kicad/common/geometry/trigo.cpp

415 lines
12 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file trigo.cpp
* @brief Trigonometric and geometric basic functions.
*/
#include <fctsys.h>
#include <macros.h>
#include <trigo.h>
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
#include <common.h>
#include <math_for_graphics.h>
// Returns true if the point P is on the segment S.
// faster than TestSegmentHit() because P should be exactly on S
// therefore works fine only for H, V and 45 deg segm (suitable for wires in eeschema)
bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd,
const wxPoint& aTestPoint )
{
wxPoint vectSeg = aSegEnd - aSegStart; // Vector from S1 to S2
wxPoint vectPoint = aTestPoint - aSegStart; // Vector from S1 to P
// Use long long here to avoid overflow in calculations
if( (long long) vectSeg.x * vectPoint.y - (long long) vectSeg.y * vectPoint.x )
return false; /* Cross product non-zero, vectors not parallel */
if( ( (long long) vectSeg.x * vectPoint.x + (long long) vectSeg.y * vectPoint.y ) <
( (long long) vectPoint.x * vectPoint.x + (long long) vectPoint.y * vectPoint.y ) )
return false; /* Point not on segment */
return true;
}
// Returns true if the segment 1 intersectd the segment 2.
bool SegmentIntersectsSegment( const wxPoint &a_p1_l1, const wxPoint &a_p2_l1,
const wxPoint &a_p1_l2, const wxPoint &a_p2_l2,
wxPoint* aIntersectionPoint )
{
//We are forced to use 64bit ints because the internal units can oveflow 32bit ints when
// multiplied with each other, the alternative would be to scale the units down (i.e. divide
// by a fixed number).
long long dX_a, dY_a, dX_b, dY_b, dX_ab, dY_ab;
long long num_a, num_b, den;
//Test for intersection within the bounds of both line segments using line equations of the
// form:
// x_k(u_k) = u_k * dX_k + x_k(0)
// y_k(u_k) = u_k * dY_k + y_k(0)
// with 0 <= u_k <= 1 and k = [ a, b ]
dX_a = a_p2_l1.x - a_p1_l1.x;
dY_a = a_p2_l1.y - a_p1_l1.y;
dX_b = a_p2_l2.x - a_p1_l2.x;
dY_b = a_p2_l2.y - a_p1_l2.y;
dX_ab = a_p1_l2.x - a_p1_l1.x;
dY_ab = a_p1_l2.y - a_p1_l1.y;
den = dY_a * dX_b - dY_b * dX_a ;
//Check if lines are parallel
if( den == 0 )
return false;
num_a = dY_ab * dX_b - dY_b * dX_ab;
num_b = dY_ab * dX_a - dY_a * dX_ab;
// Only compute the intersection point if requested
if( aIntersectionPoint )
{
*aIntersectionPoint = a_p1_l1;
aIntersectionPoint->x += KiROUND( dX_a * ( double )num_a / ( double )den );
aIntersectionPoint->y += KiROUND( dY_a * ( double )num_b / ( double )den );
}
if( den < 0 )
{
den = -den;
num_a = -num_a;
num_b = -num_b;
}
//Test sign( u_a ) and return false if negative
if( num_a < 0 )
return false;
//Test sign( u_b ) and return false if negative
if( num_b < 0 )
return false;
//Test to ensure (u_a <= 1)
if( num_a > den )
return false;
//Test to ensure (u_b <= 1)
if( num_b > den )
return false;
return true;
}
bool TestSegmentHit( const wxPoint &aRefPoint, wxPoint aStart, wxPoint aEnd, int aDist )
2009-06-13 17:06:07 +00:00
{
int xmin = aStart.x;
int xmax = aEnd.x;
int ymin = aStart.y;
int ymax = aEnd.y;
wxPoint delta = aStart - aRefPoint;
if( xmax < xmin )
std::swap( xmax, xmin );
if( ymax < ymin )
std::swap( ymax, ymin );
// First, check if we are outside of the bounding box
if( ( ymin - aRefPoint.y > aDist ) || ( aRefPoint.y - ymax > aDist ) )
return false;
if( ( xmin - aRefPoint.x > aDist ) || ( aRefPoint.x - xmax > aDist ) )
return false;
// Next, eliminate easy cases
if( aStart.x == aEnd.x && aRefPoint.y > ymin && aRefPoint.y < ymax )
return std::abs( delta.x ) <= aDist;
if( aStart.y == aEnd.y && aRefPoint.x > xmin && aRefPoint.x < xmax )
return std::abs( delta.y ) <= aDist;
wxPoint len = aEnd - aStart;
// Precision note here:
// These are 32-bit integers, so squaring requires 64 bits to represent
// exactly. 64-bit Doubles have only 52 bits in the mantissa, so we start to lose
// precision at 2^53, which corresponds to ~ ±1nm @ 9.5cm, 2nm at 90cm, etc...
