kicad/gerbview/class_aperture_macro.cpp

875 lines
31 KiB
C++
Raw Normal View History

/**
* @file class_aperture_macro.cpp
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 1992-2017 Jean-Pierre Charras <jp.charras at wanadoo.fr>
* Copyright (C) 2010 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2017 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <fctsys.h>
#include <common.h>
#include <macros.h>
#include <trigo.h>
#include <convert_basic_shapes_to_polygon.h>
#include <gr_basic.h>
#include <gerbview.h>
#include <class_gerber_file_image.h>
/**
* Function scaletoIU
* converts a distance given in floating point to our internal units
*/
extern int scaletoIU( double aCoord, bool isMetric ); // defined it rs274d_read_XY_and_IJ_coordiantes.cpp
/**
* Function mapPt
* translates a point from the aperture macro coordinate system to our
* deci-mils coordinate system.
* @return wxPoint - The GerbView coordinate system vector.
*/
static wxPoint mapPt( double x, double y, bool isMetric )
{
wxPoint ret( scaletoIU( x, isMetric ), scaletoIU( y, isMetric ) );
return ret;
}
bool AM_PRIMITIVE::IsAMPrimitiveExposureOn(GERBER_DRAW_ITEM* aParent) const
{
/*
* Some but not all primitives use the first parameter as an exposure control.
* Others are always ON.
* In a aperture macro shape, a basic primitive with exposure off is a hole in the shape
* it is NOT a negative shape
*/
wxASSERT( params.size() && params[0].IsImmediate() );
switch( primitive_id )
{
case AMP_CIRCLE:
case AMP_LINE2:
case AMP_LINE20:
case AMP_LINE_CENTER:
case AMP_LINE_LOWER_LEFT:
case AMP_OUTLINE:
case AMP_POLYGON:
// All have an exposure parameter and can return a value (0 or 1)
return params[0].GetValue( aParent->GetDcodeDescr() ) != 0;
break;
case AMP_THERMAL: // Exposure is always on
case AMP_MOIRE: // Exposure is always on
case AMP_EOF:
case AMP_UNKNOWN:
default:
return 1; // All have no exposure parameter and are always 0N return true
break;
}
}
const int seg_per_circle = 64; // Number of segments to approximate a circle
void AM_PRIMITIVE::DrawBasicShape( GERBER_DRAW_ITEM* aParent,
SHAPE_POLY_SET& aShapeBuffer,
wxPoint aShapePos )
{
#define TO_POLY_SHAPE { aShapeBuffer.NewOutline(); \
for( unsigned jj = 0; jj < polybuffer.size(); jj++ )\
aShapeBuffer.Append( polybuffer[jj].x, polybuffer[jj].y );\
aShapeBuffer.Append( polybuffer[0].x, polybuffer[0].y );}
// Draw the primitive shape for flashed items.
static std::vector<wxPoint> polybuffer; // create a static buffer to avoid a lot of memory reallocation
polybuffer.clear();
wxPoint curPos = aShapePos;
D_CODE* tool = aParent->GetDcodeDescr();
double rotation;
switch( primitive_id )
{
case AMP_CIRCLE: // Circle, given diameter and position
{
/* Generated by an aperture macro declaration like:
* "1,1,0.3,0.5, 1.0*"
* type (1), exposure, diameter, pos.x, pos.y, <rotation>
* <rotation> is a optional parameter: rotation from origin.
* type is not stored in parameters list, so the first parameter is exposure
*/
ConvertShapeToPolygon( aParent, polybuffer );
// shape rotation (if any):
if( params.size() >= 5 )
{
rotation = params[4].GetValue( tool ) * 10.0;
if( rotation != 0)
{
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
RotatePoint( &polybuffer[ii], -rotation );
}
}
// Move to current position:
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
}
break;
case AMP_LINE2:
case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation)
{
/* Vector Line, Primitive Code 20.
* A vector line is a rectangle defined by its line width, start and end points.
* The line ends are rectangular.
