX_ATTRIBS];
int nattr = 0;
char* e_name;
int start = 0;
int end = 0;
char quote;
// Skip white space after the '<'
while( *s && nsvg__isspace( *s ) )
s++;
// Check if the tag is end tag
if( *s == '/' )
{
s++;
end = 1;
}
else
{
start = 1;
}
// Skip comments, data and preprocessor stuff.
if( !*s || *s == '?' || *s == '!' )
return;
// Get tag name
e_name = s;
while( *s && !nsvg__isspace( *s ) )
s++;
if( *s )
{
*s++ = '\0';
}
// Get attribs
while( !end && *s && nattr < NSVG_XML_MAX_ATTRIBS - 3 )
{
char* name = NULL;
char* value = NULL;
// Skip white space before the attrib name
while( *s && nsvg__isspace( *s ) )
s++;
if( !*s )
break;
if( *s == '/' )
{
end = 1;
break;
}
name = s;
// Find end of the attrib name.
while( *s && !nsvg__isspace( *s ) && *s != '=' )
s++;
if( *s )
{
*s++ = '\0';
}
// Skip until the beginning of the value.
while( *s && *s != '\"' && *s != '\'' )
s++;
if( !*s )
break;
quote = *s;
s++;
// Store value and find the end of it.
value = s;
while( *s && *s != quote )
s++;
if( *s )
{
*s++ = '\0';
}
// Store only well formed attributes
if( name && value )
{
attr[nattr++] = name;
attr[nattr++] = value;
}
}
// List terminator
attr[nattr++] = 0;
attr[nattr++] = 0;
// Call callbacks.
if( start && startelCb )
(*startelCb)( ud, e_name, attr );
if( end && endelCb )
(*endelCb)( ud, e_name );
}
int nsvg__parseXML( char* input,
void (* startelCb)( void* ud, const char* el, const char** attr ),
void (* endelCb)( void* ud, const char* el ),
void (* contentCb)( void* ud, const char* s ),
void* ud )
{
char* s = input;
char* mark = s;
int state = NSVG_XML_CONTENT;
while( *s )
{
if( *s == '<' && state == NSVG_XML_CONTENT )
{
// Start of a tag
*s++ = '\0';
nsvg__parseContent( mark, contentCb, ud );
mark = s;
state = NSVG_XML_TAG;
}
else if( *s == '>' && state == NSVG_XML_TAG )
{
// Start of a content or new tag.
*s++ = '\0';
nsvg__parseElement( mark, startelCb, endelCb, ud );
mark = s;
state = NSVG_XML_CONTENT;
}
else
{
s++;
}
}
return 1;
}
/* Simple SVG parser. */
#define NSVG_MAX_ATTR 128
enum NSVGgradientUnits
{
NSVG_USER_SPACE = 0,
NSVG_OBJECT_SPACE = 1
};
#define NSVG_MAX_DASHES 8
enum NSVGunits
{
NSVG_UNITS_USER,
NSVG_UNITS_PX,
NSVG_UNITS_PT,
NSVG_UNITS_PC,
NSVG_UNITS_MM,
NSVG_UNITS_CM,
NSVG_UNITS_IN,
NSVG_UNITS_PERCENT,
NSVG_UNITS_EM,
NSVG_UNITS_EX
};
typedef struct NSVGcoordinate
{
float value;
int units;
} NSVGcoordinate;
typedef struct NSVGlinearData
{
NSVGcoordinate x1, y1, x2, y2;
} NSVGlinearData;
typedef struct NSVGradialData
{
NSVGcoordinate cx, cy, r, fx, fy;
} NSVGradialData;
typedef struct NSVGgradientData
{
char id[64];
char ref[64];
char type;
union
{
NSVGlinearData linear;
NSVGradialData radial;
};
char spread;
char units;
float xform[6];
int nstops;
NSVGgradientStop* stops;
struct NSVGgradientData* next;
} NSVGgradientData;
typedef struct NSVGattrib
{
char id[64];
float xform[6];
unsigned int fillColor;
unsigned int strokeColor;
float opacity;
float fillOpacity;
float strokeOpacity;
char fillGradient[64];
char strokeGradient[64];
float strokeWidth;
float strokeDashOffset;
float strokeDashArray[NSVG_MAX_DASHES];
int strokeDashCount;
char strokeLineJoin;
char strokeLineCap;
float miterLimit;
char fillRule;
float fontSize;
unsigned int stopColor;
float stopOpacity;
float stopOffset;
char hasFill;
char hasStroke;
char visible;
} NSVGattrib;
typedef struct NSVGparser
{
NSVGattrib attr[NSVG_MAX_ATTR];
int attrHead;
float* pts;
int npts;
int cpts;
NSVGpath* plist;
NSVGimage* image;
NSVGgradientData* gradients;
NSVGshape* shapesTail;
float viewMinx, viewMiny, viewWidth, viewHeight;
int alignX, alignY, alignType;
float dpi;
char pathFlag;
char defsFlag;
} NSVGparser;
static void nsvg__xformIdentity( float* t )
{
t[0] = 1.0f; t[1] = 0.0f;
t[2] = 0.0f; t[3] = 1.0f;
t[4] = 0.0f; t[5] = 0.0f;
}
static void nsvg__xformSetTranslation( float* t, float tx, float ty )
{
t[0] = 1.0f; t[1] = 0.0f;
t[2] = 0.0f; t[3] = 1.0f;
t[4] = tx; t[5] = ty;
}
static void nsvg__xformSetScale( float* t, float sx, float sy )
{
t[0] = sx; t[1] = 0.0f;
t[2] = 0.0f; t[3] = sy;
t[4] = 0.0f; t[5] = 0.0f;
}
static void nsvg__xformSetSkewX( float* t, float a )
{
t[0] = 1.0f; t[1] = 0.0f;
t[2] = tanf( a ); t[3] = 1.0f;
t[4] = 0.0f; t[5] = 0.0f;
}
static void nsvg__xformSetSkewY( float* t, float a )
{
t[0] = 1.0f; t[1] = tanf( a );
t[2] = 0.0f; t[3] = 1.0f;
t[4] = 0.0f; t[5] = 0.0f;
}
static void nsvg__xformSetRotation( float* t, float a )
{
float cs = cosf( a ), sn = sinf( a );
t[0] = cs; t[1] = sn;
t[2] = -sn; t[3] = cs;
t[4] = 0.0f; t[5] = 0.0f;
}
static void nsvg__xformMultiply( float* t, float* s )
{
float t0 = t[0] * s[0] + t[1] * s[2];
float t2 = t[2] * s[0] + t[3] * s[2];
float t4 = t[4] * s[0] + t[5] * s[2] + s[4];
t[1] = t[0] * s[1] + t[1] * s[3];
t[3] = t[2] * s[1] + t[3] * s[3];
t[5] = t[4] * s[1] + t[5] * s[3] + s[5];
t[0] = t0;
t[2] = t2;
t[4] = t4;
}
static void nsvg__xformInverse( float* inv, float* t )
{
double invdet, det = (double) t[0] * t[3] - (double) t[2] * t[1];
if( det > -1e-6 && det < 1e-6 )
{
nsvg__xformIdentity( t );
return;
}
invdet = 1.0 / det;
inv[0] = (float) (t[3] * invdet);
inv[2] = (float) (-t[2] * invdet);
inv[4] = (float) ( ( (double) t[2] * t[5] - (double) t[3] * t[4] ) * invdet );
inv[1] = (float) (-t[1] * invdet);
inv[3] = (float) (t[0] * invdet);
inv[5] = (float) ( ( (double) t[1] * t[4] - (double) t[0] * t[5] ) * invdet );
}
static void nsvg__xformPremultiply( float* t, float* s )
{
float s2[6];
memcpy( s2, s, sizeof(float) * 6 );
nsvg__xformMultiply( s2, t );
memcpy( t, s2, sizeof(float) * 6 );
}
static void nsvg__xformPoint( float* dx, float* dy, float x, float y, float* t )
{
*dx = x * t[0] + y * t[2] + t[4];
*dy = x * t[1] + y * t[3] + t[5];
}
static void nsvg__xformVec( float* dx, float* dy, float x, float y, float* t )
{
*dx = x * t[0] + y * t[2];
*dy = x * t[1] + y * t[3];
}
#define NSVG_EPSILON (1e-12)
static int nsvg__ptInBounds( float* pt, float* bounds )
{
return pt[0] >= bounds[0] && pt[0] <= bounds[2] && pt[1] >= bounds[1] && pt[1] <= bounds[3];
}
static double nsvg__evalBezier( double t, double p0, double p1, double p2, double p3 )
{
double it = 1.0 - t;
return it * it * it * p0 + 3.0 * it * it * t * p1 + 3.0 * it * t * t * p2 + t * t * t * p3;
}
static void nsvg__curveBounds( float* bounds, float* curve )
{
int i, j, count;
double roots[2], a, b, c, b2ac, t, v;
float* v0 = &curve[0];
float* v1 = &curve[2];
float* v2 = &curve[4];
float* v3 = &curve[6];
// Start the bounding box by end points
bounds[0] = nsvg__minf( v0[0], v3[0] );
bounds[1] = nsvg__minf( v0[1], v3[1] );
bounds[2] = nsvg__maxf( v0[0], v3[0] );
bounds[3] = nsvg__maxf( v0[1], v3[1] );
// Bezier curve fits inside the convex hull of it's control points.
// If control points are inside the bounds, we're done.
if( nsvg__ptInBounds( v1, bounds ) && nsvg__ptInBounds( v2, bounds ) )
return;
// Add bezier curve inflection points in X and Y.
