kicad/pcbnew/microwave/microwave_inductor.cpp

406 lines
14 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "microwave_inductor.h"
#include <wx/wx.h>
#include <base_units.h>
#include <validators.h>
#include <wxPcbStruct.h>
#include <class_pad.h>
#include <class_edge_mod.h>
#include <class_module.h>
using namespace MWAVE;
/**
* Function gen_arc
* generates an arc using arc approximation by lines:
* Center aCenter
* Angle "angle" (in 0.1 deg)
* @param aBuffer = a buffer to store points.
* @param aStartPoint = starting point of arc.
* @param aCenter = arc centre.
* @param a_ArcAngle = arc length in 0.1 degrees.
*/
static void gen_arc( std::vector <wxPoint>& aBuffer,
const wxPoint& aStartPoint,
const wxPoint& aCenter,
int a_ArcAngle )
{
const int SEGM_COUNT_PER_360DEG = 16;
auto first_point = aStartPoint - aCenter;
int seg_count = ( ( abs( a_ArcAngle ) ) * SEGM_COUNT_PER_360DEG ) / 3600;
if( seg_count == 0 )
seg_count = 1;
double increment_angle = (double) a_ArcAngle * M_PI / 1800 / seg_count;
// Creates nb_seg point to approximate arc by segments:
for( int ii = 1; ii <= seg_count; ii++ )
{
double rot_angle = increment_angle * ii;
double fcos = cos( rot_angle );
double fsin = sin( rot_angle );
wxPoint currpt;
// Rotate current point:
currpt.x = KiROUND( ( first_point.x * fcos + first_point.y * fsin ) );
currpt.y = KiROUND( ( first_point.y * fcos - first_point.x * fsin ) );
auto corner = aCenter + currpt;
aBuffer.push_back( corner );
}
}
/**
* Function BuildCornersList_S_Shape
* Create a path like a S-shaped coil
* @param aBuffer = a buffer where to store points (ends of segments)
* @param aStartPoint = starting point of the path
* @param aEndPoint = ending point of the path
* @param aLength = full length of the path
* @param aWidth = segment width
*/
static int BuildCornersList_S_Shape( std::vector <wxPoint>& aBuffer,
const wxPoint& aStartPoint,
const wxPoint& aEndPoint,
int aLength, int aWidth )
{
/* We must determine:
* segm_count = number of segments perpendicular to the direction
* segm_len = length of a strand
* radius = radius of rounded parts of the coil
* stubs_len = length of the 2 stubs( segments parallel to the direction)
* connecting the start point to the start point of the S shape
* and the ending point to the end point of the S shape
* The equations are (assuming the area size of the entire shape is Size:
* Size.x = 2 * radius + segm_len
* Size.y = (segm_count + 2 ) * 2 * radius + 2 * stubs_len
* inductorPattern.m_length = 2 * delta // connections to the coil
* + (segm_count-2) * segm_len // length of the strands except 1st and last
* + (segm_count) * (PI * radius) // length of rounded
* segm_len + / 2 - radius * 2) // length of 1st and last bit
*
* The constraints are:
* segm_count >= 2
* radius < m_Size.x
* Size.y = (radius * 4) + (2 * stubs_len)
* segm_len > radius * 2
*
* The calculation is conducted in the following way:
* first:
* segm_count = 2
* radius = 4 * Size.x (arbitrarily fixed value)
* Then:
* Increasing the number of segments to the desired length
* (radius decreases if necessary)
*/
wxPoint size;
// This scale factor adjusts the arc length to handle
// the arc to segment approximation.
// because we use SEGM_COUNT_PER_360DEG segment to approximate a circle,
// the trace len must be corrected when calculated using arcs
// this factor adjust calculations and must be changed if SEGM_COUNT_PER_360DEG is modified
// because trace using segment is shorter the corresponding arc
// ADJUST_SIZE is the ratio between tline len and the arc len for an arc
// of 360/ADJUST_SIZE angle
#define ADJUST_SIZE 0.988
auto pt = aEndPoint - aStartPoint;
double angle = -ArcTangente( pt.y, pt.x );
int min_len = KiROUND( EuclideanNorm( pt ) );
int segm_len = 0; // length of segments
int full_len; // full len of shape (sum of length of all segments + arcs)
/* Note: calculations are made for a vertical coil (more easy calculations)
* and after points are rotated to their actual position
* So the main direction is the Y axis.
* the 2 stubs are on the Y axis
* the others segments are parallel to the X axis.