*/
/* Generated by an aperture macro declaration like:
* "2,1,0.3,0,0, 0.5, 1.0,-135*"
* type (2), exposure, width, start.x, start.y, end.x, end.y, rotation
* type is not stored in parameters list, so the first parameter is exposure
*/
ConvertShapeToPolygon( aParent, polybuffer );
// shape rotation:
rotation = params[6].GetValue( tool ) * 10.0;
if( rotation != 0)
{
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
RotatePoint( &polybuffer[ii], -rotation );
}
// Move to current position:
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
}
break;
case AMP_LINE_CENTER:
{
/* Center Line, Primitive Code 21
* A center line primitive is a rectangle defined by its width, height, and center point
*/
/* Generated by an aperture macro declaration like:
* "21,1,0.3,0.03,0,0,-135*"
* type (21), exposure, ,width, height, center pos.x, center pos.y, rotation
* type is not stored in parameters list, so the first parameter is exposure
*/
ConvertShapeToPolygon( aParent, polybuffer );
// shape rotation:
rotation = params[5].GetValue( tool ) * 10.0;
if( rotation != 0 )
{
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
RotatePoint( &polybuffer[ii], -rotation );
}
// Move to current position:
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
}
break;
case AMP_LINE_LOWER_LEFT:
{
/* Generated by an aperture macro declaration like:
* "22,1,0.3,0.03,0,0,-135*"
* type (22), exposure, ,width, height, corner pos.x, corner pos.y, rotation
* type is not stored in parameters list, so the first parameter is exposure
*/
ConvertShapeToPolygon( aParent, polybuffer );
// shape rotation:
rotation = params[5].GetValue( tool ) * 10.0;
if( rotation != 0)
{
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
RotatePoint( &polybuffer[ii], -rotation );
}
// Move to current position:
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
}
break;
case AMP_THERMAL:
{
/* Generated by an aperture macro declaration like:
* "7, 0,0,1.0,0.3,0.01,-13*"
* type (7), center.x , center.y, outside diam, inside diam, crosshair thickness, rotation
* type is not stored in parameters list, so the first parameter is center.x
*
* The thermal primitive is a ring (annulus) interrupted by four gaps. Exposure is always on.
*/
std::vector<wxPoint> subshape_poly;
curPos += mapPt( params[0].GetValue( tool ), params[1].GetValue( tool ), m_GerbMetric );
ConvertShapeToPolygon( aParent, subshape_poly );
// shape rotation:
rotation = params[5].GetValue( tool ) * 10.0;
// Because a thermal shape has 4 identical sub-shapes, only one is created in subshape_poly.
// We must draw 4 sub-shapes rotated by 90 deg
for( int ii = 0; ii < 4; ii++ )
{
polybuffer = subshape_poly;
double sub_rotation = rotation + 900 * ii;
for( unsigned jj = 0; jj < polybuffer.size(); jj++ )
RotatePoint( &polybuffer[jj], -sub_rotation );
// Move to current position:
for( unsigned jj = 0; jj < polybuffer.size(); jj++ )
{
polybuffer[jj] += curPos;
polybuffer[jj] = aParent->GetABPosition( polybuffer[jj] );
}
TO_POLY_SHAPE;
}
}
break;
case AMP_MOIRE:
{
/* Moir<69>, Primitive Code 6
* The moir<EFBFBD> primitive is a cross hair centered on concentric rings (annuli).
* Exposure is always on.
*/
curPos += mapPt( params[0].GetValue( tool ), params[1].GetValue( tool ),
m_GerbMetric );
/* Generated by an aperture macro declaration like:
* "6,0,0,0.125,.01,0.01,3,0.003,0.150,0"
* type(6), pos.x, pos.y, diam, penwidth, gap, circlecount, crosshair thickness, crosshaire len, rotation
* type is not stored in parameters list, so the first parameter is pos.x
*/
int outerDiam = scaletoIU( params[2].GetValue( tool ), m_GerbMetric );
int penThickness = scaletoIU( params[3].GetValue( tool ), m_GerbMetric );
int gap = scaletoIU( params[4].GetValue( tool ), m_GerbMetric );
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
int numCircles = KiROUND( params[5].GetValue( tool ) );
// Draw circles:
wxPoint center = aParent->GetABPosition( curPos );
// adjust outerDiam by this on each nested circle
int diamAdjust = (gap + penThickness) * 2;
for( int i = 0; i < numCircles; ++i, outerDiam -= diamAdjust )
{
if( outerDiam <= 0 )
break;
// Note: outerDiam is the outer diameter of the ring.
