kicad/polygon/PolyLine.cpp

1554 lines
46 KiB
C++
Raw Normal View History

2008-01-06 12:43:57 +00:00
// PolyLine.cpp ... implementation of CPolyLine class from FreePCB.
2008-01-06 12:43:57 +00:00
//
// implementation for kicad and kbool polygon clipping library
2007-12-29 19:27:58 +00:00
//
using namespace std;
#include <math.h>
#include <vector>
2008-01-16 20:37:50 +00:00
#include "fctsys.h"
2007-12-29 19:27:58 +00:00
#include "PolyLine.h"
#define pi 3.14159265359
2007-12-29 19:27:58 +00:00
CPolyLine::CPolyLine()
{
m_HatchStyle = 0;
m_Width = 0;
utility = 0;
m_Kbool_Poly_Engine = NULL;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// destructor, removes display elements
//
CPolyLine::~CPolyLine()
{
Undraw();
if( m_Kbool_Poly_Engine )
2008-06-02 10:23:50 +00:00
delete m_Kbool_Poly_Engine;
2007-12-29 19:27:58 +00:00
}
/** Function NormalizeWithKbool
* Use the Kbool Library to clip contours: if outlines are crossing, the self-crossing polygon
* is converted to non self-crossing polygon by adding extra points at the crossing locations
2008-06-02 10:23:50 +00:00
* and reordering corners
* if more than one outside contour are found, extra CPolyLines will be created
* because copper areas have only one outside contour
* Therefore, if this results in new CPolyLines, return them as std::vector pa
2008-06-02 10:23:50 +00:00
* @param aExtraPolys: pointer on a std::vector<CPolyLine*> to store extra CPolyLines
* @param bRetainArcs == TRUE, try to retain arcs in polys
* @return number of external contours, or -1 if error
*/
2008-06-02 10:23:50 +00:00
int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*> * aExtraPolyList, bool bRetainArcs )
2007-12-29 19:27:58 +00:00
{
std::vector<CArc> arc_array;
std::vector <void*> hole_array; // list of holes
std::vector<int> * hole; // used to store corners for a given hole
CPolyLine* polyline;
int n_ext_cont = 0; // CPolyLine count
/* Creates a bool engine from this CPolyLine.
* Normalized outlines and holes will be in m_Kbool_Poly_Engine
* If some polygons are self crossing, after running the Kbool Engine, self crossing polygons
* will be converted in non self crossing polygons by inserting extra points at the crossing locations
* True holes are combined if possible
*/
if( bRetainArcs )
MakeKboolPoly( -1, -1, &arc_array );
else
MakeKboolPoly( -1, -1, NULL );
Undraw();
/* now, recreate polys
* if more than one outside contour are found, extra CPolyLines will be created
* because copper areas have only one outside contour
* the first outside contour found is the new "this" outside contour
* if others outside contours are found we create new CPolyLines
* Note: if there are holes in polygons, we must store them
* and when all outside contours are found, search the corresponding outside contour for each hole
*/
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
// See if the current polygon is flagged as a hole
if( m_Kbool_Poly_Engine->GetPolygonPointEdgeType() == KB_INSIDE_EDGE )
{
hole = new std::vector<int>;
hole_array.push_back( hole );
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // store hole
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
hole->push_back( x );
hole->push_back( y );