// Long doubles avoid this ambiguity as well as the more expensive denormal double calc
// Long doubles usually (sometimes more if SIMD) have at least 64 bits in the mantissa
long double length_square = (long double) len.x * len.x + (long double) len.y * len.y;
long double cross = std::abs( (long double) len.x * delta.y - (long double) len.y * delta.x );
long double dist_square = (long double) aDist * aDist;
// The perpendicular distance to a line is the vector magnitude of the line from
// a test point to the test line. That is the 2d determinant. Because we handled
// the zero length case above, so we are guaranteed a unique solution.
return ( ( length_square >= cross && dist_square >= cross ) ||
( length_square * dist_square >= cross * cross ) );
2007-08-08 20:51:08 +00:00
}
double ArcTangente( int dy, int dx )
{
/* gcc is surprisingly smart in optimizing these conditions in
a tree! */
if( dx == 0 && dy == 0 )
return 0;
if( dy == 0 )
{
if( dx >= 0 )
return 0;
else
return -1800;
}
if( dx == 0 )
{
if( dy >= 0 )
return 900;
else
return -900;
}
if( dx == dy )
{
if( dx >= 0 )
return 450;
else
return -1800 + 450;
}
if( dx == -dy )
{
if( dx >= 0 )
return -450;
else
return 1800 - 450;
}
// Of course dy and dx are treated as double
return RAD2DECIDEG( atan2( (double) dy, (double) dx ) );
}
2011-12-14 04:29:25 +00:00
void RotatePoint( int* pX, int* pY, double angle )
{
int tmp;
NORMALIZE_ANGLE_POS( angle );
// Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
if( angle == 0 )
return;
if( angle == 900 ) /* sin = 1, cos = 0 */
{
tmp = *pX;
*pX = *pY;
*pY = -tmp;
}
else if( angle == 1800 ) /* sin = 0, cos = -1 */
{
*pX = -*pX;
*pY = -*pY;
}
else if( angle == 2700 ) /* sin = -1, cos = 0 */
{
tmp = *pX;
*pX = -*pY;
*pY = tmp;
}
else
{
double fangle = DECIDEG2RAD( angle );
double sinus = sin( fangle );
double cosinus = cos( fangle );
double fpx = (*pY * sinus ) + (*pX * cosinus );
double fpy = (*pY * cosinus ) - (*pX * sinus );
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
*pX = KiROUND( fpx );
*pY = KiROUND( fpy );
}
}
2011-12-14 04:29:25 +00:00
void RotatePoint( int* pX, int* pY, int cx, int cy, double angle )
{
int ox, oy;
ox = *pX - cx;
oy = *pY - cy;
RotatePoint( &ox, &oy, angle );
*pX = ox + cx;
*pY = oy + cy;
}
2011-12-14 04:29:25 +00:00
void RotatePoint( wxPoint* point, const wxPoint& centre, double angle )
{
int ox, oy;
ox = point->x - centre.x;
oy = point->y - centre.y;
RotatePoint( &ox, &oy, angle );
point->x = ox + centre.x;
point->y = oy + centre.y;
}
2017-10-19 21:15:13 +00:00
void RotatePoint( VECTOR2I& point, const VECTOR2I& centre, double angle )
{
wxPoint c( centre.x, centre.y );
wxPoint p( point.x, point.y );
RotatePoint(&p, c, angle);
point.x = p.x;
point.y = p.y;
}
2011-12-14 04:29:25 +00:00