// the ring graphic diameter is (outerDiam - penThickness)
if( outerDiam <= penThickness )
{ // No room to draw a ring (no room for the hole):
// draw a circle instead (with no hole), with the right diameter
TransformCircleToPolygon( aShapeBuffer, center,
outerDiam / 2, seg_per_circle );
}
else
TransformRingToPolygon( aShapeBuffer, center,
(outerDiam - penThickness) / 2,
seg_per_circle, penThickness );
}
// Draw the cross:
ConvertShapeToPolygon( aParent, polybuffer );
rotation = params[8].GetValue( tool ) * 10.0;
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
// shape rotation:
RotatePoint( &polybuffer[ii], -rotation );
// Move to current position:
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
}
break;
case AMP_OUTLINE:
{
/* Outline, Primitive Code 4
* An outline primitive is an area enclosed by an n-point polygon defined by its start point and n
* subsequent points. The outline must be closed, i.e. the last point must be equal to the start
* point. There must be at least one subsequent point (to close the outline).
* The outline of the primitive is actually the contour (see 2.6) that consists of linear segments
* only, so it must conform to all the requirements described for contours.
* Warning: Make no mistake: n is the number of subsequent points, being the number of
* vertices of the outline or one less than the number of coordinate pairs.
*/
/* Generated by an aperture macro declaration like:
* "4,1,3,0.0,0.0,0.0,0.5,0.5,0.5,0.5,0.0,-25"
* type(4), exposure, corners count, corner1.x, corner.1y, ..., rotation
* type is not stored in parameters list, so the first parameter is exposure
*/
int numPoints = (int) params[1].GetValue( tool );
rotation = params[numPoints * 2 + 4].GetValue( tool ) * 10.0;
wxPoint pos;
// Read points. numPoints does not include the starting point, so add 1.
for( int i = 0; i<numPoints + 1; ++i )
{
int jj = i * 2 + 2;
pos.x = scaletoIU( params[jj].GetValue( tool ), m_GerbMetric );
pos.y = scaletoIU( params[jj + 1].GetValue( tool ), m_GerbMetric );
polybuffer.push_back(pos);
}
// rotate polygon and move it to the actual position
// shape rotation:
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
RotatePoint( &polybuffer[ii], -rotation );
}
// Move to current position:
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
}
break;
case AMP_POLYGON:
/* Polygon, Primitive Code 5
* A polygon primitive is a regular polygon defined by the number of vertices n, the center point
* and the diameter of the circumscribed circle
*/
/* Generated by an aperture macro declaration like:
* "5,1,0.6,0,0,0.5,25"
* type(5), exposure, vertices count, pox.x, pos.y, diameter, rotation
* type is not stored in parameters list, so the first parameter is exposure
*/
curPos += mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric );
// Creates the shape:
ConvertShapeToPolygon( aParent, polybuffer );
// rotate polygon and move it to the actual position
rotation = params[5].GetValue( tool ) * 10.0;
for( unsigned ii = 0; ii < polybuffer.size(); ii++ )
{
RotatePoint( &polybuffer[ii], -rotation );
polybuffer[ii] += curPos;
polybuffer[ii] = aParent->GetABPosition( polybuffer[ii] );
}
TO_POLY_SHAPE;
break;
case AMP_EOF:
// not yet supported, waiting for you.
break;
case AMP_UNKNOWN:
default:
2013-09-10 15:07:46 +00:00
DBG( printf( "AM_PRIMITIVE::DrawBasicShape() err: unknown prim id %d\n",primitive_id) );
break;
}
}
/**
* Function ConvertShapeToPolygon (virtual)
* convert a shape to an equivalent polygon.
* Arcs and circles are approximated by segments
* Useful when a shape is not a graphic primitive (shape with hole,
* rotated shape ... ) and cannot be easily drawn.
* note for some schapes conbining circles and solid lines (rectangles), only rectangles are converted
* because circles are very easy to draw (no rotation problem) so convert them in polygons,
* and draw them as polygons is not a good idea.
*/
void AM_PRIMITIVE::ConvertShapeToPolygon( GERBER_DRAW_ITEM* aParent,
std::vector<wxPoint>& aBuffer )
{
D_CODE* tool = aParent->GetDcodeDescr();
switch( primitive_id )
{
case AMP_CIRCLE:
{
/* Generated by an aperture macro declaration like:
* "1,1,0.3,0.5, 1.0*"
* type (1), exposure, diameter, pos.x, pos.y, <rotation>
* <rotation> is a optional parameter: rotation from origin.
