177 lines
7.0 KiB
C
177 lines
7.0 KiB
C
|
/*
|
||
|
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
|
||
|
* Applied Mathematics, Norway.
|
||
|
*
|
||
|
* Contact information: E-mail: tor.dokken@sintef.no
|
||
|
* SINTEF ICT, Department of Applied Mathematics,
|
||
|
* P.O. Box 124 Blindern,
|
||
|
* 0314 Oslo, Norway.
|
||
|
*
|
||
|
* This file is part of TTL.
|
||
|
*
|
||
|
* TTL is free software: you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU Affero General Public License as
|
||
|
* published by the Free Software Foundation, either version 3 of the
|
||
|
* License, or (at your option) any later version.
|
||
|
*
|
||
|
* TTL is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU Affero General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Affero General Public
|
||
|
* License along with TTL. If not, see
|
||
|
* <http://www.gnu.org/licenses/>.
|
||
|
*
|
||
|
* In accordance with Section 7(b) of the GNU Affero General Public
|
||
|
* License, a covered work must retain the producer line in every data
|
||
|
* file that is created or manipulated using TTL.
|
||
|
*
|
||
|
* Other Usage
|
||
|
* You can be released from the requirements of the license by purchasing
|
||
|
* a commercial license. Buying such a license is mandatory as soon as you
|
||
|
* develop commercial activities involving the TTL library without
|
||
|
* disclosing the source code of your own applications.
|
||
|
*
|
||
|
* This file may be used in accordance with the terms contained in a
|
||
|
* written agreement between you and SINTEF ICT.
|
||
|
*/
|
||
|
|
||
|
#ifndef _HALF_EDGE_TRAITS_
|
||
|
#define _HALF_EDGE_TRAITS_
|
||
|
|
||
|
|
||
|
#include <ttl/halfedge/hetriang.h>
|
||
|
#include <ttl/halfedge/hedart.h>
|
||
|
|
||
|
|
||
|
namespace hed {
|
||
|
|
||
|
|
||
|
//------------------------------------------------------------------------------------------------
|
||
|
// Traits class for the half-edge data structure
|
||
|
//------------------------------------------------------------------------------------------------
|
||
|
|
||
|
/** \struct TTLtraits
|
||
|
* \brief \b Traits class (static struct) for the half-edge data structure.
|
||
|
*
|
||
|
* The member functions are those required by different function templates
|
||
|
* in the TTL. Documentation is given here to explain what actions
|
||
|
* should be carried out on the actual data structure as required by the functions
|
||
|
* in the \ref ttl namespace.
|
||
|
*
|
||
|
* The source code of \c %HeTraits.h shows how the traits class is implemented for the
|
||
|
* half-edge data structure.
|
||
|
*
|
||
|
* \see \ref api
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
struct TTLtraits {
|
||
|
|
||
|
/** The floating point type used in calculations
|
||
|
* involving scalar products and cross products.
|
||
|
*/
|
||
|
typedef double real_type;
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
// ------------------------------- Geometric Predicates Group ---------------------------------
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
|
||
|
/** @name Geometric Predicates */
|
||
|
//@{
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
/** Scalar product between two 2D vectors represented as darts.\n
|
||
|
*
|
||
|
* ttl_util::scalarProduct2d can be used.
|
||
|
*/
|
||
|
static real_type scalarProduct2d(const Dart& v1, const Dart& v2) {
|
||
|
Dart v10 = v1; v10.alpha0();
|
||
|
Dart v20 = v2; v20.alpha0();
|
||
|
return ttl_util::scalarProduct2d(v10.x()-v1.x(), v10.y()-v1.y(),
|
||
|
v20.x()-v2.x(), v20.y()-v2.y());
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
/** Scalar product between two 2D vectors.
|
||
|
* The first vector is represented by a dart \e v, and the second
|
||
|
* vector has direction from the source node of \e v to the point \e p.\n
|
||
|
*
|
||
|
* ttl_util::scalarProduct2d can be used.
|
||
|
*/
|
||
|
static real_type scalarProduct2d(const Dart& v, const NodePtr& p) {
|
||
|
Dart d0 = v; d0.alpha0();
|
||
|
return ttl_util::scalarProduct2d(d0.x() - v.x(), d0.y() - v.y(),
|
||
|
p->GetX() - v.x(), p->GetY() - v.y());
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
/** Cross product between two vectors in the plane represented as darts.
|
||
|
* The z-component of the cross product is returned.\n
|
||
|
*
|
||
|
* ttl_util::crossProduct2d can be used.
|
||
|
*/
|
||
|
static real_type crossProduct2d(const Dart& v1, const Dart& v2) {
|
||
|
Dart v10 = v1; v10.alpha0();
|
||
|
Dart v20 = v2; v20.alpha0();
|
||
|
return ttl_util::crossProduct2d(v10.x()-v1.x(), v10.y()-v1.y(),
|
||
|
v20.x()-v2.x(), v20.y()-v2.y());
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
/** Cross product between two vectors in the plane.
|
||
|
* The first vector is represented by a dart \e v, and the second
|
||
|
* vector has direction from the source node of \e v to the point \e p.
|
||
|
* The z-component of the cross product is returned.\n
|
||
|
*
|
||
|
* ttl_util::crossProduct2d can be used.
|
||
|
*/
|
||
|
static real_type crossProduct2d(const Dart& v, const NodePtr& p) {
|
||
|
Dart d0 = v; d0.alpha0();
|
||
|
return ttl_util::crossProduct2d(d0.x() - v.x(), d0.y() - v.y(),
|
||
|
p->GetX() - v.x(), p->GetY() - v.y());
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
/** Let \e n1 and \e n2 be the nodes associated with two darts, and let \e p
|
||
|
* be a point in the plane. Return a positive value if \e n1, \e n2,
|
||
|
* and \e p occur in counterclockwise order; a negative value if they occur
|
||
|
* in clockwise order; and zero if they are collinear.
|
||
|
*/
|
||
|
static real_type orient2d(const Dart& n1, const Dart& n2, const NodePtr& p) {
|
||
|
real_type pa[2]; real_type pb[2]; real_type pc[2];
|
||
|
pa[0] = n1.x(); pa[1] = n1.y();
|
||
|
pb[0] = n2.x(); pb[1] = n2.y();
|
||
|
pc[0] = p->GetX(); pc[1] = p->GetY();
|
||
|
return ttl_util::orient2dfast(pa, pb, pc);
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------
|
||
|
/** This is the same predicate as represented with the function above,
|
||
|
* but with a slighty different interface:
|
||
|
* The last parameter is given as a dart where the source node of the dart
|
||
|
* represents a point in the plane.
|
||
|
* This function is required for constrained triangulation.
|
||
|
*/
|
||
|
static real_type orient2d(const Dart& n1, const Dart& n2, const Dart& p) {
|
||
|
real_type pa[2]; real_type pb[2]; real_type pc[2];
|
||
|
pa[0] = n1.x(); pa[1] = n1.y();
|
||
|
pb[0] = n2.x(); pb[1] = n2.y();
|
||
|
pc[0] = p.x(); pc[1] = p.y();
|
||
|
return ttl_util::orient2dfast(pa, pb, pc);
|
||
|
}
|
||
|
|
||
|
//@} // End of Geometric Predicates Group
|
||
|
};
|
||
|
|
||
|
}; // End of hed namespace
|
||
|
|
||
|
#endif
|