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
else if( n_ext_cont == 0 )
{
// first external contour, replace this poly
corner.clear();
side_style.clear();
bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{ // foreach point in the polygon
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first )
{
first = false;
Start( GetLayer(), x, y, GetHatchStyle() );
}
else
AppendCorner( x, y );
}
m_Kbool_Poly_Engine->EndPolygonGet();
Close();
n_ext_cont++;
}
2008-06-02 10:23:50 +00:00
else if( aExtraPolyList ) // a new outside contour is found: create a new CPolyLine
{
polyline = new CPolyLine; // create new poly
2008-06-02 10:23:50 +00:00
aExtraPolyList->push_back( polyline ); // put it in array
bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // read next external contour
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first )
{
first = false;
polyline->Start( GetLayer(), x, y, GetHatchStyle() );
}
else
polyline->AppendCorner( x, y );
}
m_Kbool_Poly_Engine->EndPolygonGet();
polyline->Close( STRAIGHT, FALSE );
n_ext_cont++;
}
}
// now add cutouts to the corresponding CPolyLine(s)
for( unsigned ii = 0; ii < hole_array.size(); ii++ )
{
hole = (std::vector<int> *)hole_array[ii];
polyline = NULL;
if( n_ext_cont == 1 )
{
polyline = this;
}
else
{
// find the polygon that contains this hole
// testing one corner inside is enought because a hole is entirely inside the polygon
// sowe test only the first corner
int x = (*hole)[0];
int y = (*hole)[1];
if( TestPointInside( x, y ) )
polyline = this;
2008-06-02 10:23:50 +00:00
else if( aExtraPolyList )
{
for( int ext_ic = 0; ext_ic<n_ext_cont - 1; ext_ic++ )
{
2008-06-02 10:23:50 +00:00
if( (*aExtraPolyList)[ext_ic]->TestPointInside( x, y ) )
{
2008-06-02 10:23:50 +00:00
polyline = (*aExtraPolyList)[ext_ic];
break;
}
}
}
}
if( !polyline )
wxASSERT( 0 );
else
{
for( unsigned ii = 0; ii< (*hole).size(); ii++ )
{
int x = (*hole)[ii]; ii++;
int y = (*hole)[ii];
polyline->AppendCorner( x, y, STRAIGHT, FALSE );
}
polyline->Close( STRAIGHT, FALSE );
}
}
if( bRetainArcs )
2008-06-02 10:23:50 +00:00
RestoreArcs( &arc_array, aExtraPolyList );
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
// free hole list
for( unsigned ii = 0; ii < hole_array.size(); ii++ )
delete (std::vector<int> *)hole_array[ii];
return n_ext_cont;
2007-12-29 19:27:58 +00:00
}
/** Function AddPolygonsToBoolEng
* Add a CPolyLine to a kbool engine, preparing a boolean op between polygons
* @param aStart_contour: starting contour number (-1 = all, 0 is the outlines of zone, > 1 = holes in zone
* @param aEnd_contour: ending contour number (-1 = all after aStart_contour)
* @param arc_array: arc converted to poly segments (NULL if not exists)
* @param aBooleng : pointer on a bool engine (handle a set of polygons)
* @param aGroup : group to fill (aGroup = GROUP_A or GROUP_B) operations are made between GROUP_A and GROUP_B
*/
int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng,
GroupType aGroup,
int aStart_contour,
int aEnd_contour,
std::vector<CArc> * arc_array )
2007-12-29 19:27:58 +00:00
{
int count = 0;
2007-12-29 19:27:58 +00:00
if( (aGroup != GROUP_A) && (aGroup != GROUP_B ) )
return 0; //Error !