* type is not stored in parameters list, so the first parameter is exposure
*/
wxPoint center = mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric );
int radius = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ) / 2;
wxPoint corner;
const int delta = 3600 / seg_per_circle; // rot angle in 0.1 degree
for( int angle = 0; angle < 3600; angle += delta )
{
corner.x = radius;
corner.y = 0;
RotatePoint( &corner, angle );
corner += center;
aBuffer.push_back( corner );
}
}
break;
case AMP_LINE2:
case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation)
{
int width = scaletoIU( params[1].GetValue( tool ), m_GerbMetric );
wxPoint start = mapPt( params[2].GetValue( tool ),
params[3].GetValue( tool ), m_GerbMetric );
wxPoint end = mapPt( params[4].GetValue( tool ),
params[5].GetValue( tool ), m_GerbMetric );
wxPoint delta = end - start;
int len = KiROUND( EuclideanNorm( delta ) );
// To build the polygon, we must create a horizontal polygon starting to "start"
// and rotate it to have the end point to "end"
wxPoint currpt;
currpt.y += width / 2; // Upper left
aBuffer.push_back( currpt );
currpt.x = len; // Upper right
aBuffer.push_back( currpt );
currpt.y -= width; // lower right
aBuffer.push_back( currpt );
currpt.x = 0; // lower left
aBuffer.push_back( currpt );
// Rotate rectangle and move it to the actual start point
double angle = ArcTangente( delta.y, delta.x );
for( unsigned ii = 0; ii < 4; ii++ )
{
RotatePoint( &aBuffer[ii], -angle );
aBuffer[ii] += start;
}
}
break;
case AMP_LINE_CENTER:
{
wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric );
wxPoint pos = mapPt( params[3].GetValue( tool ), params[4].GetValue( tool ), m_GerbMetric );
// Build poly:
pos.x -= size.x / 2;
pos.y -= size.y / 2; // Lower left
aBuffer.push_back( pos );
pos.y += size.y; // Upper left
aBuffer.push_back( pos );
pos.x += size.x; // Upper right
aBuffer.push_back( pos );
pos.y -= size.y; // lower right
aBuffer.push_back( pos );
}
break;
case AMP_LINE_LOWER_LEFT:
{
wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric );
wxPoint lowerLeft = mapPt( params[3].GetValue( tool ), params[4].GetValue(
tool ), m_GerbMetric );
// Build poly:
aBuffer.push_back( lowerLeft );
lowerLeft.y += size.y; // Upper left
aBuffer.push_back( lowerLeft );
lowerLeft.x += size.x; // Upper right
aBuffer.push_back( lowerLeft );
lowerLeft.y -= size.y; // lower right
aBuffer.push_back( lowerLeft );
}
break;
case AMP_THERMAL:
{
// Only 1/4 of the full shape is built, because the other 3 shapes will be draw from this first
// rotated by 90, 180 and 270 deg.
// params = center.x (unused here), center.y (unused here), outside diam, inside diam, crosshair thickness
int outerRadius = scaletoIU( params[2].GetValue( tool ), m_GerbMetric ) / 2;
int innerRadius = scaletoIU( params[3].GetValue( tool ), m_GerbMetric ) / 2;
int halfthickness = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2;
double angle_start = RAD2DECIDEG( asin( (double) halfthickness / innerRadius ) );
// Draw shape in the first cadrant (X and Y > 0)
wxPoint pos, startpos;
// Inner arc
startpos.x = innerRadius;
double angle_end = 900 - angle_start;
for( double angle = angle_start; angle < angle_end; angle += 100 )
{
pos = startpos;
RotatePoint( &pos, angle );
aBuffer.push_back( pos );
}
// Last point
pos = startpos;
RotatePoint( &pos, angle_end );
aBuffer.push_back( pos );
// outer arc
startpos.x = outerRadius;
startpos.y = 0;
angle_start = RAD2DECIDEG( asin( (double) halfthickness / outerRadius ) );
angle_end = 900 - angle_start;
// First point, near Y axis, outer arc
for( double angle = angle_end; angle > angle_start; angle -= 100 )
{
pos = startpos;
RotatePoint( &pos, angle );
aBuffer.push_back( pos );
}
// last point
pos = startpos;
RotatePoint( &pos, angle_start );
aBuffer.push_back( pos );
aBuffer.push_back( aBuffer[0] ); // Close poly
}
break;
case AMP_MOIRE: // A cross hair with n concentric circles. Only the cros is build as polygon
// because circles can be drawn easily
{
int crossHairThickness = scaletoIU( params[6].GetValue( tool ), m_GerbMetric );
int crossHairLength = scaletoIU( params[7].GetValue( tool ), m_GerbMetric );
// Create cross. First create 1/4 of the shape.