void RotatePoint( double* pX, double* pY, double cx, double cy, double angle )
{
double ox, oy;
ox = *pX - cx;
oy = *pY - cy;
RotatePoint( &ox, &oy, angle );
*pX = ox + cx;
*pY = oy + cy;
}
2011-12-14 04:29:25 +00:00
void RotatePoint( double* pX, double* pY, double angle )
{
double tmp;
NORMALIZE_ANGLE_POS( angle );
// Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
if( angle == 0 )
return;
if( angle == 900 ) /* sin = 1, cos = 0 */
{
tmp = *pX;
*pX = *pY;
*pY = -tmp;
}
else if( angle == 1800 ) /* sin = 0, cos = -1 */
{
*pX = -*pX;
*pY = -*pY;
}
else if( angle == 2700 ) /* sin = -1, cos = 0 */
{
tmp = *pX;
*pX = -*pY;
*pY = tmp;
}
else
{
double fangle = DECIDEG2RAD( angle );
double sinus = sin( fangle );
double cosinus = cos( fangle );
double fpx = (*pY * sinus ) + (*pX * cosinus );
double fpy = (*pY * cosinus ) - (*pX * sinus );
2011-09-21 12:51:46 +00:00
*pX = fpx;
*pY = fpy;
}
}
const VECTOR2I GetArcCenter( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd )
{
VECTOR2I center;
double yDelta_21 = aMid.y - aStart.y;
double xDelta_21 = aMid.x - aStart.x;
double yDelta_32 = aEnd.y - aMid.y;
double xDelta_32 = aEnd.x - aMid.x;
// This is a special case for aMid as the half-way point when aSlope = 0 and bSlope = inf
// or the other way around. In that case, the center lies in a straight line between
// aStart and aEnd
if( ( ( xDelta_21 == 0.0 ) && ( yDelta_32 == 0.0 ) ) ||
( ( yDelta_21 == 0.0 ) && ( xDelta_32 == 0.0 ) ) )
{
center.x = KiROUND( ( aStart.x + aEnd.x ) / 2.0 );
center.y = KiROUND( ( aStart.y + aEnd.y ) / 2.0 );
return center;
}
// Prevent div=0 errors
if( xDelta_21 == 0.0 )
xDelta_21 = std::numeric_limits<double>::epsilon();
if( xDelta_32 == 0.0 )
xDelta_32 = -std::numeric_limits<double>::epsilon();
double aSlope = yDelta_21 / xDelta_21;
double bSlope = yDelta_32 / xDelta_32;
// If the points are colinear, the center is at infinity, so offset
// the slope by a minimal amount
// Warning: This will induce a small error in the center location
if( yDelta_32 * xDelta_21 == yDelta_21 * xDelta_32 )
{
aSlope += std::numeric_limits<double>::epsilon();
bSlope -= std::numeric_limits<double>::epsilon();
}
if( aSlope == 0.0 )
aSlope = std::numeric_limits<double>::epsilon();
if( bSlope == 0.0 )
bSlope = -std::numeric_limits<double>::epsilon();
double result = ( aSlope * bSlope * ( aStart.y - aEnd.y ) +
bSlope * ( aStart.x + aMid.x ) -
aSlope * ( aMid.x + aEnd.x ) ) / ( 2 * ( bSlope - aSlope ) );
center.x = KiROUND( Clamp<double>( double( std::numeric_limits<int>::min() / 2 ),
result,
double( std::numeric_limits<int>::max() / 2 ) ) );
result = ( ( ( aStart.x + aMid.x ) / 2.0 - center.x ) / aSlope +
( aStart.y + aMid.y ) / 2.0 );
center.y = KiROUND( Clamp<double>( double( std::numeric_limits<int>::min() / 2 ),
result,
double( std::numeric_limits<int>::max() / 2 ) ) );
return center;
}