/* Convert the current polyline contour to a kbool polygon: */
MakeKboolPoly( aStart_contour, aEnd_contour, arc_array );
/* add the resulting kbool set of polygons to the current kcool engine */
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
if( aBooleng->StartPolygonAdd( GROUP_A ) )
{
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
aBooleng->AddPoint( x, y );
count++;
}
aBooleng->EndPolygonAdd();
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
return count;
}
/** Function MakeKboolPoly
* fill a kbool engine with a closed polyline contour
* approximates arcs with multiple straight-line segments
* @param aStart_contour: starting contour number (-1 = all, 0 is the outlines of zone, > 1 = holes in zone
* @param aEnd_contour: ending contour number (-1 = all after aStart_contour)
* combining intersecting contours if possible
* @param arc_array : return corners computed from arcs approximations in arc_array
* @param aConvertHoles = mode for holes when a boolean operation is made
* true: holes are linked into outer contours by double overlapping segments
* false: holes are not linked: in this mode contours are added clockwise
* and polygons added counter clockwise are holes (default)
* @return error: 0 if Ok, 1 if error
*/
int CPolyLine::MakeKboolPoly( int aStart_contour, int aEnd_contour, std::vector<CArc> * arc_array,
bool aConvertHoles )
2007-12-29 19:27:58 +00:00
{
if( m_Kbool_Poly_Engine )
{
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
}
if( !GetClosed() && (aStart_contour == (GetNumContours() - 1) || aStart_contour == -1) )
return 1; // error
int n_arcs = 0;
int first_contour = aStart_contour;
int last_contour = aEnd_contour;
if( aStart_contour == -1 )
{
first_contour = 0;
last_contour = GetNumContours() - 1;
}
if( aEnd_contour == -1 )
{
last_contour = GetNumContours() - 1;
}
if( arc_array )
arc_array->clear();
int iarc = 0;
for( int icont = first_contour; icont<=last_contour; icont++ )
{
// Fill a kbool engine for this contour,
// and combine it with previous contours
Bool_Engine* booleng = new Bool_Engine();
ArmBoolEng( booleng, aConvertHoles );
if( m_Kbool_Poly_Engine ) // a previous contour exists. Put it in new engine
{
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
if( booleng->StartPolygonAdd( GROUP_A ) )
{
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
booleng->AddPoint( x, y );
}
booleng->EndPolygonAdd();
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
}
// first, calculate number of vertices in contour
int n_vertices = 0;
int ic_st = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
if( !booleng->StartPolygonAdd( GROUP_B ) )
{
wxASSERT( 0 );
return 1; //error
}
for( int ic = ic_st; ic<=ic_end; ic++ )
{
int style = side_style[ic];
int x1 = corner[ic].x;
int y1 = corner[ic].y;
int x2, y2;
if( ic < ic_end )
{
x2 = corner[ic + 1].x;
y2 = corner[ic + 1].y;
}
else
{
x2 = corner[ic_st].x;
y2 = corner[ic_st].y;
}
if( style == STRAIGHT )
n_vertices++;
else
{
// style is ARC_CW or ARC_CCW
int n; // number of steps for arcs
n = ( abs( x2 - x1 ) + abs( y2 - y1 ) ) / (CArc::MAX_STEP);
n = max( n, CArc::MIN_STEPS ); // or at most 5 degrees of arc
n_vertices += n;
n_arcs++;
}
}
// now enter this contour to booleng
int ivtx = 0;
for( int ic = ic_st; ic<=ic_end; ic++ )
{
int style = side_style[ic];
int x1 = corner[ic].x;
int y1 = corner[ic].y;
int x2, y2;
if( ic < ic_end )
{
x2 = corner[ic + 1].x;
y2 = corner[ic + 1].y;
}
else
{
x2 = corner[ic_st].x;
y2 = corner[ic_st].y;
}
if( style == STRAIGHT )
{
booleng->AddPoint( x1, y1 );
ivtx++;
}
else
{
// style is arc_cw or arc_ccw
int n; // number of steps for arcs
n = ( abs( x2 - x1 ) + abs( y2 - y1 ) ) / (CArc::MAX_STEP);
n = max( n, CArc::MIN_STEPS ); // or at most 5 degrees of arc
double xo, yo, theta1, theta2, a, b;
a = fabs( (double) (x1 - x2) );