for( i = 0; i < 2; i++ )
{
a = -3.0 * v0[i] + 9.0 * v1[i] - 9.0 * v2[i] + 3.0 * v3[i];
b = 6.0 * v0[i] - 12.0 * v1[i] + 6.0 * v2[i];
c = 3.0 * v1[i] - 3.0 * v0[i];
count = 0;
if( fabs( a ) < NSVG_EPSILON )
{
if( fabs( b ) > NSVG_EPSILON )
{
t = -c / b;
if( t > NSVG_EPSILON && t < 1.0 - NSVG_EPSILON )
roots[count++] = t;
}
}
else
{
b2ac = b * b - 4.0 * c * a;
if( b2ac > NSVG_EPSILON )
{
t = ( -b + sqrt( b2ac ) ) / (2.0 * a);
if( t > NSVG_EPSILON && t < 1.0 - NSVG_EPSILON )
roots[count++] = t;
t = ( -b - sqrt( b2ac ) ) / (2.0 * a);
if( t > NSVG_EPSILON && t < 1.0 - NSVG_EPSILON )
roots[count++] = t;
}
}
for( j = 0; j < count; j++ )
{
v = nsvg__evalBezier( roots[j], v0[i], v1[i], v2[i], v3[i] );
bounds[0 + i] = nsvg__minf( bounds[0 + i], (float) v );
bounds[2 + i] = nsvg__maxf( bounds[2 + i], (float) v );
}
}
}
static NSVGparser* nsvg__createParser()
{
NSVGparser* p;
p = (NSVGparser*) malloc( sizeof(NSVGparser) );
if( p == NULL )
goto error;
memset( p, 0, sizeof(NSVGparser) );
p->image = (NSVGimage*) malloc( sizeof(NSVGimage) );
if( p->image == NULL )
goto error;
memset( p->image, 0, sizeof(NSVGimage) );
// Init style
nsvg__xformIdentity( p->attr[0].xform );
memset( p->attr[0].id, 0, sizeof p->attr[0].id );
p->attr[0].fillColor = NSVG_RGB( 0, 0, 0 );
p->attr[0].strokeColor = NSVG_RGB( 0, 0, 0 );
p->attr[0].opacity = 1;
p->attr[0].fillOpacity = 1;
p->attr[0].strokeOpacity = 1;
p->attr[0].stopOpacity = 1;
p->attr[0].strokeWidth = 1;
p->attr[0].strokeLineJoin = NSVG_JOIN_MITER;
p->attr[0].strokeLineCap = NSVG_CAP_BUTT;
p->attr[0].miterLimit = 4;
p->attr[0].fillRule = NSVG_FILLRULE_NONZERO;
p->attr[0].hasFill = 1;
p->attr[0].visible = 1;
return p;
error:
if( p )
{
if( p->image )
free( p->image );
free( p );
}
return NULL;
}
static void nsvg__deletePaths( NSVGpath* path )
{
while( path )
{
NSVGpath* next = path->next;
if( path->pts != NULL )
free( path->pts );
free( path );
path = next;
}
}
static void nsvg__deletePaint( NSVGpaint* paint )
{
if( paint->type == NSVG_PAINT_LINEAR_GRADIENT || paint->type == NSVG_PAINT_RADIAL_GRADIENT )
free( paint->gradient );
}
static void nsvg__deleteGradientData( NSVGgradientData* grad )
{
NSVGgradientData* next;
while( grad != NULL )
{
next = grad->next;
free( grad->stops );
free( grad );
grad = next;
}
}
static void nsvg__deleteParser( NSVGparser* p )
{
if( p != NULL )
{
nsvg__deletePaths( p->plist );
nsvg__deleteGradientData( p->gradients );
nsvgDelete( p->image );
free( p->pts );
free( p );
}
}
static void nsvg__resetPath( NSVGparser* p )
{
p->npts = 0;
}
static void nsvg__addPoint( NSVGparser* p, float x, float y )
{
if( p->npts + 1 > p->cpts )
{
p->cpts = p->cpts ? p->cpts * 2 : 8;
p->pts = (float*) realloc( p->pts, p->cpts * 2 * sizeof(float) );
if( !p->pts )
return;
}
p->pts[p->npts * 2 + 0] = x;
p->pts[p->npts * 2 + 1] = y;
p->npts++;
}
static void nsvg__moveTo( NSVGparser* p, float x, float y )
{
if( p->npts > 0 )
{
p->pts[(p->npts - 1) * 2 + 0] = x;
p->pts[(p->npts - 1) * 2 + 1] = y;
}
else
{
nsvg__addPoint( p, x, y );
}
}
static void nsvg__lineTo( NSVGparser* p, float x, float y )
{
float px, py, dx, dy;
if( p->npts > 0 )
{
px = p->pts[(p->npts - 1) * 2 + 0];
py = p->pts[(p->npts - 1) * 2 + 1];
dx = x - px;
dy = y - py;
nsvg__addPoint( p, px + dx / 3.0f, py + dy / 3.0f );
nsvg__addPoint( p, x - dx / 3.0f, y - dy / 3.0f );
nsvg__addPoint( p, x, y );
}
}
static void nsvg__cubicBezTo( NSVGparser* p,
float cpx1,
float cpy1,
float cpx2,
float cpy2,
float x,
float y )
{
nsvg__addPoint( p, cpx1, cpy1 );
nsvg__addPoint( p, cpx2, cpy2 );
nsvg__addPoint( p, x, y );
}
static NSVGattrib* nsvg__getAttr( NSVGparser* p )
{
return &p->attr[p->attrHead];
}
static void nsvg__pushAttr( NSVGparser* p )
{
if( p->attrHead < NSVG_MAX_ATTR - 1 )
{
p->attrHead++;
memcpy( &p->attr[p->attrHead], &p->attr[p->attrHead - 1], sizeof(NSVGattrib) );
}
}
static void nsvg__popAttr( NSVGparser* p )
{
if( p->attrHead > 0 )
p->attrHead--;
}
static float nsvg__actualOrigX( NSVGparser* p )
{
return p->viewMinx;
}
static float nsvg__actualOrigY( NSVGparser* p )
{
return p->viewMiny;
}
static float nsvg__actualWidth( NSVGparser* p )
{
return p->viewWidth;
}
static float nsvg__actualHeight( NSVGparser* p )
{
return p->viewHeight;
}
static float nsvg__actualLength( NSVGparser* p )
{
float w = nsvg__actualWidth( p ), h = nsvg__actualHeight( p );
return sqrtf( w * w + h * h ) / sqrtf( 2.0f );
}
static float nsvg__convertToPixels( NSVGparser* p, NSVGcoordinate c, float orig, float length )
{
NSVGattrib* attr = nsvg__getAttr( p );
switch( c.units )
{
case NSVG_UNITS_USER:
return c.value;
case NSVG_UNITS_PX:
return c.value;
case NSVG_UNITS_PT:
return c.value / 72.0f * p->dpi;
case NSVG_UNITS_PC:
return c.value / 6.0f * p->dpi;
case NSVG_UNITS_MM:
return c.value / 25.4f * p->dpi;
case NSVG_UNITS_CM:
return c.value / 2.54f * p->dpi;
case NSVG_UNITS_IN:
return c.value * p->dpi;
case NSVG_UNITS_EM:
return c.value * attr->fontSize;
case NSVG_UNITS_EX:
return c.value * attr->fontSize * 0.52f; // x-height of Helvetica.
case NSVG_UNITS_PERCENT:
return orig + c.value / 100.0f * length;
default:
return c.value;
}
return c.value;
}
static NSVGgradientData* nsvg__findGradientData( NSVGparser* p, const char* id )
{
NSVGgradientData* grad = p->gradients;
while( grad )
{
if( strcmp( grad->id, id ) == 0 )
return grad;
grad = grad->next;
}
return NULL;
}
static NSVGgradient* nsvg__createGradient( NSVGparser* p,
const char* id,
const float* localBounds,
char* paintType )
{
NSVGattrib* attr = nsvg__getAttr( p );
NSVGgradientData* data = NULL;
NSVGgradientData* ref = NULL;
NSVGgradientStop* stops = NULL;
NSVGgradient* grad;
float ox, oy, sw, sh, sl;
int nstops = 0;
data = nsvg__findGradientData( p, id );
if( data == NULL )
return NULL;
// TODO: use ref to fill in all unset values too.
ref = data;
while( ref != NULL )
{
if( stops == NULL && ref->stops != NULL )
{
stops = ref->stops;
nstops = ref->nstops;
break;
}
ref = nsvg__findGradientData( p, ref->ref );
}
if( stops == NULL )
return NULL;
grad = (NSVGgradient*) malloc( sizeof(NSVGgradient) + sizeof(NSVGgradientStop) * (nstops - 1) );
if( grad == NULL )
return NULL;
// The shape width and height.
if( data->units == NSVG_OBJECT_SPACE )
{
ox = localBounds[0];
oy = localBounds[1];
sw = localBounds[2] - localBounds[0];
sh = localBounds[3] - localBounds[1];
}
else
{
ox = nsvg__actualOrigX( p );
oy = nsvg__actualOrigY( p );
sw = nsvg__actualWidth( p );
sh = nsvg__actualHeight( p );
}
sl = sqrtf( sw * sw + sh * sh ) / sqrtf( 2.0f );
if( data->type == NSVG_PAINT_LINEAR_GRADIENT )
{
float x1, y1, x2, y2, dx, dy;
x1 = nsvg__convertToPixels( p, data->linear.x1, ox, sw );
y1 = nsvg__convertToPixels( p, data->linear.y1, oy, sh );
x2 = nsvg__convertToPixels( p, data->linear.x2, ox, sw );
y2 = nsvg__convertToPixels( p, data->linear.y2, oy, sh );
// Calculate transform aligned to the line
dx = x2 - x1;
dy = y2 - y1;
grad->xform[0] = dy; grad->xform[1] = -dx;
grad->xform[2] = dx; grad->xform[3] = dy;
grad->xform[4] = x1; grad->xform[5] = y1;
}
else
{
float cx, cy, fx, fy, r;
cx = nsvg__convertToPixels( p, data->radial.cx, ox, sw );
cy = nsvg__convertToPixels( p, data->radial.cy, oy, sh );
fx = nsvg__convertToPixels( p, data->radial.fx, ox, sw );
fy = nsvg__convertToPixels( p, data->radial.fy, oy, sh );
r = nsvg__convertToPixels( p, data->radial.r, 0, sl );
// Calculate transform aligned to the circle
grad->xform[0] = r; grad->xform[1] = 0;
grad->xform[2] = 0; grad->xform[3] = r;
grad->xform[4] = cx; grad->xform[5] = cy;
grad->fx = fx / r;
grad->fy = fy / r;
}
nsvg__xformMultiply( grad->xform, data->xform );
nsvg__xformMultiply( grad->xform, attr->xform );
grad->spread = data->spread;
memcpy( grad->stops, stops, nstops * sizeof(NSVGgradientStop) );
grad->nstops = nstops;
*paintType = data->type;
return grad;
}
static float nsvg__getAverageScale( float* t )
{
float sx = sqrtf( t[0] * t[0] + t[2] * t[2] );
float sy = sqrtf( t[1] * t[1] + t[3] * t[3] );
return (sx + sy) * 0.5f;
}
static void nsvg__getLocalBounds( float* bounds, NSVGshape* shape, float* xform )
{
NSVGpath* path;
float curve[4 * 2], curveBounds[4];
int i, first = 1;
for( path = shape->paths; path != NULL; path = path->next )
{
nsvg__xformPoint( &curve[0], &curve[1], path->pts[0], path->pts[1], xform );
for( i = 0; i < path->npts - 1; i += 3 )
{
nsvg__xformPoint( &curve[2], &curve[3], path->pts[(i + 1) * 2],
path->pts[(i + 1) * 2 + 1], xform );
nsvg__xformPoint( &curve[4], &curve[5], path->pts[(i + 2) * 2],
path->pts[(i + 2) * 2 + 1], xform );
nsvg__xformPoint( &curve[6], &curve[7], path->pts[(i + 3) * 2],
path->pts[(i + 3) * 2 + 1], xform );
nsvg__curveBounds( curveBounds, curve );
if( first )
{
bounds[0] = curveBounds[0];
bounds[1] = curveBounds[1];
bounds[2] = curveBounds[2];
bounds[3] = curveBounds[3];
first = 0;
}
else
{
bounds[0] = nsvg__minf( bounds[0], curveBounds[0] );
bounds[1] = nsvg__minf( bounds[1], curveBounds[1] );
bounds[2] = nsvg__maxf( bounds[2], curveBounds[2] );
bounds[3] = nsvg__maxf( bounds[3], curveBounds[3] );
}
curve[0] = curve[6];
curve[1] = curve[7];
}
}
}
static void nsvg__addShape( NSVGparser* p )
{
NSVGattrib* attr = nsvg__getAttr( p );
float scale = 1.0f;
NSVGshape* shape;
NSVGpath* path;
int i;
if( p->plist == NULL )
return;
shape = (NSVGshape*) malloc( sizeof(NSVGshape) );
if( shape == NULL )
goto error;
memset( shape, 0, sizeof(NSVGshape) );
memcpy( shape->id, attr->id, sizeof shape->id );
scale = nsvg__getAverageScale( attr->xform );
shape->strokeWidth = attr->strokeWidth * scale;
shape->strokeDashOffset = attr->strokeDashOffset * scale;
shape->strokeDashCount = (char) attr->strokeDashCount;
for( i = 0; i < attr->strokeDashCount; i++ )
shape->strokeDashArray[i] = attr->strokeDashArray[i] * scale;
shape->strokeLineJoin = attr->strokeLineJoin;
shape->strokeLineCap = attr->strokeLineCap;
shape->miterLimit = attr->miterLimit;
shape->fillRule = attr->fillRule;
shape->opacity = attr->opacity;
shape->paths = p->plist;
p->plist = NULL;
// Calculate shape bounds
shape->bounds[0] = shape->paths->bounds[0];
shape->bounds[1] = shape->paths->bounds[1];
shape->bounds[2] = shape->paths->bounds[2];
shape->bounds[3] = shape->paths->bounds[3];
for( path = shape->paths->next; path != NULL; path = path->next )
{
shape->bounds[0] = nsvg__minf( shape->bounds[0], path->bounds[0] );
shape->bounds[1] = nsvg__minf( shape->bounds[1], path->bounds[1] );
shape->bounds[2] = nsvg__maxf( shape->bounds[2], path->bounds[2] );
shape->bounds[3] = nsvg__maxf( shape->bounds[3], path->bounds[3] );
}
// Set fill
if( attr->hasFill == 0 )
{
shape->fill.type = NSVG_PAINT_NONE;
}
else if( attr->hasFill == 1 )
{
shape->fill.type = NSVG_PAINT_COLOR;
shape->fill.color = attr->fillColor;
shape->fill.color |= (unsigned int) (attr->fillOpacity * 255) << 24;
}
else if( attr->hasFill == 2 )
{
float inv[6], localBounds[4];
nsvg__xformInverse( inv, attr->xform );
nsvg__getLocalBounds( localBounds, shape, inv );
shape->fill.gradient = nsvg__createGradient( p,
attr->fillGradient,
localBounds,
&shape->fill.type );
if( shape->fill.gradient == NULL )
{
shape->fill.type = NSVG_PAINT_NONE;
}
}
// Set stroke
if( attr->hasStroke == 0 )
{
shape->stroke.type = NSVG_PAINT_NONE;
}
else if( attr->hasStroke == 1 )
{
shape->stroke.type = NSVG_PAINT_COLOR;
shape->stroke.color = attr->strokeColor;
shape->stroke.color |= (unsigned int) (attr->strokeOpacity * 255) << 24;
}
else if( attr->hasStroke == 2 )
{
float inv[6], localBounds[4];
nsvg__xformInverse( inv, attr->xform );
nsvg__getLocalBounds( localBounds, shape, inv );
shape->stroke.gradient = nsvg__createGradient( p,
attr->strokeGradient,
localBounds,
&shape->stroke.type );
if( shape->stroke.gradient == NULL )
shape->stroke.type = NSVG_PAINT_NONE;
}
// Set flags
shape->flags = (attr->visible ? NSVG_FLAGS_VISIBLE : 0x00);
// Add to tail
if( p->image->shapes == NULL )
p->image->shapes = shape;
else
p->shapesTail->next = shape;
p->shapesTail = shape;
return;
error:
if( shape )
free( shape );
}
static void nsvg__addPath( NSVGparser* p, char closed )
{
NSVGattrib* attr = nsvg__getAttr( p );
NSVGpath* path = NULL;
float bounds[4];
float* curve;
int i;
if( p->npts < 4 )
return;
if( closed )
nsvg__lineTo( p, p->pts[0], p->pts[1] );
path = (NSVGpath*) malloc( sizeof(NSVGpath) );
if( path == NULL )
goto error;
memset( path, 0, sizeof(NSVGpath) );
path->pts = (float*) malloc( p->npts * 2 * sizeof(float) );
if( path->pts == NULL )
goto error;
path->closed = closed;
path->npts = p->npts;
// Transform path.
