kicad/include/boost/heap/priority_queue.hpp

405 lines
11 KiB
C++
Raw Normal View History

2012-05-16 01:42:04 +00:00
// boost heap: wrapper for stl heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_PRIORITY_QUEUE_HPP
#define BOOST_HEAP_PRIORITY_QUEUE_HPP
#include <algorithm>
#include <queue>
#include <vector>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/stable_heap.hpp>
namespace boost {
namespace heap {
namespace detail {
typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
boost::parameter::optional<tag::compare>,
boost::parameter::optional<tag::stable>,
boost::parameter::optional<tag::stability_counter_type>
> priority_queue_signature;
}
/**
* \class priority_queue
* \brief priority queue, based on stl heap functions
*
* The priority_queue class is a wrapper for the stl heap functions.<br>
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template <typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_
>
#endif
class priority_queue:
private detail::make_heap_base<T, typename detail::priority_queue_signature::bind<A0, A1, A2, A3>::type, false>::type
{
typedef detail::make_heap_base<T, typename detail::priority_queue_signature::bind<A0, A1, A2, A3>::type, false> heap_base_maker;
typedef typename heap_base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
typedef typename heap_base_maker::allocator_argument::template rebind<internal_type>::other internal_type_allocator;
typedef std::vector<internal_type, internal_type_allocator> container_type;
template <typename Heap1, typename Heap2>
friend struct detail::heap_merge_emulate;
container_type q_;
#ifndef BOOST_DOXYGEN_INVOKED
struct implementation_defined:
detail::extract_allocator_types<typename heap_base_maker::allocator_argument>
{
typedef typename heap_base_maker::compare_argument value_compare;
typedef detail::stable_heap_iterator<T, typename container_type::const_iterator, super_t> iterator;
typedef iterator const_iterator;
typedef typename container_type::allocator_type allocator_type;
};
#endif
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/**
* \b Note: The iterator does not traverse the priority queue in order of the priorities.
* */
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
static const bool constant_time_size = true;
static const bool has_ordered_iterators = false;
static const bool is_mergable = false;
static const bool is_stable = heap_base_maker::is_stable;
static const bool has_reserve = true;
/**
* \b Effects: constructs an empty priority queue.
*
* \b Complexity: Constant.
*
* */
explicit priority_queue(value_compare const & cmp = value_compare()):
super_t(cmp)
{}
/**
* \b Effects: copy-constructs priority queue from rhs.
*
* \b Complexity: Linear.
*
* */
priority_queue (priority_queue const & rhs):
super_t(rhs), q_(rhs.q_)
{}
#ifdef BOOST_HAS_RVALUE_REFS
/**
* \b Effects: C++11-style move constructor.
*
* \b Complexity: Constant.
*
* \b Note: Only available, if BOOST_HAS_RVALUE_REFS is defined
* */
priority_queue(priority_queue && rhs):
super_t(std::move(rhs)), q_(std::move(rhs.q_))
{}
/**
* \b Effects: C++11-style move assignment.
*
* \b Complexity: Constant.
*
* \b Note: Only available, if BOOST_HAS_RVALUE_REFS is defined
* */
priority_queue & operator=(priority_queue && rhs)
{
super_t::operator=(std::move(rhs));
q_ = std::move(rhs.q_);
return *this;
}
#endif
/**
* \b Effects: Assigns priority queue from rhs.
*
* \b Complexity: Linear.
*
* */
priority_queue & operator=(priority_queue const & rhs)
{
static_cast<super_t&>(*this) = static_cast<super_t const &>(rhs);
q_ = rhs.q_;
return *this;
}
/**
* \b Effects: Returns true, if the priority queue contains no elements.
*
* \b Complexity: Constant.
*
* */
bool empty(void) const
{
return q_.empty();
}
/**
* \b Effects: Returns the number of elements contained in the priority queue.
*
* \b Complexity: Constant.
*
* */
size_type size(void) const
{
return q_.size();
}
/**
* \b Effects: Returns the maximum number of elements the priority queue can contain.
*
* \b Complexity: Constant.
*
* */
size_type max_size(void) const
{
return q_.max_size();
}
/**
* \b Effects: Removes all elements from the priority queue.
*
* \b Complexity: Linear.
*
* */
void clear(void)
{
q_.clear();
}
/**
* \b Effects: Returns allocator.
*
* \b Complexity: Constant.
*
* */
allocator_type get_allocator(void) const
{
return q_.get_allocator();
}
/**
* \b Effects: Returns a const_reference to the maximum element.
*
* \b Complexity: Constant.
*
* */
const_reference top(void) const
{
BOOST_ASSERT(!empty());
return super_t::get_value(q_.front());
}
/**
* \b Effects: Adds a new element to the priority queue.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
void push(value_type const & v)
{
q_.push_back(super_t::make_node(v));
std::push_heap(q_.begin(), q_.end(), static_cast<super_t const &>(*this));
}
#if defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_NO_VARIADIC_TEMPLATES)
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
template <class... Args>
void emplace(Args&&... args)
{
q_.emplace_back(super_t::make_node(std::forward<Args>(args)...));
std::push_heap(q_.begin(), q_.end(), static_cast<super_t const &>(*this));
}
#endif
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
void pop(void)
{
BOOST_ASSERT(!empty());
std::pop_heap(q_.begin(), q_.end(), static_cast<super_t const &>(*this));
q_.pop_back();
}
/**
* \b Effects: Swaps two priority queues.
*
* \b Complexity: Constant.
*
* */
void swap(priority_queue & rhs)
{
super_t::swap(rhs);
q_.swap(rhs.q_);
}
/**
* \b Effects: Returns an iterator to the first element contained in the priority queue.
*
* \b Complexity: Constant.
*
* */
iterator begin(void) const
{
return iterator(q_.begin());
}
/**
* \b Effects: Returns an iterator to the end of the priority queue.
*
* \b Complexity: Constant.
*
* */
iterator end(void) const
{
return iterator(q_.end());
}
/**
* \b Effects: Reserves memory for element_count elements
*
* \b Complexity: Linear.
*
* \b Node: Invalidates iterators
*
* */
void reserve(size_type element_count)
{
q_.reserve(element_count);
}
/**
* \b Effect: Returns the value_compare object used by the priority queue
*
* */
value_compare const & value_comp(void) const
{
return super_t::value_comp();
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template <typename HeapType>
bool operator<(HeapType const & rhs) const
{
return detail::heap_compare(*this, rhs);
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template <typename HeapType>
bool operator>(HeapType const & rhs) const
{
return detail::heap_compare(rhs, *this);
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template <typename HeapType>
bool operator>=(HeapType const & rhs) const
{
return !operator<(rhs);
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template <typename HeapType>
bool operator<=(HeapType const & rhs) const
{
return !operator>(rhs);
}
/** \brief Equivalent comparison
* \b Returns: True, if both heap data structures are equivalent.
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template <typename HeapType>
bool operator==(HeapType const & rhs) const
{
return detail::heap_equality(*this, rhs);
}
/** \brief Equivalent comparison
* \b Returns: True, if both heap data structures are not equivalent.
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template <typename HeapType>
bool operator!=(HeapType const & rhs) const
{
return !(*this == rhs);
}
};
} /* namespace heap */
} /* namespace boost */
#endif /* BOOST_HEAP_PRIORITY_QUEUE_HPP */