b = fabs( (double) (y1 - y2) );
if( style == CPolyLine::ARC_CW )
{
// clockwise arc (ie.quadrant of ellipse)
if( x2 > x1 && y2 > y1 )
{
// first quadrant, draw second quadrant of ellipse
xo = x2;
yo = y1;
theta1 = pi;
theta2 = pi / 2.0;
}
else if( x2 < x1 && y2 > y1 )
{
// second quadrant, draw third quadrant of ellipse
xo = x1;
yo = y2;
theta1 = 3.0 * pi / 2.0;
theta2 = pi;
}
else if( x2 < x1 && y2 < y1 )
{
// third quadrant, draw fourth quadrant of ellipse
xo = x2;
yo = y1;
theta1 = 2.0 * pi;
theta2 = 3.0 * pi / 2.0;
}
else
{
xo = x1; // fourth quadrant, draw first quadrant of ellipse
yo = y2;
theta1 = pi / 2.0;
theta2 = 0.0;
}
}
else
{
// counter-clockwise arc
if( x2 > x1 && y2 > y1 )
{
xo = x1; // first quadrant, draw fourth quadrant of ellipse
yo = y2;
theta1 = 3.0 * pi / 2.0;
theta2 = 2.0 * pi;
}
else if( x2 < x1 && y2 > y1 )
{
xo = x2; // second quadrant
yo = y1;
theta1 = 0.0;
theta2 = pi / 2.0;
}
else if( x2 < x1 && y2 < y1 )
{
xo = x1; // third quadrant
yo = y2;
theta1 = pi / 2.0;
theta2 = pi;
}
else
{
xo = x2; // fourth quadrant
yo = y1;
theta1 = pi;
theta2 = 3.0 * pi / 2.0;
}
}
// now write steps for arc
if( arc_array )
{
CArc new_arc;
new_arc.style = style;
new_arc.n_steps = n;
new_arc.xi = x1;
new_arc.yi = y1;
new_arc.xf = x2;
new_arc.yf = y2;
arc_array->push_back( new_arc );
iarc++;
}
for( int is = 0; is<n; is++ )
{
double theta = theta1 + ( (theta2 - theta1) * (double) is ) / n;
double x = xo + a* cos( theta );
double y = yo + b* sin( theta );
if( is == 0 )
{
x = x1;
y = y1;
}
booleng->AddPoint( x1, y1 );
ivtx++;
}
}
}
if( n_vertices != ivtx )
wxASSERT( 0 );
// close list added to the bool engine
booleng->EndPolygonAdd();
/* now combine polygon to the previous polygons.
* note: the first polygon is the outline contour, and others are holes inside the first polygon
* The first polygon is ORed with nothing, but is is a trick to sort corners (vertex)
* clockwise with the kbool engine.
* Others polygons are substract to the outline and corners will be ordered counter clockwise
* by the kbool engine
*/
if( aStart_contour <= 0 && icont != 0 ) // substract hole to outside ( if the outline contour is take in account)
{
booleng->Do_Operation( BOOL_A_SUB_B );
}
else // add outside or add holes if we do not use the outline contour
{
booleng->Do_Operation( BOOL_OR );
}
// now use result as new polygon (delete the old one if exists)
if( m_Kbool_Poly_Engine )
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = booleng;
}
return 0;
2007-12-29 19:27:58 +00:00
}
/** Function ArmBoolEng
* Initialise parameters used in kbool
* @param aBooleng = pointer to the Bool_Engine to initialise
* @param aConvertHoles = mode for holes when a boolean operation is made
* true: holes are linked into outer contours by double overlapping segments
* false: holes are not linked: in this mode contours are added clockwise
* and polygons added counter clockwise are holes
*/
void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
2007-12-29 19:27:58 +00:00
{
// set some global vals to arm the boolean engine
double DGRID = 1000; // round coordinate X or Y value in calculations to this
double MARGE = 0.001; // snap with in this range points to lines in the intersection routines
// should always be > DGRID a MARGE >= 10*DGRID is oke
// this is also used to remove small segments and to decide when
// two segments are in line.
double CORRECTIONFACTOR = 500.0; // correct the polygons by this number
double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction
double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle
double SMOOTHABER = 10.0; // accuracy when smoothing a polygon
double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen
// DGRID is only meant to make fractional parts of input data which
// are doubles, part of the integers used in vertexes within the boolean algorithm.