for( i = 0; i < p->npts; ++i )
nsvg__xformPoint( &path->pts[i * 2],
&path->pts[i * 2 + 1],
p->pts[i * 2],
p->pts[i * 2 + 1],
attr->xform );
// Find bounds
for( i = 0; i < path->npts - 1; i += 3 )
{
curve = &path->pts[i * 2];
nsvg__curveBounds( bounds, curve );
if( i == 0 )
{
path->bounds[0] = bounds[0];
path->bounds[1] = bounds[1];
path->bounds[2] = bounds[2];
path->bounds[3] = bounds[3];
}
else
{
path->bounds[0] = nsvg__minf( path->bounds[0], bounds[0] );
path->bounds[1] = nsvg__minf( path->bounds[1], bounds[1] );
path->bounds[2] = nsvg__maxf( path->bounds[2], bounds[2] );
path->bounds[3] = nsvg__maxf( path->bounds[3], bounds[3] );
}
}
path->next = p->plist;
p->plist = path;
return;
error:
if( path != NULL )
{
if( path->pts != NULL )
free( path->pts );
free( path );
}
}
// We roll our own string to float because the std library one uses locale and messes things up.
static double nsvg__atof( const char* s )
{
char* cur = (char*) s;
char* end = NULL;
double res = 0.0, sign = 1.0;
long long intPart = 0, fracPart = 0;
char hasIntPart = 0, hasFracPart = 0;
// Parse optional sign
if( *cur == '+' )
{
cur++;
}
else if( *cur == '-' )
{
sign = -1;
cur++;
}
// Parse integer part
if( nsvg__isdigit( *cur ) )
{
// Parse digit sequence
intPart = (double) strtoll( cur, &end, 10 );
if( cur != end )
{
res = (double) intPart;
hasIntPart = 1;
cur = end;
}
}
// Parse fractional part.
if( *cur == '.' )
{
cur++; // Skip '.'
if( nsvg__isdigit( *cur ) )
{
// Parse digit sequence
fracPart = strtoll( cur, &end, 10 );
if( cur != end )
{
res += (double) fracPart / pow( 10.0, (double) (end - cur) );
hasFracPart = 1;
cur = end;
}
}
}
// A valid number should have integer or fractional part.
if( !hasIntPart && !hasFracPart )
return 0.0;
// Parse optional exponent
if( *cur == 'e' || *cur == 'E' )
{
int expPart = 0;
cur++; // skip 'E'
expPart = strtol( cur, &end, 10 ); // Parse digit sequence with sign
if( cur != end )
{
res *= pow( 10.0, (double) expPart );
}
}
return res * sign;
}
static const char* nsvg__parseNumber( const char* s, char* it, const int size )
{
const int last = size - 1;
int i = 0;
// sign
if( *s == '-' || *s == '+' )
{
if( i < last )
it[i++] = *s;
s++;
}
// integer part
while( *s && nsvg__isdigit( *s ) )
{
if( i < last )
it[i++] = *s;
s++;
}
if( *s == '.' )
{
// decimal point
if( i < last )
it[i++] = *s;
s++;
// fraction part
while( *s && nsvg__isdigit( *s ) )
{
if( i < last )
it[i++] = *s;
s++;
}
}
// exponent
if( *s == 'e' || *s == 'E' )
{
if( i < last )
it[i++] = *s;
s++;
if( *s == '-' || *s == '+' )
{
if( i < last )
it[i++] = *s;
s++;
}
while( *s && nsvg__isdigit( *s ) )
{
if( i < last )
it[i++] = *s;
s++;
}
}
it[i] = '\0';
return s;
}
static const char* nsvg__getNextPathItem( const char* s, char* it )
{
it[0] = '\0';
// Skip white spaces and commas
while( *s && (nsvg__isspace( *s ) || *s == ',') )
s++;
if( !*s )
return s;
if( *s == '-' || *s == '+' || *s == '.' || nsvg__isdigit( *s ) )
{
s = nsvg__parseNumber( s, it, 64 );
}
else
{
// Parse command
it[0] = *s++;
it[1] = '\0';
return s;
}
return s;
}
static unsigned int nsvg__parseColorHex( const char* str )
{
unsigned int c = 0, r = 0, g = 0, b = 0;
int n = 0;
str++; // skip #
// Calculate number of characters.
while( str[n] && !nsvg__isspace( str[n] ) )
n++;
if( n == 6 )
{
sscanf( str, "%x", &c );
}
else if( n == 3 )
{
sscanf( str, "%x", &c );
c = (c & 0xf) | ( (c & 0xf0) << 4 ) | ( (c & 0xf00) << 8 );
c |= c << 4;
}
r = (c >> 16) & 0xff;
g = (c >> 8) & 0xff;
b = c & 0xff;
return NSVG_RGB( r, g, b );
}
static unsigned int nsvg__parseColorRGB( const char* str )
{
int r = -1, g = -1, b = -1;
char s1[32] = "", s2[32] = "";
sscanf( str + 4, "%d%[%%, \t]%d%[%%, \t]%d", &r, s1, &g, s2, &b );
if( strchr( s1, '%' ) )
{
return NSVG_RGB( (r * 255) / 100, (g * 255) / 100, (b * 255) / 100 );
}
else
{
return NSVG_RGB( r, g, b );
}
}
typedef struct NSVGNamedColor
{
const char* name;
unsigned int color;
} NSVGNamedColor;
NSVGNamedColor nsvg__colors[] =
{
{ "red", NSVG_RGB( 255, 0, 0 ) },
{ "green", NSVG_RGB( 0, 128, 0 ) },
{ "blue", NSVG_RGB( 0, 0, 255 ) },
{ "yellow", NSVG_RGB( 255, 255, 0 ) },
{ "cyan", NSVG_RGB( 0, 255, 255 ) },
{ "magenta", NSVG_RGB( 255, 0, 255 ) },
{ "black", NSVG_RGB( 0, 0, 0 ) },
{ "grey", NSVG_RGB( 128, 128, 128 ) },
{ "gray", NSVG_RGB( 128, 128, 128 ) },
{ "white", NSVG_RGB( 255, 255, 255 ) },
#ifdef NANOSVG_ALL_COLOR_KEYWORDS
{ "aliceblue", NSVG_RGB( 240, 248, 255 ) },
{ "antiquewhite", NSVG_RGB( 250, 235, 215 ) },
{ "aqua", NSVG_RGB( 0, 255, 255 ) },
{ "aquamarine", NSVG_RGB( 127, 255, 212 ) },
{ "azure", NSVG_RGB( 240, 255, 255 ) },
{ "beige", NSVG_RGB( 245, 245, 220 ) },
{ "bisque", NSVG_RGB( 255, 228, 196 ) },
{ "blanchedalmond", NSVG_RGB( 255, 235, 205 ) },
{ "blueviolet", NSVG_RGB( 138, 43, 226 ) },
{ "brown", NSVG_RGB( 165, 42, 42 ) },
{ "burlywood", NSVG_RGB( 222, 184, 135 ) },
{ "cadetblue", NSVG_RGB( 95, 158, 160 ) },
{ "chartreuse", NSVG_RGB( 127, 255, 0 ) },
{ "chocolate", NSVG_RGB( 210, 105, 30 ) },
{ "coral", NSVG_RGB( 255, 127, 80 ) },
{ "cornflowerblue", NSVG_RGB( 100, 149, 237 ) },
{ "cornsilk", NSVG_RGB( 255, 248, 220 ) },
{ "crimson", NSVG_RGB( 220, 20, 60 ) },
{ "darkblue", NSVG_RGB( 0, 0, 139 ) },
{ "darkcyan", NSVG_RGB( 0, 139, 139 ) },
{ "darkgoldenrod", NSVG_RGB( 184, 134, 11 ) },
{ "darkgray", NSVG_RGB( 169, 169, 169 ) },
{ "darkgreen", NSVG_RGB( 0, 100, 0 ) },
{ "darkgrey", NSVG_RGB( 169, 169, 169 ) },
{ "darkkhaki", NSVG_RGB( 189, 183, 107 ) },
{ "darkmagenta", NSVG_RGB( 139, 0, 139 ) },
{ "darkolivegreen", NSVG_RGB( 85, 107, 47 ) },
{ "darkorange", NSVG_RGB( 255, 140, 0 ) },
{ "darkorchid", NSVG_RGB( 153, 50, 204 ) },
{ "darkred", NSVG_RGB( 139, 0, 0 ) },
{ "darksalmon", NSVG_RGB( 233, 150, 122 ) },
{ "darkseagreen", NSVG_RGB( 143, 188, 143 ) },
{ "darkslateblue", NSVG_RGB( 72, 61, 139 ) },
{ "darkslategray", NSVG_RGB( 47, 79, 79 ) },
{ "darkslategrey", NSVG_RGB( 47, 79, 79 ) },
{ "darkturquoise", NSVG_RGB( 0, 206, 209 ) },
{ "darkviolet", NSVG_RGB( 148, 0, 211 ) },
{ "deeppink", NSVG_RGB( 255, 20, 147 ) },
{ "deepskyblue", NSVG_RGB( 0, 191, 255 ) },
{ "dimgray", NSVG_RGB( 105, 105, 105 ) },
{ "dimgrey", NSVG_RGB( 105, 105, 105 ) },
{ "dodgerblue", NSVG_RGB( 30, 144, 255 ) },
{ "firebrick", NSVG_RGB( 178, 34, 34 ) },
{ "floralwhite", NSVG_RGB( 255, 250, 240 ) },
{ "forestgreen", NSVG_RGB( 34, 139, 34 ) },
{ "fuchsia", NSVG_RGB( 255, 0, 255 ) },
{ "gainsboro", NSVG_RGB( 220, 220, 220 ) },
{ "ghostwhite", NSVG_RGB( 248, 248, 255 ) },
{ "gold", NSVG_RGB( 255, 215, 0 ) },
{ "goldenrod", NSVG_RGB( 218, 165, 32 ) },
{ "greenyellow", NSVG_RGB( 173, 255, 47 ) },
{ "honeydew", NSVG_RGB( 240, 255, 240 ) },
{ "hotpink", NSVG_RGB( 255, 105, 180 ) },
{ "indianred", NSVG_RGB( 205, 92, 92 ) },
{ "indigo", NSVG_RGB( 75, 0, 130 ) },
{ "ivory", NSVG_RGB( 255, 255, 240 ) },
{ "khaki", NSVG_RGB( 240, 230, 140 ) },
{ "lavender", NSVG_RGB( 230, 230, 250 ) },
{ "lavenderblush", NSVG_RGB( 255, 240, 245 ) },
{ "lawngreen", NSVG_RGB( 124, 252, 0 ) },
{ "lemonchiffon", NSVG_RGB( 255, 250, 205 ) },
{ "lightblue", NSVG_RGB( 173, 216, 230 ) },
{ "lightcoral", NSVG_RGB( 240, 128, 128 ) },
{ "lightcyan", NSVG_RGB( 224, 255, 255 ) },
{ "lightgoldenrodyellow", NSVG_RGB( 250, 250, 210 ) },
{ "lightgray", NSVG_RGB( 211, 211, 211 ) },
{ "lightgreen", NSVG_RGB( 144, 238, 144 ) },
{ "lightgrey", NSVG_RGB( 211, 211, 211 ) },
{ "lightpink", NSVG_RGB( 255, 182, 193 ) },
{ "lightsalmon", NSVG_RGB( 255, 160, 122 ) },
{ "lightseagreen", NSVG_RGB( 32, 178, 170 ) },
{ "lightskyblue", NSVG_RGB( 135, 206, 250 ) },
{ "lightslategray", NSVG_RGB( 119, 136, 153 ) },
{ "lightslategrey", NSVG_RGB( 119, 136, 153 ) },
{ "lightsteelblue", NSVG_RGB( 176, 196, 222 ) },
{ "lightyellow", NSVG_RGB( 255, 255, 224 ) },
{ "lime", NSVG_RGB( 0, 255, 0 ) },
{ "limegreen", NSVG_RGB( 50, 205, 50 ) },
{ "linen", NSVG_RGB( 250, 240, 230 ) },
{ "maroon", NSVG_RGB( 128, 0, 0 ) },
{ "mediumaquamarine", NSVG_RGB( 102, 205, 170 ) },
{ "mediumblue", NSVG_RGB( 0, 0, 205 ) },
{ "mediumorchid", NSVG_RGB( 186, 85, 211 ) },
{ "mediumpurple", NSVG_RGB( 147, 112, 219 ) },
