kicad/pcbnew/drc/drc_test_provider_sliver_ch...

290 lines
10 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
2024-01-04 11:49:06 +00:00
* Copyright (C) 2021-2024 KiCad Developers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
2022-03-11 22:02:43 +00:00
#include <atomic>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pcb_shape.h>
#include <geometry/shape_poly_set.h>
#include <drc/drc_rule.h>
#include <drc/drc_item.h>
#include <drc/drc_test_provider.h>
#include <advanced_config.h>
#include <progress_reporter.h>
2023-09-06 21:19:38 +00:00
#include <core/thread_pool.h>
/*
Checks for slivers in copper layers
Errors generated:
- DRCE_COPPER_SLIVER
*/
class DRC_TEST_PROVIDER_SLIVER_CHECKER : public DRC_TEST_PROVIDER
{
public:
DRC_TEST_PROVIDER_SLIVER_CHECKER()
{
}
virtual ~DRC_TEST_PROVIDER_SLIVER_CHECKER()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
2022-03-11 21:16:52 +00:00
return wxT( "sliver checker" );
};
virtual const wxString GetDescription() const override
{
2022-03-11 21:16:52 +00:00
return wxT( "Checks copper layers for slivers" );
}
private:
wxString layerDesc( PCB_LAYER_ID aLayer );
};
wxString DRC_TEST_PROVIDER_SLIVER_CHECKER::layerDesc( PCB_LAYER_ID aLayer )
{
return wxString::Format( wxT( "(%s)" ), m_drcEngine->GetBoard()->GetLayerName( aLayer ) );
}
bool DRC_TEST_PROVIDER_SLIVER_CHECKER::Run()
{
if( m_drcEngine->IsErrorLimitExceeded( DRCE_COPPER_SLIVER ) )
return true; // Continue with other tests
if( !reportPhase( _( "Running sliver detection on copper layers..." ) ) )
return false; // DRC cancelled
int64_t widthTolerance = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_SliverWidthTolerance );
int64_t squared_width = widthTolerance * widthTolerance;
double angleTolerance = ADVANCED_CFG::GetCfg().m_SliverAngleTolerance;
double cosangleTol = 2.0 * cos( DEG2RAD( angleTolerance ) );
LSET copperLayerSet = m_drcEngine->GetBoard()->GetEnabledLayers() & LSET::AllCuMask();
LSEQ copperLayers = copperLayerSet.Seq();
int layerCount = copperLayers.size();
// Report progress on board zones only. Everything else is in the noise.
int zoneLayerCount = 0;
std::atomic<size_t> done( 1 );
for( PCB_LAYER_ID layer : copperLayers )
{
for( ZONE* zone : m_drcEngine->GetBoard()->Zones() )
{
if( !zone->GetIsRuleArea() && zone->IsOnLayer( layer ) )
zoneLayerCount++;
}
}
PROGRESS_REPORTER* reporter = m_drcEngine->GetProgressReporter();
if( reporter && reporter->IsCancelled() )
2022-03-12 13:34:25 +00:00
return false; // DRC cancelled
std::vector<SHAPE_POLY_SET> layerPolys( layerCount );
auto build_layer_polys =
[&]( int layerIdx ) -> size_t
{
PCB_LAYER_ID layer = copperLayers[layerIdx];
SHAPE_POLY_SET& poly = layerPolys[layerIdx];
2022-03-12 13:34:25 +00:00
if( m_drcEngine->IsCancelled() )
return 0;
SHAPE_POLY_SET fill;
forEachGeometryItem( s_allBasicItems, LSET().set( layer ),
[&]( BOARD_ITEM* item ) -> bool
{
if( ZONE* zone = dynamic_cast<ZONE*>( item) )
{
if( !zone->GetIsRuleArea() )
{
fill = zone->GetFill( layer )->CloneDropTriangulation();
poly.Append( fill );
// Report progress on board zones only. Everything else is
// in the noise.