// Within the algorithm all input data is multiplied with DGRID
// space for extra intersection inside the boolean algorithms
// only change this if there are problems
int GRID = 10000;
aBooleng->SetMarge( MARGE );
aBooleng->SetGrid( GRID );
aBooleng->SetDGrid( DGRID );
aBooleng->SetCorrectionFactor( CORRECTIONFACTOR );
aBooleng->SetCorrectionAber( CORRECTIONABER );
aBooleng->SetSmoothAber( SMOOTHABER );
aBooleng->SetMaxlinemerge( MAXLINEMERGE );
aBooleng->SetRoundfactor( ROUNDFACTOR );
if( aConvertHoles )
{
aBooleng->SetLinkHoles( true ); // holes will be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( false ); // all polygons are contours, not holes
}
else
{
aBooleng->SetLinkHoles( false ); // holes will not ce connected by double overlapping segments
aBooleng->SetOrientationEntryMode( true ); // holes are entered counter clockwise
}
2007-12-29 19:27:58 +00:00
}
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*> * pa, bool bRetainArcs )
{
return NormalizeWithKbool( pa, bRetainArcs );
}
2007-12-29 19:27:58 +00:00
// Restore arcs to a polygon where they were replaced with steps
// If pa != NULL, also use polygons in pa array
//
int CPolyLine::RestoreArcs( std::vector<CArc> * arc_array, std::vector<CPolyLine*> * pa )
{
// get poly info
int n_polys = 1;
if( pa )
n_polys += pa->size();
CPolyLine* poly;
// undraw polys and clear utility flag for all corners
for( int ip = 0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip - 1];
poly->Undraw();
for( int ic = 0; ic<poly->GetNumCorners(); ic++ )
poly->SetUtility( ic, 0 );
// clear utility flag
}
// find arcs and replace them
bool bFound;
int arc_start = 0;
int arc_end = 0;
for( unsigned iarc = 0; iarc<arc_array->size(); iarc++ )
{
int arc_xi = (*arc_array)[iarc].xi;
int arc_yi = (*arc_array)[iarc].yi;
int arc_xf = (*arc_array)[iarc].xf;
int arc_yf = (*arc_array)[iarc].yf;
int n_steps = (*arc_array)[iarc].n_steps;
int style = (*arc_array)[iarc].style;
bFound = FALSE;
// loop through polys
for( int ip = 0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip - 1];
for( int icont = 0; icont<poly->GetNumContours(); icont++ )
{
int ic_start = poly->GetContourStart( icont );
int ic_end = poly->GetContourEnd( icont );
if( (ic_end - ic_start) > n_steps )
{
for( int ic = ic_start; ic<=ic_end; ic++ )
{
int ic_next = ic + 1;
if( ic_next > ic_end )
ic_next = ic_start;
int xi = poly->GetX( ic );
int yi = poly->GetY( ic );
if( xi == arc_xi && yi == arc_yi )
{
// test for forward arc
int ic2 = ic + n_steps;
if( ic2 > ic_end )
ic2 = ic2 - ic_end + ic_start - 1;
int xf = poly->GetX( ic2 );
int yf = poly->GetY( ic2 );
if( xf == arc_xf && yf == arc_yf )
{
// arc from ic to ic2
bFound = TRUE;
arc_start = ic;
arc_end = ic2;
}
else
{
// try reverse arc
ic2 = ic - n_steps;
if( ic2 < ic_start )
ic2 = ic2 - ic_start + ic_end + 1;
xf = poly->GetX( ic2 );
yf = poly->GetY( ic2 );
if( xf == arc_xf && yf == arc_yf )
{
// arc from ic2 to ic
bFound = TRUE;
arc_start = ic2;
arc_end = ic;
style = 3 - style;
}
}
if( bFound )
{
poly->side_style[arc_start] = style;
// mark corners for deletion from arc_start+1 to arc_end-1
for( int i = arc_start + 1; i!=arc_end; )
{
if( i > ic_end )
i = ic_start;
poly->SetUtility( i, 1 );
if( i == ic_end )
i = ic_start;
else
i++;
}
break;
}
}
if( bFound )
break;
}
}
if( bFound )
break;
}
}
if( bFound )
(*arc_array)[iarc].bFound = TRUE;
}
// now delete all marked corners
for( int ip = 0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip - 1];
for( int ic = poly->GetNumCorners() - 1; ic>=0; ic-- )
{
if( poly->GetUtility( ic ) )
poly->DeleteCorner( ic, FALSE );
}