*/
// Calculate the size of area (for a vertical shape)
size.x = min_len / 2;
size.y = min_len;
// Choose a reasonable starting value for the radius of the arcs.
int radius = std::min( aWidth * 5, size.x / 4 );
int segm_count; // number of full len segments
// the half size segments (first and last segment) are not counted here
int stubs_len = 0; // length of first or last segment (half size of others segments)
for( segm_count = 0; ; segm_count++ )
{
stubs_len = ( size.y - ( radius * 2 * (segm_count + 2 ) ) ) / 2;
if( stubs_len < size.y / 10 ) // Reduce radius.
{
stubs_len = size.y / 10;
radius = ( size.y - (2 * stubs_len) ) / ( 2 * (segm_count + 2) );
if( radius < aWidth ) // Radius too small.
{
// Unable to create line: Requested length value is too large for room
return 0;
}
}
segm_len = size.x - ( radius * 2 );
full_len = 2 * stubs_len; // Length of coil connections.
full_len += segm_len * segm_count; // Length of full length segments.
full_len += KiROUND( ( segm_count + 2 ) * M_PI * ADJUST_SIZE * radius ); // Ard arcs len
full_len += segm_len - (2 * radius); // Length of first and last segments
// (half size segments len = segm_len/2 - radius).
if( full_len >= aLength )
break;
}
// Adjust len by adjusting segm_len:
int delta_size = full_len - aLength;
// reduce len of the segm_count segments + 2 half size segments (= 1 full size segment)
segm_len -= delta_size / (segm_count + 1);
// Generate first line (the first stub) and first arc (90 deg arc)
pt = aStartPoint;
aBuffer.push_back( pt );
pt.y += stubs_len;
aBuffer.push_back( pt );
auto centre = pt;
centre.x -= radius;
gen_arc( aBuffer, pt, centre, -900 );
pt = aBuffer.back();
int half_size_seg_len = segm_len / 2 - radius;
if( half_size_seg_len )
{
pt.x -= half_size_seg_len;
aBuffer.push_back( pt );
}
// Create shape.
int ii;
int sign = 1;
segm_count += 1; // increase segm_count to create the last half_size segment
for( ii = 0; ii < segm_count; ii++ )
{
int arc_angle;
if( ii & 1 ) // odd order arcs are greater than 0
sign = -1;
else
sign = 1;
arc_angle = 1800 * sign;
centre = pt;
centre.y += radius;
gen_arc( aBuffer, pt, centre, arc_angle );
pt = aBuffer.back();
pt.x += segm_len * sign;
aBuffer.push_back( pt );
}
// The last point is false:
// it is the end of a full size segment, but must be
// the end of the second half_size segment. Change it.
sign *= -1;
aBuffer.back().x = aStartPoint.x + radius * sign;
// create last arc
pt = aBuffer.back();
centre = pt;
centre.y += radius;
gen_arc( aBuffer, pt, centre, 900 * sign );
aBuffer.back();
// Rotate point
angle += 900;
for( unsigned jj = 0; jj < aBuffer.size(); jj++ )
{
RotatePoint( &aBuffer[jj].x, &aBuffer[jj].y, aStartPoint.x, aStartPoint.y, angle );
}
// push last point (end point)
aBuffer.push_back( aEndPoint );
return 1;
}
MODULE* MWAVE::CreateMicrowaveInductor( INDUCTOR_PATTERN& inductorPattern,
PCB_EDIT_FRAME* aPcbFrame, wxString& aErrorMessage )
{
/* Build a microwave inductor footprint.
* - Length Mself.lng
* - Extremities Mself.m_Start and Mself.m_End
* We must determine:
* Mself.nbrin = number of segments perpendicular to the direction
* (The coil nbrin will demicercles + 1 + 2 1 / 4 circle)
* Mself.lbrin = length of a strand
* Mself.radius = radius of rounded parts of the coil
* Mself.delta = segments extremities connection between him and the coil even
*
* The equations are
* Mself.m_Size.x = 2 * Mself.radius + Mself.lbrin
* Mself.m_Size.y * Mself.delta = 2 + 2 * Mself.nbrin * Mself.radius
* Mself.lng = 2 * Mself.delta / / connections to the coil
+ (Mself.nbrin-2) * Mself.lbrin / / length of the strands except 1st and last
+ (Mself.nbrin 1) * (PI * Mself.radius) / / length of rounded
* Mself.lbrin + / 2 - Melf.radius * 2) / / length of 1st and last bit
*
* The constraints are:
* Nbrin >= 2
* Mself.radius < Mself.m_Size.x
* Mself.m_Size.y = Mself.radius * 4 + 2 * Mself.raccord
* Mself.lbrin> Mself.radius * 2
*
* The calculation is conducted in the following way:
* Initially:
* Nbrin = 2
* Radius = 4 * m_Size.x (arbitrarily fixed value)
* Then:
* Increasing the number of segments to the desired length
* (Radius decreases if necessary)
*/
D_PAD* pad;
int ll;
wxString msg;
auto pt = inductorPattern.m_End - inductorPattern.m_Start;
int min_len = KiROUND( EuclideanNorm( pt ) );
inductorPattern.m_length = min_len;
// Enter the desired length.