{ "mediumseagreen", NSVG_RGB( 60, 179, 113 ) },
{ "mediumslateblue", NSVG_RGB( 123, 104, 238 ) },
{ "mediumspringgreen", NSVG_RGB( 0, 250, 154 ) },
{ "mediumturquoise", NSVG_RGB( 72, 209, 204 ) },
{ "mediumvioletred", NSVG_RGB( 199, 21, 133 ) },
{ "midnightblue", NSVG_RGB( 25, 25, 112 ) },
{ "mintcream", NSVG_RGB( 245, 255, 250 ) },
{ "mistyrose", NSVG_RGB( 255, 228, 225 ) },
{ "moccasin", NSVG_RGB( 255, 228, 181 ) },
{ "navajowhite", NSVG_RGB( 255, 222, 173 ) },
{ "navy", NSVG_RGB( 0, 0, 128 ) },
{ "oldlace", NSVG_RGB( 253, 245, 230 ) },
{ "olive", NSVG_RGB( 128, 128, 0 ) },
{ "olivedrab", NSVG_RGB( 107, 142, 35 ) },
{ "orange", NSVG_RGB( 255, 165, 0 ) },
{ "orangered", NSVG_RGB( 255, 69, 0 ) },
{ "orchid", NSVG_RGB( 218, 112, 214 ) },
{ "palegoldenrod", NSVG_RGB( 238, 232, 170 ) },
{ "palegreen", NSVG_RGB( 152, 251, 152 ) },
{ "paleturquoise", NSVG_RGB( 175, 238, 238 ) },
{ "palevioletred", NSVG_RGB( 219, 112, 147 ) },
{ "papayawhip", NSVG_RGB( 255, 239, 213 ) },
{ "peachpuff", NSVG_RGB( 255, 218, 185 ) },
{ "peru", NSVG_RGB( 205, 133, 63 ) },
{ "pink", NSVG_RGB( 255, 192, 203 ) },
{ "plum", NSVG_RGB( 221, 160, 221 ) },
{ "powderblue", NSVG_RGB( 176, 224, 230 ) },
{ "purple", NSVG_RGB( 128, 0, 128 ) },
{ "rosybrown", NSVG_RGB( 188, 143, 143 ) },
{ "royalblue", NSVG_RGB( 65, 105, 225 ) },
{ "saddlebrown", NSVG_RGB( 139, 69, 19 ) },
{ "salmon", NSVG_RGB( 250, 128, 114 ) },
{ "sandybrown", NSVG_RGB( 244, 164, 96 ) },
{ "seagreen", NSVG_RGB( 46, 139, 87 ) },
{ "seashell", NSVG_RGB( 255, 245, 238 ) },
{ "sienna", NSVG_RGB( 160, 82, 45 ) },
{ "silver", NSVG_RGB( 192, 192, 192 ) },
{ "skyblue", NSVG_RGB( 135, 206, 235 ) },
{ "slateblue", NSVG_RGB( 106, 90, 205 ) },
{ "slategray", NSVG_RGB( 112, 128, 144 ) },
{ "slategrey", NSVG_RGB( 112, 128, 144 ) },
{ "snow", NSVG_RGB( 255, 250, 250 ) },
{ "springgreen", NSVG_RGB( 0, 255, 127 ) },
{ "steelblue", NSVG_RGB( 70, 130, 180 ) },
{ "tan", NSVG_RGB( 210, 180, 140 ) },
{ "teal", NSVG_RGB( 0, 128, 128 ) },
{ "thistle", NSVG_RGB( 216, 191, 216 ) },
{ "tomato", NSVG_RGB( 255, 99, 71 ) },
{ "turquoise", NSVG_RGB( 64, 224, 208 ) },
{ "violet", NSVG_RGB( 238, 130, 238 ) },
{ "wheat", NSVG_RGB( 245, 222, 179 ) },
{ "whitesmoke", NSVG_RGB( 245, 245, 245 ) },
{ "yellowgreen", NSVG_RGB( 154, 205, 50 ) },
#endif
};
static unsigned int nsvg__parseColorName( const char* str )
{
int i, ncolors = sizeof(nsvg__colors) / sizeof(NSVGNamedColor);
for( i = 0; i < ncolors; i++ )
{
if( strcmp( nsvg__colors[i].name, str ) == 0 )
{
return nsvg__colors[i].color;
}
}
return NSVG_RGB( 128, 128, 128 );
}
static unsigned int nsvg__parseColor( const char* str )
{
size_t len = 0;
while( *str == ' ' )
++str;
len = strlen( str );
if( len >= 1 && *str == '#' )
return nsvg__parseColorHex( str );
else if( len >= 4 && str[0] == 'r' && str[1] == 'g' && str[2] == 'b' && str[3] == '(' )
return nsvg__parseColorRGB( str );
return nsvg__parseColorName( str );
}
static float nsvg__parseOpacity( const char* str )
{
float val = 0;
sscanf( str, "%f", &val );
if( val < 0.0f )
val = 0.0f;
if( val > 1.0f )
val = 1.0f;
return val;
}
static float nsvg__parseMiterLimit( const char* str )
{
float val = 0;
sscanf( str, "%f", &val );
if( val < 0.0f )
val = 0.0f;
return val;
}
static int nsvg__parseUnits( const char* units )
{
if( units[0] == 'p' && units[1] == 'x' )
return NSVG_UNITS_PX;
else if( units[0] == 'p' && units[1] == 't' )
return NSVG_UNITS_PT;
else if( units[0] == 'p' && units[1] == 'c' )
return NSVG_UNITS_PC;
else if( units[0] == 'm' && units[1] == 'm' )
return NSVG_UNITS_MM;
else if( units[0] == 'c' && units[1] == 'm' )
return NSVG_UNITS_CM;
else if( units[0] == 'i' && units[1] == 'n' )
return NSVG_UNITS_IN;
else if( units[0] == '%' )
return NSVG_UNITS_PERCENT;
else if( units[0] == 'e' && units[1] == 'm' )
return NSVG_UNITS_EM;
else if( units[0] == 'e' && units[1] == 'x' )
return NSVG_UNITS_EX;
return NSVG_UNITS_USER;
}
static NSVGcoordinate nsvg__parseCoordinateRaw( const char* str )
{
NSVGcoordinate coord = { 0, NSVG_UNITS_USER };
char units[32] = "";
sscanf( str, "%f%31s", &coord.value, units );
coord.units = nsvg__parseUnits( units );
return coord;
}
static NSVGcoordinate nsvg__coord( float v, int units )
{
NSVGcoordinate coord = { v, units };
return coord;
}
static float nsvg__parseCoordinate( NSVGparser* p, const char* str, float orig, float length )
{
NSVGcoordinate coord = nsvg__parseCoordinateRaw( str );
return nsvg__convertToPixels( p, coord, orig, length );
}
static int nsvg__parseTransformArgs( const char* str, float* args, int maxNa, int* na )
{
const char* end;
const char* ptr;
char it[64];
*na = 0;
ptr = str;
while( *ptr && *ptr != '(' )
++ptr;
if( *ptr == 0 )
return 1;
end = ptr;
while( *end && *end != ')' )
++end;
if( *end == 0 )
return 1;
while( ptr < end )
{
if( *ptr == '-' || *ptr == '+' || *ptr == '.' || nsvg__isdigit( *ptr ) )
{
if( *na >= maxNa )
return 0;
ptr = nsvg__parseNumber( ptr, it, 64 );
args[(*na)++] = (float) nsvg__atof( it );
}
else
{
++ptr;
}
}
return (int) (end - str);
}
static int nsvg__parseMatrix( float* xform, const char* str )
{
float t[6];
int na = 0;
int len = nsvg__parseTransformArgs( str, t, 6, &na );
if( na != 6 )
return len;
memcpy( xform, t, sizeof(float) * 6 );
return len;
}
static int nsvg__parseTranslate( float* xform, const char* str )
{
float args[2];
float t[6];
int na = 0;
int len = nsvg__parseTransformArgs( str, args, 2, &na );
if( na == 1 )
args[1] = 0.0;
nsvg__xformSetTranslation( t, args[0], args[1] );
memcpy( xform, t, sizeof(float) * 6 );
return len;
}
static int nsvg__parseScale( float* xform, const char* str )
{
float args[2];
int na = 0;
float t[6];
int len = nsvg__parseTransformArgs( str, args, 2, &na );
if( na == 1 )
args[1] = args[0];
nsvg__xformSetScale( t, args[0], args[1] );
memcpy( xform, t, sizeof(float) * 6 );
return len;
}
static int nsvg__parseSkewX( float* xform, const char* str )
{
float args[1];
int na = 0;
float t[6];
int len = nsvg__parseTransformArgs( str, args, 1, &na );
nsvg__xformSetSkewX( t, args[0] / 180.0f * NSVG_PI );
memcpy( xform, t, sizeof(float) * 6 );
return len;
}
static int nsvg__parseSkewY( float* xform, const char* str )
{
float args[1];
int na = 0;
float t[6];
int len = nsvg__parseTransformArgs( str, args, 1, &na );
nsvg__xformSetSkewY( t, args[0] / 180.0f * NSVG_PI );
memcpy( xform, t, sizeof(float) * 6 );
return len;
}
static int nsvg__parseRotate( float* xform, const char* str )
{
float args[3];
int na = 0;
float m[6];
float t[6];
int len = nsvg__parseTransformArgs( str, args, 3, &na );
if( na == 1 )
args[1] = args[2] = 0.0f;
nsvg__xformIdentity( m );
if( na > 1 )
{
nsvg__xformSetTranslation( t, -args[1], -args[2] );
nsvg__xformMultiply( m, t );
}
nsvg__xformSetRotation( t, args[0] / 180.0f * NSVG_PI );
nsvg__xformMultiply( m, t );
if( na > 1 )
{
nsvg__xformSetTranslation( t, args[1], args[2] );
nsvg__xformMultiply( m, t );
}
memcpy( xform, m, sizeof(float) * 6 );
return len;
}
static void nsvg__parseTransform( float* xform, const char* str )
{
float t[6];
nsvg__xformIdentity( xform );
while( *str )
{
if( strncmp( str, "matrix", 6 ) == 0 )
str += nsvg__parseMatrix( t, str );
else if( strncmp( str, "translate", 9 ) == 0 )
str += nsvg__parseTranslate( t, str );
else if( strncmp( str, "scale", 5 ) == 0 )
str += nsvg__parseScale( t, str );
else if( strncmp( str, "rotate", 6 ) == 0 )
str += nsvg__parseRotate( t, str );
else if( strncmp( str, "skewX", 5 ) == 0 )
str += nsvg__parseSkewX( t, str );
else if( strncmp( str, "skewY", 5 ) == 0 )
str += nsvg__parseSkewY( t, str );
else
{
++str;
continue;
}
nsvg__xformPremultiply( xform, t );
}
}
static void nsvg__parseUrl( char* id, const char* str )
{
int i = 0;
str += 4; // "url(";
if( *str == '#' )
str++;
while( i < 63 && *str != ')' )
{
id[i] = *str++;
i++;
}
id[i] = '\0';
}
static char nsvg__parseLineCap( const char* str )
{
if( strcmp( str, "butt" ) == 0 )
return NSVG_CAP_BUTT;
else if( strcmp( str, "round" ) == 0 )
return NSVG_CAP_ROUND;
else if( strcmp( str, "square" ) == 0 )
return NSVG_CAP_SQUARE;
// TODO: handle inherit.