}
return 0;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// initialize new polyline
// set layer, width, selection box size, starting point, id and pointer
//
// if sel_box = 0, don't create selection elements at all
//
// if polyline is board outline, enter with:
// id.type = ID_BOARD
// id.st = ID_BOARD_OUTLINE
// id.i = 0
// ptr = NULL
//
// if polyline is copper area, enter with:
// id.type = ID_NET;
// id.st = ID_AREA
// id.i = index to area
// ptr = pointer to net
//
void CPolyLine::Start( int layer, int x, int y, int hatch )
2007-12-29 19:27:58 +00:00
{
m_layer = layer;
m_HatchStyle = hatch;
CPolyPt poly_pt( x, y );
poly_pt.end_contour = FALSE;
2007-12-29 19:27:58 +00:00
corner.push_back( poly_pt );
side_style.push_back( 0 );
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// add a corner to unclosed polyline
//
void CPolyLine::AppendCorner( int x, int y, int style, bool bDraw )
2007-12-29 19:27:58 +00:00
{
Undraw();
CPolyPt poly_pt( x, y );
poly_pt.end_contour = FALSE;
// add entries for new corner and side
corner.push_back( poly_pt );
side_style.push_back( style );
if( corner.size() > 0 && !corner[corner.size() - 1].end_contour )
side_style[corner.size() - 1] = style;
if( bDraw )
Draw();
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// close last polyline contour
//
void CPolyLine::Close( int style, bool bDraw )
2007-12-29 19:27:58 +00:00
{
if( GetClosed() )
wxASSERT( 0 );
Undraw();
side_style[corner.size() - 1] = style;
corner[corner.size() - 1].end_contour = TRUE;
if( bDraw )
Draw();
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// move corner of polyline
//
void CPolyLine::MoveCorner( int ic, int x, int y )
{
Undraw();
corner[ic].x = x;
corner[ic].y = y;
Draw();
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// delete corner and adjust arrays
//
void CPolyLine::DeleteCorner( int ic, bool bDraw )
2007-12-29 19:27:58 +00:00
{
Undraw();
int icont = GetContour( ic );
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
bool bClosed = icont < GetNumContours() - 1 || GetClosed();
if( !bClosed )
{
// open contour, must be last contour
corner.erase( corner.begin() + ic );
if( ic != istart )
side_style.erase( side_style.begin() + ic - 1 );
}
else
{
// closed contour
corner.erase( corner.begin() + ic );
side_style.erase( side_style.begin() + ic );
if( ic == iend )
corner[ic - 1].end_contour = TRUE;
}
if( bClosed && GetContourSize( icont ) < 3 )
{
// delete the entire contour
RemoveContour( icont );
}
if( bDraw )
Draw();
2007-12-29 19:27:58 +00:00
}
/******************************************/
2007-12-29 19:27:58 +00:00
void CPolyLine::RemoveContour( int icont )
/******************************************/
/**
* Function RemoveContour
* @param icont = contour number to remove
* remove a contour only if there is more than 1 contour
*/
2007-12-29 19:27:58 +00:00
{
Undraw();
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
if( icont == 0 && GetNumContours() == 1 )
{
// remove the only contour
wxASSERT( 0 );
}
else if( icont == GetNumContours() - 1 )
{
// remove last contour
corner.erase( corner.begin() + istart, corner.end() );
side_style.erase( side_style.begin() + istart, side_style.end() );
}
else
{
// remove closed contour
for( int ic = iend; ic>=istart; ic-- )
{
corner.erase( corner.begin() + ic );
side_style.erase( side_style.begin() + ic );
}
}
Draw();
2007-12-29 19:27:58 +00:00
}
/******************************************/
void CPolyLine::RemoveAllContours( void )
/******************************************/
/**
* function RemoveAllContours
* removes all corners from the lists.