done.fetch_add( 1 );
}
}
else
{
item->TransformShapeToPolygon( poly, layer, 0, ARC_LOW_DEF,
ERROR_INSIDE );
}
if( m_drcEngine->IsCancelled() )
return false;
return true;
} );
if( m_drcEngine->IsCancelled() )
return 0;
poly.Simplify( SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
return 1;
};
thread_pool& tp = GetKiCadThreadPool();
std::vector<std::future<size_t>> returns;
returns.reserve( copperLayers.size() );
for( size_t ii = 0; ii < copperLayers.size(); ++ii )
returns.emplace_back( tp.submit( build_layer_polys, ii ) );
for( const std::future<size_t>& ret : returns )
{
std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) );
while( status != std::future_status::ready )
{
2024-01-04 11:49:06 +00:00
reportProgress( zoneLayerCount, done );
status = ret.wait_for( std::chrono::milliseconds( 250 ) );
}
}
for( int ii = 0; ii < layerCount; ++ii )
{
PCB_LAYER_ID layer = copperLayers[ii];
SHAPE_POLY_SET& poly = layerPolys[ii];
if( m_drcEngine->IsErrorLimitExceeded( DRCE_COPPER_SLIVER ) )
continue;
// Frequently, in filled areas, some points of the polygons are very near (dist is only
// a few internal units, like 2 or 3 units.
// We skip very small vertices: one cannot really compute a valid orientation of
// such a vertex
// So skip points near than min_len (in internal units).
const int min_len = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_SliverMinimumLength );
for( int jj = 0; jj < poly.OutlineCount(); ++jj )
{
const std::vector<VECTOR2I>& pts = poly.Outline( jj ).CPoints();
int ptCount = pts.size();
int offset = 0;
auto area = [&]( const VECTOR2I& p, const VECTOR2I& q, const VECTOR2I& r ) -> VECTOR2I::extended_type
{
return static_cast<VECTOR2I::extended_type>( q.y - p.y ) * ( r.x - q.x ) -
static_cast<VECTOR2I::extended_type>( q.x - p.x ) * ( r.y - q.y );
};
auto isLocallyInside = [&]( int aA, int aB ) -> bool
{
int prev = ( ptCount + aA - 1 ) % ptCount;
int next = ( aA + 1 ) % ptCount;
if( area( pts[prev], pts[aA], pts[next] ) < 0 )
return area( pts[aA], pts[aB], pts[next] ) >= 0 && area( pts[aA], pts[prev], pts[aB] ) >= 0;
else
return area( pts[aA], pts[aB], pts[prev] ) < 0 || area( pts[aA], pts[next], pts[aB] ) < 0;
};
if( ptCount <= 5 )
continue;
for( int kk = 0; kk < ptCount; kk += offset )
{
int prior_index = ( ptCount + kk - 1 ) % ptCount;
int next_index = ( kk + 1 ) % ptCount;
VECTOR2I pt = pts[ kk ];
VECTOR2I ptPrior = pts[ prior_index ];
VECTOR2I vPrior = ( ptPrior - pt );
int forward_offset = 1;
offset = 1;
while( std::abs( vPrior.x ) < min_len && std::abs( vPrior.y ) < min_len
&& offset < ptCount )
{
pt = pts[ ( kk + offset++ ) % ptCount ];
vPrior = ( ptPrior - pt );
}
if( offset >= ptCount )
break;
VECTOR2I ptAfter = pts[ next_index ];
VECTOR2I vAfter = ( ptAfter - pt );
while( std::abs( vAfter.x ) < min_len && std::abs( vAfter.y ) < min_len
&& forward_offset < ptCount )
{
next_index = ( kk + forward_offset++ ) % ptCount;
ptAfter = pts[ next_index ];
vAfter = ( ptAfter - pt );
}
if( offset >= ptCount )
break;
// Negative dot product means that the angle is > 90°
if( vPrior.Dot( vAfter ) <= 0 )
continue;
if( !isLocallyInside( prior_index, next_index ) )
continue;
VECTOR2I vIncluded = ptAfter - ptPrior;
double arm1 = vPrior.SquaredEuclideanNorm();
double arm2 = vAfter.SquaredEuclideanNorm();
double opp = vIncluded.SquaredEuclideanNorm();
double cos_ang = std::abs( ( opp - arm1 - arm2 ) / ( std::sqrt( arm1 ) * std::sqrt( arm2 ) ) );
if( cos_ang > cosangleTol && 2.0 - cos_ang > std::numeric_limits<float>::epsilon() && opp > squared_width )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_COPPER_SLIVER );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + layerDesc( layer ) );
reportViolation( drce, pt, layer );
}
}
}
}
return true;
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<DRC_TEST_PROVIDER_SLIVER_CHECKER> dummy;
}