return NSVG_CAP_BUTT;
}
static char nsvg__parseLineJoin( const char* str )
{
if( strcmp( str, "miter" ) == 0 )
return NSVG_JOIN_MITER;
else if( strcmp( str, "round" ) == 0 )
return NSVG_JOIN_ROUND;
else if( strcmp( str, "bevel" ) == 0 )
return NSVG_JOIN_BEVEL;
// TODO: handle inherit.
return NSVG_JOIN_MITER;
}
static char nsvg__parseFillRule( const char* str )
{
if( strcmp( str, "nonzero" ) == 0 )
return NSVG_FILLRULE_NONZERO;
else if( strcmp( str, "evenodd" ) == 0 )
return NSVG_FILLRULE_EVENODD;
// TODO: handle inherit.
return NSVG_FILLRULE_NONZERO;
}
static const char* nsvg__getNextDashItem( const char* s, char* it )
{
int n = 0;
it[0] = '\0';
// Skip white spaces and commas
while( *s && (nsvg__isspace( *s ) || *s == ',') )
s++;
// Advance until whitespace, comma or end.
while( *s && (!nsvg__isspace( *s ) && *s != ',') )
{
if( n < 63 )
it[n++] = *s;
s++;
}
it[n++] = '\0';
return s;
}
static int nsvg__parseStrokeDashArray( NSVGparser* p, const char* str, float* strokeDashArray )
{
char item[64];
int count = 0, i;
float sum = 0.0f;
// Handle "none"
if( str[0] == 'n' )
return 0;
// Parse dashes
while( *str )
{
str = nsvg__getNextDashItem( str, item );
if( !*item )
break;
if( count < NSVG_MAX_DASHES )
strokeDashArray[count++] =
fabsf( nsvg__parseCoordinate( p, item, 0.0f, nsvg__actualLength( p ) ) );
}
for( i = 0; i < count; i++ )
sum += strokeDashArray[i];
if( sum <= 1e-6f )
count = 0;
return count;
}
static void nsvg__parseStyle( NSVGparser* p, const char* str );
static int nsvg__parseAttr( NSVGparser* p, const char* name, const char* value )
{
float xform[6];
NSVGattrib* attr = nsvg__getAttr( p );
if( !attr )
return 0;
if( strcmp( name, "style" ) == 0 )
{
nsvg__parseStyle( p, value );
}
else if( strcmp( name, "display" ) == 0 )
{
if( strcmp( value, "none" ) == 0 )
attr->visible = 0;
// Don't reset ->visible on display:inline, one display:none hides the whole subtree
}
else if( strcmp( name, "fill" ) == 0 )
{
if( strcmp( value, "none" ) == 0 )
{
attr->hasFill = 0;
}
else if( strncmp( value, "url(", 4 ) == 0 )
{
attr->hasFill = 2;
nsvg__parseUrl( attr->fillGradient, value );
}
else
{
attr->hasFill = 1;
attr->fillColor = nsvg__parseColor( value );
}
}
else if( strcmp( name, "opacity" ) == 0 )
{
attr->opacity = nsvg__parseOpacity( value );
}
else if( strcmp( name, "fill-opacity" ) == 0 )
{
attr->fillOpacity = nsvg__parseOpacity( value );
}
else if( strcmp( name, "stroke" ) == 0 )
{
if( strcmp( value, "none" ) == 0 )
{
attr->hasStroke = 0;
}
else if( strncmp( value, "url(", 4 ) == 0 )
{
attr->hasStroke = 2;
nsvg__parseUrl( attr->strokeGradient, value );
}
else
{
attr->hasStroke = 1;
attr->strokeColor = nsvg__parseColor( value );
}
}
else if( strcmp( name, "stroke-width" ) == 0 )
{
attr->strokeWidth = nsvg__parseCoordinate( p, value, 0.0f, nsvg__actualLength( p ) );
}
else if( strcmp( name, "stroke-dasharray" ) == 0 )
{
attr->strokeDashCount = nsvg__parseStrokeDashArray( p, value, attr->strokeDashArray );
}
else if( strcmp( name, "stroke-dashoffset" ) == 0 )
{
attr->strokeDashOffset = nsvg__parseCoordinate( p, value, 0.0f, nsvg__actualLength( p ) );
}
else if( strcmp( name, "stroke-opacity" ) == 0 )
{
attr->strokeOpacity = nsvg__parseOpacity( value );
}
else if( strcmp( name, "stroke-linecap" ) == 0 )
{
attr->strokeLineCap = nsvg__parseLineCap( value );
}
else if( strcmp( name, "stroke-linejoin" ) == 0 )
{
attr->strokeLineJoin = nsvg__parseLineJoin( value );
}
else if( strcmp( name, "stroke-miterlimit" ) == 0 )
{
attr->miterLimit = nsvg__parseMiterLimit( value );
}
else if( strcmp( name, "fill-rule" ) == 0 )
{
attr->fillRule = nsvg__parseFillRule( value );
}
else if( strcmp( name, "font-size" ) == 0 )
{
attr->fontSize = nsvg__parseCoordinate( p, value, 0.0f, nsvg__actualLength( p ) );
}
else if( strcmp( name, "transform" ) == 0 )
{
nsvg__parseTransform( xform, value );
nsvg__xformPremultiply( attr->xform, xform );
}
else if( strcmp( name, "stop-color" ) == 0 )
{
attr->stopColor = nsvg__parseColor( value );
}
else if( strcmp( name, "stop-opacity" ) == 0 )
{
attr->stopOpacity = nsvg__parseOpacity( value );
}
else if( strcmp( name, "offset" ) == 0 )
{
attr->stopOffset = nsvg__parseCoordinate( p, value, 0.0f, 1.0f );
}
else if( strcmp( name, "id" ) == 0 )
{
strncpy( attr->id, value, 63 );
attr->id[63] = '\0';
}
else
{
return 0;
}
return 1;
}
static int nsvg__parseNameValue( NSVGparser* p, const char* start, const char* end )
{
const char* str;
const char* val;
char name[512];
char value[512];
int n;
str = start;
while( str < end && *str != ':' )
++str;
val = str;
// Right Trim
while( str > start && ( *str == ':' || nsvg__isspace( *str ) ) )
--str;
++str;
n = (int) (str - start);
if( n > 511 )
n = 511;
if( n )
memcpy( name, start, n );
name[n] = 0;
while( val < end && ( *val == ':' || nsvg__isspace( *val ) ) )
++val;
n = (int) (end - val);
if( n > 511 )
n = 511;
if( n )
memcpy( value, val, n );
value[n] = 0;
return nsvg__parseAttr( p, name, value );
}
static void nsvg__parseStyle( NSVGparser* p, const char* str )
{
const char* start;
const char* end;
while( *str )
{
// Left Trim
while( *str && nsvg__isspace( *str ) )
++str;
start = str;
while( *str && *str != ';' )
++str;
end = str;
// Right Trim
while( end > start && ( *end == ';' || nsvg__isspace( *end ) ) )
--end;
++end;
nsvg__parseNameValue( p, start, end );
if( *str )
++str;
}
}
static void nsvg__parseAttribs( NSVGparser* p, const char** attr )
{
int i;
for( i = 0; attr[i]; i += 2 )
{
if( strcmp( attr[i], "style" ) == 0 )
nsvg__parseStyle( p, attr[i + 1] );
else
nsvg__parseAttr( p, attr[i], attr[i + 1] );
}
}
static int nsvg__getArgsPerElement( char cmd )
{
switch( cmd )
{
case 'v':
case 'V':
case 'h':
case 'H':
return 1;
case 'm':
case 'M':
case 'l':
case 'L':
case 't':
case 'T':
return 2;
case 'q':
case 'Q':
case 's':
case 'S':
return 4;
case 'c':
case 'C':
return 6;
case 'a':
case 'A':
return 7;
}
return 0;
}
static void nsvg__pathMoveTo( NSVGparser* p, float* cpx, float* cpy, float* args, int rel )
{
if( rel )
{
*cpx += args[0];
*cpy += args[1];
}
else
{
*cpx = args[0];
*cpy = args[1];
}
nsvg__moveTo( p, *cpx, *cpy );
}
static void nsvg__pathLineTo( NSVGparser* p, float* cpx, float* cpy, float* args, int rel )
{
if( rel )
{
*cpx += args[0];
*cpy += args[1];
}
else
{
*cpx = args[0];
*cpy = args[1];
}
nsvg__lineTo( p, *cpx, *cpy );
}
static void nsvg__pathHLineTo( NSVGparser* p, float* cpx, float* cpy, float* args, int rel )
{
if( rel )
*cpx += args[0];
else
*cpx = args[0];
nsvg__lineTo( p, *cpx, *cpy );
}
static void nsvg__pathVLineTo( NSVGparser* p, float* cpx, float* cpy, float* args, int rel )
{
if( rel )
*cpy += args[0];
else
*cpy = args[0];
nsvg__lineTo( p, *cpx, *cpy );
}
static void nsvg__pathCubicBezTo( NSVGparser* p, float* cpx, float* cpy,
float* cpx2, float* cpy2, float* args, int rel )
{
float x2, y2, cx1, cy1, cx2, cy2;
if( rel )
{
cx1 = *cpx + args[0];
cy1 = *cpy + args[1];
cx2 = *cpx + args[2];
cy2 = *cpy + args[3];
x2 = *cpx + args[4];
y2 = *cpy + args[5];
}
else
{
cx1 = args[0];
cy1 = args[1];
cx2 = args[2];
cy2 = args[3];
x2 = args[4];
y2 = args[5];
}
nsvg__cubicBezTo( p, cx1, cy1, cx2, cy2, x2, y2 );
*cpx2 = cx2;
*cpy2 = cy2;
*cpx = x2;
*cpy = y2;
}
static void nsvg__pathCubicBezShortTo( NSVGparser* p, float* cpx, float* cpy,
float* cpx2, float* cpy2, float* args, int rel )
{
float x1, y1, x2, y2, cx1, cy1, cx2, cy2;
x1 = *cpx;
y1 = *cpy;
if( rel )
{
cx2 = *cpx + args[0];
cy2 = *cpy + args[1];
x2 = *cpx + args[2];
y2 = *cpy + args[3];
}
else
{
cx2 = args[0];
cy2 = args[1];
x2 = args[2];
y2 = args[3];
}
cx1 = 2 * x1 - *cpx2;
cy1 = 2 * y1 - *cpy2;
