kicad/pcb_calculator/attenuators/attenuator_classes.cpp

214 lines
4.8 KiB
C++
Raw Normal View History

/****************************************************************************
** From Qucs Attenuator Synthesis
** attenuator_classes.cpp
**
** since 2006/6/14
**
*****************************************************************************/
#include <wx/bitmap.h>
#include <i18n_utility.h>
#include <kiface_i.h>
#include <bitmaps/bitmap_types.h>
#include "attenuator_classes.h"
#include "pcb_calculator_settings.h"
// Bitmaps:
#include "bitmaps/att_bridge.cpp"
#include "bitmaps/att_pi.cpp"
#include "bitmaps/att_splitter.cpp"
#include "bitmaps/att_tee.cpp"
// Html texts showing the formulas
wxString pi_formula =
2020-10-13 01:55:32 +00:00
#include "attenuators/pi_formula.h"
wxString tee_formula =
2020-10-13 01:55:32 +00:00
#include "attenuators/tee_formula.h"
wxString bridget_tee_formula =
2020-10-13 01:55:32 +00:00
#include "attenuators/bridget_tee_formula.h"
wxString splitter_formula =
2020-10-13 01:55:32 +00:00
#include "attenuators/splitter_formula.h"
#ifndef NULL
#define NULL 0
#endif
ATTENUATOR::ATTENUATOR( ATTENUATORS_TYPE aTopology )
{
m_Name = wxT("att_base");
m_Error = false;
m_Topology = aTopology;
m_ResultCount = 3; // If 3 values must be calculated
m_Zin = 50; // Ohms
m_Zin_Enable = true;
m_Zout = 50; // Ohms
m_Attenuation = 6.0; // dB
m_Attenuation_Enable = true;
m_MinimumATT = 0.0; // dB
m_SchBitMap = NULL;
m_FormulaName = NULL;
// Initialize these variables mainly to avoid warnings from a static analyzer
m_R1 = 0.0;
m_R2 = 0.0;
m_R3 = 0.0;
Lmin = L = A = 0.0; // internal variable for temporary use
}
ATTENUATOR::~ATTENUATOR()
{
delete m_SchBitMap;
}
void ATTENUATOR::ReadConfig()
{
auto cfg = static_cast<PCB_CALCULATOR_SETTINGS*>( Kiface().KifaceSettings() );
std::string name = m_Name.ToStdString();
wxASSERT( cfg->m_Attenuators.attenuators.count( name ) );
m_Attenuation = cfg->m_Attenuators.attenuators.at( name ).attenuation;
m_Zin = cfg->m_Attenuators.attenuators.at( name ).zin;
m_Zout = cfg->m_Attenuators.attenuators.at( name ).zout;
}
void ATTENUATOR::WriteConfig()
{
auto cfg = static_cast<PCB_CALCULATOR_SETTINGS*>( Kiface().KifaceSettings() );
std::string name = m_Name.ToStdString();
cfg->m_Attenuators.attenuators[ name ].attenuation = m_Attenuation;
cfg->m_Attenuators.attenuators[ name ].zin = m_Zin;
cfg->m_Attenuators.attenuators[ name ].zout = m_Zout;
}
ATTENUATOR_PI::ATTENUATOR_PI() : ATTENUATOR( PI_TYPE )
{
m_Name = wxT("att_pi");
m_SchBitMap = new wxBitmap( KiBitmap( att_pi_xpm ) );
m_FormulaName = &pi_formula;
}
bool ATTENUATOR_PI::Calculate()
{
if( !ATTENUATOR::Calculate() )
return false;
m_R2 = ( (L - 1) / 2 ) * sqrt( m_Zin * m_Zout / L );
m_R1 = 1 / ( ( (A / m_Zin) ) - (1 / m_R2) );
m_R3 = 1 / ( ( (A / m_Zout) ) - (1 / m_R2) );
return true;
}
ATTENUATOR_TEE::ATTENUATOR_TEE() : ATTENUATOR( TEE_TYPE )
{
m_Name = wxT("att_tee");
m_SchBitMap = new wxBitmap( KiBitmap( att_tee_xpm ) );
m_FormulaName = &tee_formula;
}
bool ATTENUATOR_TEE::Calculate()
{
if( !ATTENUATOR::Calculate() )
return false;
m_R2 = ( 2 * sqrt( L * m_Zin * m_Zout ) ) / (L - 1);
m_R1 = m_Zin * A - m_R2;
m_R3 = m_Zout * A - m_R2;
return true;
}
ATTENUATOR_BRIDGE::ATTENUATOR_BRIDGE() : ATTENUATOR( BRIDGE_TYPE )
{
m_Name = wxT("att_bridge");
m_Zin_Enable = false;
m_ResultCount = 2;
m_SchBitMap = new wxBitmap( KiBitmap( att_bridge_xpm ) );
m_FormulaName = &bridget_tee_formula;
}
bool ATTENUATOR_BRIDGE::Calculate()
{
m_Zin = m_Zout;
if( !ATTENUATOR::Calculate() )
return false;
L = pow( 10, m_Attenuation / 20 );
m_R1 = m_Zin * (L - 1);
m_R2 = m_Zin / (L - 1);
return true;
}
ATTENUATOR_SPLITTER::ATTENUATOR_SPLITTER() : ATTENUATOR( SPLITTER_TYPE )
{
m_Name = wxT("att_splitter");
m_Attenuation_Enable = false;
m_Attenuation = 6.0;
m_MinimumATT = 6.0;
m_Zin_Enable = false;
m_SchBitMap = new wxBitmap( KiBitmap( att_splitter_xpm ) );
m_FormulaName = &splitter_formula;
}
bool ATTENUATOR_SPLITTER::Calculate()
{
m_Attenuation = 6.0;
m_Zin = m_Zout;
m_R1 = m_R2 = m_R3 = m_Zout / 3.0;
return true;
}
bool ATTENUATOR::Calculate()
{
L = pow( 10, m_Attenuation / 10 );
A = (L + 1) / (L - 1);
if( m_Zin > m_Zout )
{
Lmin = (2 * m_Zin / m_Zout) - 1 + 2 *
sqrt( m_Zin / m_Zout * (m_Zin / m_Zout - 1) );
}
else
{
Lmin = (2 * m_Zout / m_Zin) - 1 + 2 *
sqrt( m_Zout / m_Zin * (m_Zout / m_Zin - 1) );
}
m_MinimumATT = 10 * log10( Lmin );
if( m_MinimumATT > m_Attenuation )
{
m_Error = true;
return false;
}
m_Error = false;
return true;
}