msg = StringFromValue( g_UserUnit, inductorPattern.m_length );
wxTextEntryDialog dlg( nullptr, wxEmptyString, _( "Length of Trace:" ), msg );
if( dlg.ShowModal() != wxID_OK )
return nullptr; // canceled by user
msg = dlg.GetValue();
inductorPattern.m_length = ValueFromString( g_UserUnit, msg );
// Control values (ii = minimum length)
if( inductorPattern.m_length < min_len )
{
aErrorMessage = _( "Requested length < minimum length" );
return nullptr;
}
// Calculate the elements.
std::vector <wxPoint> buffer;
ll = BuildCornersList_S_Shape( buffer, inductorPattern.m_Start,
inductorPattern.m_End, inductorPattern.m_length,
inductorPattern.m_Width );
if( !ll )
{
aErrorMessage = _( "Requested length too large" );
return nullptr;
}
// Generate footprint. the value is also used as footprint name.
msg = "L";
wxTextEntryDialog cmpdlg( nullptr, wxEmptyString, _( "Component Value:" ), msg );
cmpdlg.SetTextValidator( FILE_NAME_CHAR_VALIDATOR( &msg ) );
if( ( cmpdlg.ShowModal() != wxID_OK ) || msg.IsEmpty() )
return nullptr; // Aborted by user
MODULE* module = aPcbFrame->CreateNewModule( msg );
// here the module is already in the BOARD, CreateNewModule() does that.
module->SetFPID( LIB_ID( std::string( "mw_inductor" ) ) );
module->SetAttributes( MOD_VIRTUAL | MOD_CMS );
module->ClearFlags();
module->SetPosition( inductorPattern.m_End );
// Generate segments
for( unsigned jj = 1; jj < buffer.size(); jj++ )
{
EDGE_MODULE* PtSegm;
PtSegm = new EDGE_MODULE( module );
PtSegm->SetStart( buffer[jj - 1] );
PtSegm->SetEnd( buffer[jj] );
PtSegm->SetWidth( inductorPattern.m_Width );
PtSegm->SetLayer( module->GetLayer() );
PtSegm->SetShape( S_SEGMENT );
PtSegm->SetStart0( PtSegm->GetStart() - module->GetPosition() );
PtSegm->SetEnd0( PtSegm->GetEnd() - module->GetPosition() );
module->GraphicalItemsList().PushBack( PtSegm );
}
// Place a pad on each end of coil.
pad = new D_PAD( module );
module->PadsList().PushFront( pad );
pad->SetPadName( "1" );
pad->SetPosition( inductorPattern.m_End );
pad->SetPos0( pad->GetPosition() - module->GetPosition() );
pad->SetSize( wxSize( inductorPattern.m_Width, inductorPattern.m_Width ) );
pad->SetLayerSet( LSET( module->GetLayer() ) );
pad->SetAttribute( PAD_ATTRIB_SMD );
pad->SetShape( PAD_SHAPE_CIRCLE );
D_PAD* newpad = new D_PAD( *pad );
module->PadsList().Insert( newpad, pad->Next() );
pad = newpad;
pad->SetPadName( "2" );
pad->SetPosition( inductorPattern.m_Start );
pad->SetPos0( pad->GetPosition() - module->GetPosition() );
// Modify text positions.
wxPoint refPos( ( inductorPattern.m_Start.x + inductorPattern.m_End.x ) / 2,
( inductorPattern.m_Start.y + inductorPattern.m_End.y ) / 2 );
wxPoint valPos = refPos;
refPos.y -= module->Reference().GetTextSize().y;
module->Reference().SetPosition( refPos );
valPos.y += module->Value().GetTextSize().y;
module->Value().SetPosition( valPos );
module->CalculateBoundingBox();
return module;
}