nsvg__cubicBezTo( p, cx1, cy1, cx2, cy2, x2, y2 );
*cpx2 = cx2;
*cpy2 = cy2;
*cpx = x2;
*cpy = y2;
}
static void nsvg__pathQuadBezTo( NSVGparser* p, float* cpx, float* cpy,
float* cpx2, float* cpy2, float* args, int rel )
{
float x1, y1, x2, y2, cx, cy;
float cx1, cy1, cx2, cy2;
x1 = *cpx;
y1 = *cpy;
if( rel )
{
cx = *cpx + args[0];
cy = *cpy + args[1];
x2 = *cpx + args[2];
y2 = *cpy + args[3];
}
else
{
cx = args[0];
cy = args[1];
x2 = args[2];
y2 = args[3];
}
// Convert to cubic bezier
cx1 = x1 + 2.0f / 3.0f * (cx - x1);
cy1 = y1 + 2.0f / 3.0f * (cy - y1);
cx2 = x2 + 2.0f / 3.0f * (cx - x2);
cy2 = y2 + 2.0f / 3.0f * (cy - y2);
nsvg__cubicBezTo( p, cx1, cy1, cx2, cy2, x2, y2 );
*cpx2 = cx;
*cpy2 = cy;
*cpx = x2;
*cpy = y2;
}
static void nsvg__pathQuadBezShortTo( NSVGparser* p, float* cpx, float* cpy,
float* cpx2, float* cpy2, float* args, int rel )
{
float x1, y1, x2, y2, cx, cy;
float cx1, cy1, cx2, cy2;
x1 = *cpx;
y1 = *cpy;
if( rel )
{
x2 = *cpx + args[0];
y2 = *cpy + args[1];
}
else
{
x2 = args[0];
y2 = args[1];
}
cx = 2 * x1 - *cpx2;
cy = 2 * y1 - *cpy2;
// Convert to cubix bezier
cx1 = x1 + 2.0f / 3.0f * (cx - x1);
cy1 = y1 + 2.0f / 3.0f * (cy - y1);
cx2 = x2 + 2.0f / 3.0f * (cx - x2);
cy2 = y2 + 2.0f / 3.0f * (cy - y2);
nsvg__cubicBezTo( p, cx1, cy1, cx2, cy2, x2, y2 );
*cpx2 = cx;
*cpy2 = cy;
*cpx = x2;
*cpy = y2;
}
static float nsvg__sqr( float x )
{
return x * x;
}
static float nsvg__vmag( float x, float y )
{
return sqrtf( x * x + y * y );
}
static float nsvg__vecrat( float ux, float uy, float vx, float vy )
{
return (ux * vx + uy * vy) / ( nsvg__vmag( ux, uy ) * nsvg__vmag( vx, vy ) );
}
static float nsvg__vecang( float ux, float uy, float vx, float vy )
{
float r = nsvg__vecrat( ux, uy, vx, vy );
if( r < -1.0f )
r = -1.0f;
if( r > 1.0f )
r = 1.0f;
return ( (ux * vy < uy * vx) ? -1.0f : 1.0f ) * acosf( r );
}
static void nsvg__pathArcTo( NSVGparser* p, float* cpx, float* cpy, float* args, int rel )
{
// Ported from canvg (https://code.google.com/p/canvg/)
float rx, ry, rotx;
float x1, y1, x2, y2, cx, cy, dx, dy, d;
float x1p, y1p, cxp, cyp, s, sa, sb;
float ux, uy, vx, vy, a1, da;
float x, y, tanx, tany, a, px = 0, py = 0, ptanx = 0, ptany = 0, t[6];
float sinrx, cosrx;
int fa, fs;
int i, ndivs;
float hda, kappa;
rx = fabsf( args[0] ); // y radius
ry = fabsf( args[1] ); // x radius
rotx = args[2] / 180.0f * NSVG_PI; // x rotation angle
fa = fabsf( args[3] ) > 1e-6 ? 1 : 0; // Large arc
fs = fabsf( args[4] ) > 1e-6 ? 1 : 0; // Sweep direction
x1 = *cpx; // start point
y1 = *cpy;
if( rel ) // end point
{
x2 = *cpx + args[5];
y2 = *cpy + args[6];
}
else
{
x2 = args[5];
y2 = args[6];
}
dx = x1 - x2;
dy = y1 - y2;
d = sqrtf( dx * dx + dy * dy );
if( d < 1e-6f || rx < 1e-6f || ry < 1e-6f )
{
// The arc degenerates to a line
nsvg__lineTo( p, x2, y2 );
*cpx = x2;
*cpy = y2;
return;
}
sinrx = sinf( rotx );
cosrx = cosf( rotx );
// Convert to center point parameterization.
// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
// 1) Compute x1', y1'
x1p = cosrx * dx / 2.0f + sinrx * dy / 2.0f;
y1p = -sinrx * dx / 2.0f + cosrx * dy / 2.0f;
d = nsvg__sqr( x1p ) / nsvg__sqr( rx ) + nsvg__sqr( y1p ) / nsvg__sqr( ry );
if( d > 1 )
{
d = sqrtf( d );
rx *= d;
ry *= d;
}
// 2) Compute cx', cy'
s = 0.0f;
sa = nsvg__sqr( rx ) * nsvg__sqr( ry ) - nsvg__sqr( rx ) * nsvg__sqr( y1p ) - nsvg__sqr( ry ) *
nsvg__sqr( x1p );
sb = nsvg__sqr( rx ) * nsvg__sqr( y1p ) + nsvg__sqr( ry ) * nsvg__sqr( x1p );
if( sa < 0.0f )
sa = 0.0f;
if( sb > 0.0f )
s = sqrtf( sa / sb );
if( fa == fs )
s = -s;
cxp = s * rx * y1p / ry;
cyp = s * -ry * x1p / rx;
// 3) Compute cx,cy from cx',cy'
cx = (x1 + x2) / 2.0f + cosrx * cxp - sinrx * cyp;
cy = (y1 + y2) / 2.0f + sinrx * cxp + cosrx * cyp;
// 4) Calculate theta1, and delta theta.
ux = (x1p - cxp) / rx;
uy = (y1p - cyp) / ry;
vx = (-x1p - cxp) / rx;
vy = (-y1p - cyp) / ry;
a1 = nsvg__vecang( 1.0f, 0.0f, ux, uy ); // Initial angle
da = nsvg__vecang( ux, uy, vx, vy ); // Delta angle
// if (vecrat(ux,uy,vx,vy) <= -1.0f) da = NSVG_PI;
// if (vecrat(ux,uy,vx,vy) >= 1.0f) da = 0;
if( fs == 0 && da > 0 )
da -= 2 * NSVG_PI;
else if( fs == 1 && da < 0 )
da += 2 * NSVG_PI;
// Approximate the arc using cubic spline segments.
t[0] = cosrx; t[1] = sinrx;
t[2] = -sinrx; t[3] = cosrx;
t[4] = cx; t[5] = cy;
// Split arc into max 90 degree segments.
// The loop assumes an iteration per end point (including start and end), this +1.
ndivs = (int) (fabsf( da ) / (NSVG_PI * 0.5f) + 1.0f);
hda = (da / (float) ndivs) / 2.0f;
kappa = fabsf( 4.0f / 3.0f * ( 1.0f - cosf( hda ) ) / sinf( hda ) );
if( da < 0.0f )
kappa = -kappa;
for( i = 0; i <= ndivs; i++ )
{
a = a1 + da * ( (float) i / (float) ndivs );
dx = cosf( a );
dy = sinf( a );
nsvg__xformPoint( &x, &y, dx * rx, dy * ry, t ); // position
nsvg__xformVec( &tanx, &tany, -dy * rx * kappa, dx * ry * kappa, t ); // tangent
if( i > 0 )
nsvg__cubicBezTo( p, px + ptanx, py + ptany, x - tanx, y - tany, x, y );
px = x;
py = y;
ptanx = tanx;
ptany = tany;
}
*cpx = x2;
*cpy = y2;
}
static void nsvg__parsePath( NSVGparser* p, const char** attr )
{
const char* s = NULL;
char cmd = '\0';
float args[10];
int nargs;
int rargs = 0;
float cpx, cpy, cpx2, cpy2;
const char* tmp[4];
char closedFlag;
int i;
char item[64];
for( i = 0; attr[i]; i += 2 )
{
if( strcmp( attr[i], "d" ) == 0 )
{
s = attr[i + 1];
}
else
{
tmp[0] = attr[i];
tmp[1] = attr[i + 1];
tmp[2] = 0;
tmp[3] = 0;
nsvg__parseAttribs( p, tmp );
}
}
if( s )
{
nsvg__resetPath( p );
cpx = 0; cpy = 0;
cpx2 = 0; cpy2 = 0;
closedFlag = 0;
nargs = 0;
while( *s )
{
s = nsvg__getNextPathItem( s, item );
if( !*item )
break;
if( nsvg__isnum( item[0] ) )
{
if( nargs < 10 )
args[nargs++] = (float) nsvg__atof( item );
if( nargs >= rargs )
{
switch( cmd )
{
case 'm':
case 'M':
nsvg__pathMoveTo( p, &cpx, &cpy, args, cmd == 'm' ? 1 : 0 );
// Moveto can be followed by multiple coordinate pairs,
// which should be treated as linetos.
cmd = (cmd == 'm') ? 'l' : 'L';
rargs = nsvg__getArgsPerElement( cmd );
cpx2 = cpx; cpy2 = cpy;
break;
case 'l':
case 'L':
nsvg__pathLineTo( p, &cpx, &cpy, args, cmd == 'l' ? 1 : 0 );
cpx2 = cpx; cpy2 = cpy;
break;
case 'H':
case 'h':
nsvg__pathHLineTo( p, &cpx, &cpy, args, cmd == 'h' ? 1 : 0 );
cpx2 = cpx; cpy2 = cpy;
break;
case 'V':
case 'v':
nsvg__pathVLineTo( p, &cpx, &cpy, args, cmd == 'v' ? 1 : 0 );
cpx2 = cpx; cpy2 = cpy;
break;
case 'C':
case 'c':
nsvg__pathCubicBezTo( p, &cpx, &cpy, &cpx2, &cpy2, args,
cmd == 'c' ? 1 : 0 );
break;
case 'S':
case 's':
nsvg__pathCubicBezShortTo( p,
&cpx,
&cpy,
&cpx2,
&cpy2,
args,
cmd == 's' ? 1 : 0 );
break;
case 'Q':
case 'q':
nsvg__pathQuadBezTo( p, &cpx, &cpy, &cpx2, &cpy2, args,
cmd == 'q' ? 1 : 0 );
break;
case 'T':
case 't':
nsvg__pathQuadBezShortTo( p,
&cpx,
&cpy,
&cpx2,
&cpy2,
args,
cmd == 't' ? 1 : 0 );
break;
case 'A':
case 'a':
nsvg__pathArcTo( p, &cpx, &cpy, args, cmd == 'a' ? 1 : 0 );
cpx2 = cpx; cpy2 = cpy;
break;
default:
if( nargs >= 2 )
{
cpx = args[nargs - 2];
cpy = args[nargs - 1];
cpx2 = cpx; cpy2 = cpy;
}
break;
}
nargs = 0;
}
}
else
{
cmd = item[0];
rargs = nsvg__getArgsPerElement( cmd );
if( cmd == 'M' || cmd == 'm' )
{
// Commit path.
if( p->npts > 0 )
nsvg__addPath( p, closedFlag );
// Start new subpath.
nsvg__resetPath( p );
closedFlag = 0;
nargs = 0;
}
else if( cmd == 'Z' || cmd == 'z' )
{
closedFlag = 1;
// Commit path.
if( p->npts > 0 )
{
// Move current point to first point
cpx = p->pts[0];
cpy = p->pts[1];
cpx2 = cpx; cpy2 = cpy;
nsvg__addPath( p, closedFlag );
}
// Start new subpath.
nsvg__resetPath( p );
nsvg__moveTo( p, cpx, cpy );
closedFlag = 0;
nargs = 0;
}
}
}
// Commit path.