// Others point are the same, totated by 90, 180 and 270 deg
wxPoint pos( crossHairThickness / 2, crossHairLength / 2 );
aBuffer.push_back( pos );
pos.y = crossHairThickness / 2;
aBuffer.push_back( pos );
pos.x = -crossHairLength / 2;
aBuffer.push_back( pos );
pos.y = -crossHairThickness / 2;
aBuffer.push_back( pos );
// Copy the 4 shape, rotated by 90, 180 and 270 deg
for( int jj = 1; jj <= 3; jj ++ )
{
for( int ii = 0; ii < 4; ii++ )
{
pos = aBuffer[ii];
RotatePoint( &pos, jj*900 );
aBuffer.push_back( pos );
}
}
}
break;
case AMP_OUTLINE:
// already is a polygon. Do nothing
break;
case AMP_POLYGON: // Creates a regular polygon
{
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
int vertexcount = KiROUND( params[1].GetValue( tool ) );
int radius = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2;
// rs274x said: vertex count = 3 ... 10, and the first corner is on the X axis
if( vertexcount < 3 )
vertexcount = 3;
if( vertexcount > 10 )
vertexcount = 10;
for( int ii = 0; ii <= vertexcount; ii++ )
{
wxPoint pos( radius, 0);
RotatePoint( &pos, ii * 3600 / vertexcount );
aBuffer.push_back( pos );
}
}
break;
case AMP_COMMENT:
case AMP_UNKNOWN:
case AMP_EOF:
break;
}
}
/** GetShapeDim
* Calculate a value that can be used to evaluate the size of text
* when displaying the D-Code of an item
* due to the complexity of the shape of some primitives
* one cannot calculate the "size" of a shape (only abounding box)
* but here, the "dimension" of the shape is the diameter of the primitive
* or for lines the width of the line
* @param aParent = the parent GERBER_DRAW_ITEM which is actually drawn
* @return a dimension, or -1 if no dim to calculate
*/
int AM_PRIMITIVE::GetShapeDim( GERBER_DRAW_ITEM* aParent )
{
int dim = -1;
D_CODE* tool = aParent->GetDcodeDescr();
switch( primitive_id )
{
case AMP_CIRCLE:
// params = exposure, diameter, pos.x, pos.y
dim = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ); // Diameter
break;
case AMP_LINE2:
case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation)
dim = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ); // linne width
break;
case AMP_LINE_CENTER:
{
wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric );
dim = std::min(size.x, size.y);
}
break;
case AMP_LINE_LOWER_LEFT:
{
wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric );
dim = std::min(size.x, size.y);
}
break;
case AMP_THERMAL:
{
// Only 1/4 of the full shape is built, because the other 3 shapes will be draw from this first
// rotated by 90, 180 and 270 deg.
// params = center.x (unused here), center.y (unused here), outside diam, inside diam, crosshair thickness
dim = scaletoIU( params[2].GetValue( tool ), m_GerbMetric ) / 2; // Outer diam
}
break;
case AMP_MOIRE: // A cross hair with n concentric circles.
dim = scaletoIU( params[7].GetValue( tool ), m_GerbMetric ); // = cross hair len
break;
case AMP_OUTLINE: // a free polygon :
// dim = min side of the bounding box (this is a poor criteria, but what is a good criteria b?)
{
// exposure, corners count, corner1.x, corner.1y, ..., rotation
int numPoints = (int) params[1].GetValue( tool );
// Read points. numPoints does not include the starting point, so add 1.