if( p->npts )
nsvg__addPath( p, closedFlag );
}
nsvg__addShape( p );
}
static void nsvg__parseRect( NSVGparser* p, const char** attr )
{
float x = 0.0f;
float y = 0.0f;
float w = 0.0f;
float h = 0.0f;
float rx = -1.0f; // marks not set
float ry = -1.0f;
int i;
for( i = 0; attr[i]; i += 2 )
{
if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "x" ) == 0 )
x = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigX(
p ), nsvg__actualWidth( p ) );
if( strcmp( attr[i], "y" ) == 0 )
y = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigY(
p ), nsvg__actualHeight( p ) );
if( strcmp( attr[i], "width" ) == 0 )
w = nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualWidth( p ) );
if( strcmp( attr[i], "height" ) == 0 )
h = nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualHeight( p ) );
if( strcmp( attr[i], "rx" ) == 0 )
rx = fabsf( nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualWidth( p ) ) );
if( strcmp( attr[i], "ry" ) == 0 )
ry =
fabsf( nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualHeight( p ) ) );
}
}
if( rx < 0.0f && ry > 0.0f )
rx = ry;
if( ry < 0.0f && rx > 0.0f )
ry = rx;
if( rx < 0.0f )
rx = 0.0f;
if( ry < 0.0f )
ry = 0.0f;
if( rx > w / 2.0f )
rx = w / 2.0f;
if( ry > h / 2.0f )
ry = h / 2.0f;
if( w != 0.0f && h != 0.0f )
{
nsvg__resetPath( p );
if( rx < 0.00001f || ry < 0.0001f )
{
nsvg__moveTo( p, x, y );
nsvg__lineTo( p, x + w, y );
nsvg__lineTo( p, x + w, y + h );
nsvg__lineTo( p, x, y + h );
}
else
{
// Rounded rectangle
nsvg__moveTo( p, x + rx, y );
nsvg__lineTo( p, x + w - rx, y );
nsvg__cubicBezTo( p, x + w - rx * (1 - NSVG_KAPPA90), y, x + w,
y + ry * (1 - NSVG_KAPPA90), x + w, y + ry );
nsvg__lineTo( p, x + w, y + h - ry );
nsvg__cubicBezTo( p, x + w, y + h - ry * (1 - NSVG_KAPPA90),
x + w - rx * (1 - NSVG_KAPPA90), y + h, x + w - rx, y + h );
nsvg__lineTo( p, x + rx, y + h );
nsvg__cubicBezTo( p, x + rx * (1 - NSVG_KAPPA90), y + h, x,
y + h - ry * (1 - NSVG_KAPPA90), x, y + h - ry );
nsvg__lineTo( p, x, y + ry );
nsvg__cubicBezTo( p,
x,
y + ry * (1 - NSVG_KAPPA90),
x + rx * (1 - NSVG_KAPPA90),
y,
x + rx,
y );
}
nsvg__addPath( p, 1 );
nsvg__addShape( p );
}
}
static void nsvg__parseCircle( NSVGparser* p, const char** attr )
{
float cx = 0.0f;
float cy = 0.0f;
float r = 0.0f;
int i;
for( i = 0; attr[i]; i += 2 )
{
if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "cx" ) == 0 )
cx = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigX(
p ), nsvg__actualWidth( p ) );
if( strcmp( attr[i], "cy" ) == 0 )
cy = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigY(
p ), nsvg__actualHeight( p ) );
if( strcmp( attr[i], "r" ) == 0 )
r = fabsf( nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualLength( p ) ) );
}
}
if( r > 0.0f )
{
nsvg__resetPath( p );
nsvg__moveTo( p, cx + r, cy );
nsvg__cubicBezTo( p,
cx + r,
cy + r * NSVG_KAPPA90,
cx + r * NSVG_KAPPA90,
cy + r,
cx,
cy + r );
nsvg__cubicBezTo( p,
cx - r * NSVG_KAPPA90,
cy + r,
cx - r,
cy + r * NSVG_KAPPA90,
cx - r,
cy );
nsvg__cubicBezTo( p,
cx - r,
cy - r * NSVG_KAPPA90,
cx - r * NSVG_KAPPA90,
cy - r,
cx,
cy - r );
nsvg__cubicBezTo( p,
cx + r * NSVG_KAPPA90,
cy - r,
cx + r,
cy - r * NSVG_KAPPA90,
cx + r,
cy );
nsvg__addPath( p, 1 );
nsvg__addShape( p );
}
}
static void nsvg__parseEllipse( NSVGparser* p, const char** attr )
{
float cx = 0.0f;
float cy = 0.0f;
float rx = 0.0f;
float ry = 0.0f;
int i;
for( i = 0; attr[i]; i += 2 )
{
if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "cx" ) == 0 )
cx = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigX(
p ), nsvg__actualWidth( p ) );
if( strcmp( attr[i], "cy" ) == 0 )
cy = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigY(
p ), nsvg__actualHeight( p ) );
if( strcmp( attr[i], "rx" ) == 0 )
rx = fabsf( nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualWidth( p ) ) );
if( strcmp( attr[i], "ry" ) == 0 )
ry =
fabsf( nsvg__parseCoordinate( p, attr[i + 1], 0.0f, nsvg__actualHeight( p ) ) );
}
}
if( rx > 0.0f && ry > 0.0f )
{
nsvg__resetPath( p );
nsvg__moveTo( p, cx + rx, cy );
nsvg__cubicBezTo( p,
cx + rx,
cy + ry * NSVG_KAPPA90,
cx + rx * NSVG_KAPPA90,
cy + ry,
cx,
cy + ry );
nsvg__cubicBezTo( p,
cx - rx * NSVG_KAPPA90,
cy + ry,
cx - rx,
cy + ry * NSVG_KAPPA90,
cx - rx,
cy );
nsvg__cubicBezTo( p,
cx - rx,
cy - ry * NSVG_KAPPA90,
cx - rx * NSVG_KAPPA90,
cy - ry,
cx,
cy - ry );
nsvg__cubicBezTo( p,
cx + rx * NSVG_KAPPA90,
cy - ry,
cx + rx,
cy - ry * NSVG_KAPPA90,
cx + rx,
cy );
nsvg__addPath( p, 1 );
nsvg__addShape( p );
}
}
static void nsvg__parseLine( NSVGparser* p, const char** attr )
{
float x1 = 0.0;
float y1 = 0.0;
float x2 = 0.0;
float y2 = 0.0;
int i;
for( i = 0; attr[i]; i += 2 )
{
if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "x1" ) == 0 )
x1 = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigX(
p ), nsvg__actualWidth( p ) );
if( strcmp( attr[i], "y1" ) == 0 )
y1 = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigY(
p ), nsvg__actualHeight( p ) );
if( strcmp( attr[i], "x2" ) == 0 )
x2 = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigX(
p ), nsvg__actualWidth( p ) );
if( strcmp( attr[i], "y2" ) == 0 )
y2 = nsvg__parseCoordinate( p, attr[i + 1], nsvg__actualOrigY(
p ), nsvg__actualHeight( p ) );
}
}
nsvg__resetPath( p );
nsvg__moveTo( p, x1, y1 );
nsvg__lineTo( p, x2, y2 );
nsvg__addPath( p, 0 );
nsvg__addShape( p );
}
static void nsvg__parsePoly( NSVGparser* p, const char** attr, int closeFlag )
{
int i;
const char* s;
float args[2];
int nargs, npts = 0;
char item[64];
nsvg__resetPath( p );
for( i = 0; attr[i]; i += 2 )
{
if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "points" ) == 0 )
{
s = attr[i + 1];
nargs = 0;
while( *s )
{
s = nsvg__getNextPathItem( s, item );
args[nargs++] = (float) nsvg__atof( item );
if( nargs >= 2 )
{
if( npts == 0 )
nsvg__moveTo( p, args[0], args[1] );
else
nsvg__lineTo( p, args[0], args[1] );
nargs = 0;
npts++;
}
}
}
}
}
nsvg__addPath( p, (char) closeFlag );
nsvg__addShape( p );
}
static void nsvg__parseSVG( NSVGparser* p, const char** attr )
{
int i;
for( i = 0; attr[i]; i += 2 )
{
if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "width" ) == 0 )
{
p->image->width = nsvg__parseCoordinate( p, attr[i + 1], 0.0f, 0.0f );
}
else if( strcmp( attr[i], "height" ) == 0 )
{
p->image->height = nsvg__parseCoordinate( p, attr[i + 1], 0.0f, 0.0f );
}
else if( strcmp( attr[i], "viewBox" ) == 0 )
{
sscanf( attr[i + 1],
"%f%*[%%, \t]%f%*[%%, \t]%f%*[%%, \t]%f",
&p->viewMinx,
&p->viewMiny,
&p->viewWidth,
&p->viewHeight );
}
else if( strcmp( attr[i], "preserveAspectRatio" ) == 0 )
{
if( strstr( attr[i + 1], "none" ) != 0 )
{
// No uniform scaling
p->alignType = NSVG_ALIGN_NONE;
}
else
{
// Parse X align
if( strstr( attr[i + 1], "xMin" ) != 0 )
p->alignX = NSVG_ALIGN_MIN;
else if( strstr( attr[i + 1], "xMid" ) != 0 )
p->alignX = NSVG_ALIGN_MID;
else if( strstr( attr[i + 1], "xMax" ) != 0 )
p->alignX = NSVG_ALIGN_MAX;
// Parse X align
if( strstr( attr[i + 1], "yMin" ) != 0 )
p->alignY = NSVG_ALIGN_MIN;
else if( strstr( attr[i + 1], "yMid" ) != 0 )
p->alignY = NSVG_ALIGN_MID;
else if( strstr( attr[i + 1], "yMax" ) != 0 )
p->alignY = NSVG_ALIGN_MAX;
// Parse meet/slice
p->alignType = NSVG_ALIGN_MEET;
if( strstr( attr[i + 1], "slice" ) != 0 )
p->alignType = NSVG_ALIGN_SLICE;
}
}
}
}
}
static void nsvg__parseGradient( NSVGparser* p, const char** attr, char type )
{
int i;
NSVGgradientData* grad = (NSVGgradientData*) malloc( sizeof(NSVGgradientData) );
if( grad == NULL )
return;
memset( grad, 0, sizeof(NSVGgradientData) );
grad->units = NSVG_OBJECT_SPACE;
grad->type = type;
if( grad->type == NSVG_PAINT_LINEAR_GRADIENT )
{
grad->linear.x1 = nsvg__coord( 0.0f, NSVG_UNITS_PERCENT );
grad->linear.y1 = nsvg__coord( 0.0f, NSVG_UNITS_PERCENT );
grad->linear.x2 = nsvg__coord( 100.0f, NSVG_UNITS_PERCENT );
grad->linear.y2 = nsvg__coord( 0.0f, NSVG_UNITS_PERCENT );
}
else if( grad->type == NSVG_PAINT_RADIAL_GRADIENT )
{
grad->radial.cx = nsvg__coord( 50.0f, NSVG_UNITS_PERCENT );
grad->radial.cy = nsvg__coord( 50.0f, NSVG_UNITS_PERCENT );
grad->radial.r = nsvg__coord( 50.0f, NSVG_UNITS_PERCENT );
}
nsvg__xformIdentity( grad->xform );
for( i = 0; attr[i]; i += 2 )
{
if( strcmp( attr[i], "id" ) == 0 )
{
strncpy( grad->id, attr[i + 1], 63 );
grad->id[63] = '\0';
}
else if( !nsvg__parseAttr( p, attr[i], attr[i + 1] ) )
{
if( strcmp( attr[i], "gradientUnits" ) == 0 )
{
if( strcmp( attr[i + 1], "objectBoundingBox" ) == 0 )
grad->units = NSVG_OBJECT_SPACE;
else
grad->units = NSVG_USER_SPACE;
}
else if( strcmp( attr[i], "gradientTransform" ) == 0 )
{
nsvg__parseTransform( grad->xform, attr[i + 1] );
}
else if( strcmp( attr[i], "cx" ) == 0 )
{
grad->radial.cx = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "cy" ) == 0 )
{
grad->radial.cy = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "r" ) == 0 )
{
grad->radial.r = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "fx" ) == 0 )
{
grad->radial.fx = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "fy" ) == 0 )
{
grad->radial.fy = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "x1" ) == 0 )
{
grad->linear.x1 = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "y1" ) == 0 )
{
grad->linear.y1 = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "x2" ) == 0 )
{
grad->linear.x2 = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "y2" ) == 0 )
{
grad->linear.y2 = nsvg__parseCoordinateRaw( attr[i + 1] );
}
else if( strcmp( attr[i], "spreadMethod" ) == 0 )
{
if( strcmp( attr[i + 1], "pad" ) == 0 )
grad->spread = NSVG_SPREAD_PAD;
else if( strcmp( attr[i + 1], "reflect" ) == 0 )
grad->spread = NSVG_SPREAD_REFLECT;
else if( strcmp( attr[i + 1], "repeat" ) == 0 )
grad->spread = NSVG_SPREAD_REPEAT;
}
else if( strcmp( attr[i], "xlink:href" ) == 0 )
{
const char* href = attr[i + 1];
strncpy( grad->ref, href + 1, 62 );
grad->ref[62] = '\0';
}
}
}
grad->next = p->gradients;
p->gradients = grad;
}
static void nsvg__parseGradientStop( NSVGparser* p, const char** attr )
{
NSVGattrib* curAttr = nsvg__getAttr( p );
NSVGgradientData* grad;
NSVGgradientStop* stop;
int i, idx;
curAttr->stopOffset = 0;
curAttr->stopColor = 0;
curAttr->stopOpacity = 1.0f;
for( i = 0; attr[i]; i += 2 )
{
nsvg__parseAttr( p, attr[i], attr[i + 1] );
}
// Add stop to the last gradient.
grad = p->gradients;
if( grad == NULL )
return;
grad->nstops++;
grad->stops =
(NSVGgradientStop*) realloc( grad->stops, sizeof(NSVGgradientStop) * grad->nstops );
if( grad->stops == NULL )
return;
// Insert
idx = grad->nstops - 1;
for( i = 0; i < grad->nstops - 1; i++ )
{
if( curAttr->stopOffset < grad->stops[i].offset )
{
idx = i;
break;
}
}
if( idx != grad->nstops - 1 )
{
for( i = grad->nstops - 1; i > idx; i-- )
grad->stops[i] = grad->stops[i - 1];
}
stop = &grad->stops[idx];
stop->color = curAttr->stopColor;
stop->color |= (unsigned int) (curAttr->stopOpacity * 255) << 24;
stop->offset = curAttr->stopOffset;
}
static void nsvg__startElement( void* ud, const char* el, const char** attr )
{
NSVGparser* p = (NSVGparser*) ud;
if( p->defsFlag )
{
// Skip everything but gradients in defs
if( strcmp( el, "linearGradient" ) == 0 )
{
nsvg__parseGradient( p, attr, NSVG_PAINT_LINEAR_GRADIENT );
}
else if( strcmp( el, "radialGradient" ) == 0 )
{
nsvg__parseGradient( p, attr, NSVG_PAINT_RADIAL_GRADIENT );
}
else if( strcmp( el, "stop" ) == 0 )
{
nsvg__parseGradientStop( p, attr );
}
return;
}
if( strcmp( el, "g" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parseAttribs( p, attr );
}
else if( strcmp( el, "path" ) == 0 )
{
if( p->pathFlag ) // Do not allow nested paths.
return;
nsvg__pushAttr( p );
nsvg__parsePath( p, attr );
nsvg__popAttr( p );
}
else if( strcmp( el, "rect" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parseRect( p, attr );
nsvg__popAttr( p );
}
else if( strcmp( el, "circle" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parseCircle( p, attr );
nsvg__popAttr( p );
}
else if( strcmp( el, "ellipse" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parseEllipse( p, attr );
nsvg__popAttr( p );
}
else if( strcmp( el, "line" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parseLine( p, attr );
nsvg__popAttr( p );
}
else if( strcmp( el, "polyline" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parsePoly( p, attr, 0 );
nsvg__popAttr( p );
}
else if( strcmp( el, "polygon" ) == 0 )
{
nsvg__pushAttr( p );
nsvg__parsePoly( p, attr, 1 );
nsvg__popAttr( p );
}
else if( strcmp( el, "linearGradient" ) == 0 )
{
nsvg__parseGradient( p, attr, NSVG_PAINT_LINEAR_GRADIENT );
}
else if( strcmp( el, "radialGradient" ) == 0 )
{
nsvg__parseGradient( p, attr, NSVG_PAINT_RADIAL_GRADIENT );
}
else if( strcmp( el, "stop" ) == 0 )
{
nsvg__parseGradientStop( p, attr );
}
else if( strcmp( el, "defs" ) == 0 )
{
p->defsFlag = 1;
}
else if( strcmp( el, "svg" ) == 0 )
{
nsvg__parseSVG( p, attr );
}
}
static void nsvg__endElement( void* ud, const char* el )
{
NSVGparser* p = (NSVGparser*) ud;
if( strcmp( el, "g" ) == 0 )
{
nsvg__popAttr( p );
}
else if( strcmp( el, "path" ) == 0 )
{
p->pathFlag = 0;
}
else if( strcmp( el, "defs" ) == 0 )
{
p->defsFlag = 0;
}
}
static void nsvg__content( void* ud, const char* s )
{
NSVG_NOTUSED( ud );
NSVG_NOTUSED( s );
// empty
}
static void nsvg__imageBounds( NSVGparser* p, float* bounds )
{
NSVGshape* shape;
shape = p->image->shapes;
if( shape == NULL )
{
bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0;
return;
}
bounds[0] = shape->bounds[0];
bounds[1] = shape->bounds[1];
bounds[2] = shape->bounds[2];
bounds[3] = shape->bounds[3];
for( shape = shape->next; shape != NULL; shape = shape->next )
{
bounds[0] = nsvg__minf( bounds[0], shape->bounds[0] );
bounds[1] = nsvg__minf( bounds[1], shape->bounds[1] );
bounds[2] = nsvg__maxf( bounds[2], shape->bounds[2] );
bounds[3] = nsvg__maxf( bounds[3], shape->bounds[3] );
}
}
static float nsvg__viewAlign( float content, float container, int type )
{
if( type == NSVG_ALIGN_MIN )
return 0;
else if( type == NSVG_ALIGN_MAX )
return container - content;
// mid
return (container - content) * 0.5f;
}
static void nsvg__scaleGradient( NSVGgradient* grad, float tx, float ty, float sx, float sy )
{
float t[6];
nsvg__xformSetTranslation( t, tx, ty );
nsvg__xformMultiply( grad->xform, t );
nsvg__xformSetScale( t, sx, sy );
nsvg__xformMultiply( grad->xform, t );
}
static void nsvg__scaleToViewbox( NSVGparser* p, const char* units )
{
NSVGshape* shape;
NSVGpath* path;
float tx, ty, sx, sy, us, bounds[4], t[6], avgs;
int i;
float* pt;
// Guess image size if not set completely.
nsvg__imageBounds( p, bounds );
if( p->viewWidth == 0 )
{
if( p->image->width > 0 )
{
p->viewWidth = p->image->width;
}
else
{
p->viewMinx = bounds[0];
p->viewWidth = bounds[2] - bounds[0];
}
}
if( p->viewHeight == 0 )
{
if( p->image->height > 0 )
{
p->viewHeight = p->image->height;
}
else
{
p->viewMiny = bounds[1];
p->viewHeight = bounds[3] - bounds[1];
}
}
if( p->image->width == 0 )
p->image->width = p->viewWidth;
if( p->image->height == 0 )
p->image->height = p->viewHeight;
tx = -p->viewMinx;
ty = -p->viewMiny;
sx = p->viewWidth > 0 ? p->image->width / p->viewWidth : 0;
sy = p->viewHeight > 0 ? p->image->height / p->viewHeight : 0;
// Unit scaling
us = 1.0f /
nsvg__convertToPixels( p, nsvg__coord( 1.0f, nsvg__parseUnits( units ) ), 0.0f, 1.0f );
// Fix aspect ratio
if( p->alignType == NSVG_ALIGN_MEET )
{
// fit whole image into viewbox
sx = sy = nsvg__minf( sx, sy );
tx += nsvg__viewAlign( p->viewWidth * sx, p->image->width, p->alignX ) / sx;
ty += nsvg__viewAlign( p->viewHeight * sy, p->image->height, p->alignY ) / sy;
}
else if( p->alignType == NSVG_ALIGN_SLICE )
{
// fill whole viewbox with image
sx = sy = nsvg__maxf( sx, sy );
tx += nsvg__viewAlign( p->viewWidth * sx, p->image->width, p->alignX ) / sx;
ty += nsvg__viewAlign( p->viewHeight * sy, p->image->height, p->alignY ) / sy;
}
// Transform
sx *= us;
sy *= us;
avgs = (sx + sy) / 2.0f;
for( shape = p->image->shapes; shape != NULL; shape = shape->next )
{
shape->bounds[0] = (shape->bounds[0] + tx) * sx;
shape->bounds[1] = (shape->bounds[1] + ty) * sy;
shape->bounds[2] = (shape->bounds[2] + tx) * sx;
shape->bounds[3] = (shape->bounds[3] + ty) * sy;
for( path = shape->paths; path != NULL; path = path->next )
{
path->bounds[0] = (path->bounds[0] + tx) * sx;
path->bounds[1] = (path->bounds[1] + ty) * sy;
path->bounds[2] = (path->bounds[2] + tx) * sx;
path->bounds[3] = (path->bounds[3] + ty) * sy;
for( i = 0; i < path->npts; i++ )
{
pt = &path->pts[i * 2];
pt[0] = (pt[0] + tx) * sx;
pt[1] = (pt[1] + ty) * sy;
}
}
if( shape->fill.type == NSVG_PAINT_LINEAR_GRADIENT
|| shape->fill.type == NSVG_PAINT_RADIAL_GRADIENT )
{
nsvg__scaleGradient( shape->fill.gradient, tx, ty, sx, sy );
memcpy( t, shape->fill.gradient->xform, sizeof(float) * 6 );
nsvg__xformInverse( shape->fill.gradient->xform, t );
}
if( shape->stroke.type == NSVG_PAINT_LINEAR_GRADIENT
|| shape->stroke.type == NSVG_PAINT_RADIAL_GRADIENT )
{
nsvg__scaleGradient( shape->stroke.gradient, tx, ty, sx, sy );
memcpy( t, shape->stroke.gradient->xform, sizeof(float) * 6 );
nsvg__xformInverse( shape->stroke.gradient->xform, t );
}
shape->strokeWidth *= avgs;
shape->strokeDashOffset *= avgs;
for( i = 0; i < shape->strokeDashCount; i++ )
shape->strokeDashArray[i] *= avgs;
}
}
NSVGimage* nsvgParse( char* input, const char* units, float dpi )
{
NSVGparser* p;
NSVGimage* ret = 0;
p = nsvg__createParser();
if( p == NULL )
{
return NULL;
}
p->dpi = dpi;
nsvg__parseXML( input, nsvg__startElement, nsvg__endElement, nsvg__content, p );
// Scale to viewBox
nsvg__scaleToViewbox( p, units );
ret = p->image;
p->image = NULL;
nsvg__deleteParser( p );
return ret;
}
NSVGimage* nsvgParseFromFile( FILE *fp, const char* units, float dpi )
{
long size;
char* data = NULL;
NSVGimage* image = NULL;
if( !fp )
return NULL;
fseek( fp, 0, SEEK_END );
size = ftell( fp );
if( size < 0 )
goto error;
fseek( fp, 0, SEEK_SET );
data = (char*) malloc( size + 1 );
if( data == NULL )
goto error;
// This test works only if fp is open in binary mode, i.e. if the CRLF eol is not
// replaced by LF when reading the file
if( fread( data, 1, size, fp ) != size )
goto error;
data[size] = '\0'; // Must be null terminated.
fclose( fp );
image = nsvgParse( data, units, dpi );
free( data );
return image;
error:
if( fp )
fclose( fp );
if( data )
free( data );
if( image )
nsvgDelete( image );
return NULL;
}
NSVGpath* nsvgDuplicatePath( NSVGpath* p )
{
NSVGpath* res = NULL;
if( p == NULL )
return NULL;
res = (NSVGpath*) malloc( sizeof(NSVGpath) );
if( res == NULL )
goto error;
memset( res, 0, sizeof(NSVGpath) );
res->pts = (float*) malloc( p->npts * 2 * sizeof(float) );
if( res->pts == NULL )
goto error;
memcpy( res->pts, p->pts, p->npts * sizeof(float) * 2 );
res->npts = p->npts;
memcpy( res->bounds, p->bounds, sizeof(p->bounds) );
res->closed = p->closed;
return res;
error:
if( res != NULL )
{
free( res->pts );
free( res );
}
return NULL;
}
void nsvgDelete( NSVGimage* image )
{
NSVGshape* snext, * shape;
if( image == NULL )
return;
shape = image->shapes;
while( shape != NULL )
{
snext = shape->next;
nsvg__deletePaths( shape->paths );
nsvg__deletePaint( &shape->fill );
nsvg__deletePaint( &shape->stroke );
free( shape );
shape = snext;
}
free( image );
}