// and calculate the bounding box;
wxSize pos_min, pos_max, pos;
for( int i = 0; i<numPoints + 1; ++i )
{
int jj = i * 2 + 2;
pos.x = scaletoIU( params[jj].GetValue( tool ), m_GerbMetric );
pos.y = scaletoIU( params[jj + 1].GetValue( tool ), m_GerbMetric );
if( i == 0 )
pos_min = pos_max = pos;
else
{
// upper right corner:
if( pos_min.x > pos.x )
pos_min.x = pos.x;
if( pos_min.y > pos.y )
pos_min.y = pos.y;
// lower left corner:
if( pos_max.x < pos.x )
pos_max.x = pos.x;
if( pos_max.y < pos.y )
pos_max.y = pos.y;
}
}
// calculate dim
wxSize size;
size.x = pos_max.x - pos_min.x;
size.y = pos_max.y - pos_min.y;
dim = std::min( size.x, size.y );
}
break;
case AMP_POLYGON: // Regular polygon
dim = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2; // Radius
break;
case AMP_COMMENT:
case AMP_UNKNOWN:
case AMP_EOF:
break;
}
return dim;
}
SHAPE_POLY_SET* APERTURE_MACRO::GetApertureMacroShape( GERBER_DRAW_ITEM* aParent,
wxPoint aShapePos )
{
SHAPE_POLY_SET holeBuffer;
bool hasHole = false;
m_shape.RemoveAllContours();
for( AM_PRIMITIVES::iterator prim_macro = primitives.begin();
prim_macro != primitives.end(); ++prim_macro )
{
if( prim_macro->primitive_id == AMP_COMMENT )
continue;
if( prim_macro->IsAMPrimitiveExposureOn( aParent ) )
prim_macro->DrawBasicShape( aParent, m_shape, aShapePos );
else
{
prim_macro->DrawBasicShape( aParent, holeBuffer, aShapePos );
if( holeBuffer.OutlineCount() ) // we have a new hole in shape: remove the hole
{
m_shape.BooleanSubtract( holeBuffer, SHAPE_POLY_SET::PM_FAST );
holeBuffer.RemoveAllContours();
hasHole = true;
}
}
}
// If a hole is defined inside a polygon, we must fracture the polygon
// to be able to drawn it (i.e link holes by overlapping edges)
if( hasHole )
m_shape.Fracture( SHAPE_POLY_SET::PM_FAST );
m_boundingBox = EDA_RECT( wxPoint( 0, 0 ), wxSize( 1, 1 ) );
auto bb = m_shape.BBox();
wxPoint center( bb.Centre().x, bb.Centre().y );
m_boundingBox.Move( aParent->GetABPosition( center ) );
m_boundingBox.Inflate( bb.GetWidth() / 2, bb.GetHeight() / 2 );
return &m_shape;
}
/*
* Function DrawApertureMacroShape
* Draw the primitive shape for flashed items.
* When an item is flashed, this is the shape of the item
*/
void APERTURE_MACRO::DrawApertureMacroShape( GERBER_DRAW_ITEM* aParent,
EDA_RECT* aClipBox, wxDC* aDC,
COLOR4D aColor,
wxPoint aShapePos, bool aFilledShape )
{
SHAPE_POLY_SET* shapeBuffer = GetApertureMacroShape( aParent, aShapePos );
if( shapeBuffer->OutlineCount() == 0 )
return;
for( int ii = 0; ii < shapeBuffer->OutlineCount(); ii++ )
{
SHAPE_LINE_CHAIN& poly = shapeBuffer->Outline( ii );
GRClosedPoly( aClipBox, aDC,
poly.PointCount(), (wxPoint*)&poly.Point( 0 ), aFilledShape, aColor, aColor );
}
}
/** GetShapeDim
* Calculate a value that can be used to evaluate the size of text
* when displaying the D-Code of an item
* due to the complexity of a shape using many primitives
* one cannot calculate the "size" of a shape (only abounding box)
* but most of aperture macro are using one or few primitives
* and the "dimension" of the shape is the diameter of the primitive
* (or the max diameter of primitives)
* @return a dimension, or -1 if no dim to calculate
*/
int APERTURE_MACRO::GetShapeDim( GERBER_DRAW_ITEM* aParent )
{
int dim = -1;
for( AM_PRIMITIVES::iterator prim_macro = primitives.begin();
prim_macro != primitives.end(); ++prim_macro )
{
int pdim = prim_macro->GetShapeDim( aParent );
if( dim < pdim )
dim = pdim;
}
return dim;
}
/**
* function GetLocalParam
* Usually, parameters are defined inside the aperture primitive
* using immediate mode or defered mode.
* in defered mode the value is defined in a DCODE that want to use the aperture macro.
* But some parameters are defined outside the aperture primitive
* and are local to the aperture macro
* @return the value of a defered parameter defined inside the aperture macro
* @param aParamId = the param id (defined by $3 or $5 ..) to evaluate
*/
double APERTURE_MACRO::GetLocalParam( const D_CODE* aDcode, unsigned aParamId ) const
{
// find parameter descr.
const AM_PARAM * param = NULL;
for( unsigned ii = 0; ii < m_localparamStack.size(); ii ++ )
{
if( m_localparamStack[ii].GetIndex() == aParamId )
{
param = &m_localparamStack[ii];
break;
}
}
if ( param == NULL ) // not found
return 0.0;
// Evaluate parameter
double value = param->GetValue( aDcode );
return value;
}