* Others params are not chnaged
*/
{
corner.clear();
side_style.clear();
}
2007-12-29 19:27:58 +00:00
/** Function InsertCorner
* insert a new corner between two existing corners
* @param ic = index for the insertion point: the corner is inserted AFTER ic
* @param x, y = coordinates corner to insert
*/
void CPolyLine::InsertCorner( int ic, int x, int y )
{
Undraw();
if( (unsigned) (ic) >= corner.size() )
{
corner.push_back( CPolyPt( x, y ) );
side_style.push_back( STRAIGHT );
}
else
{
corner.insert( corner.begin() + ic + 1, CPolyPt( x, y ) );
side_style.insert( side_style.begin() + ic + 1, STRAIGHT );
}
if( (unsigned) (ic + 1) < corner.size() )
{
if( corner[ic].end_contour )
{
corner[ic + 1].end_contour = TRUE;
corner[ic].end_contour = FALSE;
}
}
Draw();
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// undraw polyline by removing all graphic elements from display list
//
void CPolyLine::Undraw()
{
m_HatchLines.clear();
bDrawn = FALSE;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// draw polyline by adding all graphics to display list
// if side style is ARC_CW or ARC_CCW but endpoints are not angled,
// convert to STRAIGHT
//
void CPolyLine::Draw()
2007-12-29 19:27:58 +00:00
{
// first, undraw if necessary
if( bDrawn )
Undraw();
2007-12-29 19:27:58 +00:00
Hatch();
bDrawn = TRUE;
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetX( int ic )
{
return corner[ic].x;
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetY( int ic )
{
return corner[ic].y;
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetEndContour( int ic )
{
return corner[ic].end_contour;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
CRect CPolyLine::GetBounds()
{
CRect r = GetCornerBounds();
r.left -= m_Width / 2;
r.right += m_Width / 2;
r.bottom -= m_Width / 2;
r.top += m_Width / 2;
return r;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
CRect CPolyLine::GetCornerBounds()
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
for( unsigned i = 0; i<corner.size(); i++ )
{
r.left = min( r.left, corner[i].x );
r.right = max( r.right, corner[i].x );
r.bottom = min( r.bottom, corner[i].y );
r.top = max( r.top, corner[i].y );
}
return r;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
CRect CPolyLine::GetCornerBounds( int icont )
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int i = istart; i<=iend; i++ )
{
r.left = min( r.left, corner[i].x );
r.right = max( r.right, corner[i].x );
r.bottom = min( r.bottom, corner[i].y );
r.top = max( r.top, corner[i].y );
}
return r;
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetNumCorners()
{
return corner.size();
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetNumSides()
{
if( GetClosed() )
return corner.size();
else
return corner.size() - 1;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
int CPolyLine::GetNumContours()
{
int ncont = 0;
if( !corner.size() )
return 0;
for( unsigned ic = 0; ic<corner.size(); ic++ )
if( corner[ic].end_contour )
ncont++;
if( !corner[corner.size() - 1].end_contour )
ncont++;
return ncont;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
int CPolyLine::GetContour( int ic )
{
int ncont = 0;
for( int i = 0; i<ic; i++ )
{
if( corner[i].end_contour )
ncont++;
}
return ncont;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
int CPolyLine::GetContourStart( int icont )
{
if( icont == 0 )
return 0;
int ncont = 0;
for( unsigned i = 0; i<corner.size(); i++ )
{
if( corner[i].end_contour )
{
ncont++;
if( ncont == icont )
return i + 1;
}
}
wxASSERT( 0 );
return 0;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
int CPolyLine::GetContourEnd( int icont )
{
if( icont < 0 )
return 0;
if( icont == GetNumContours() - 1 )
return corner.size() - 1;
int ncont = 0;
for( unsigned i = 0; i<corner.size(); i++ )
{
if( corner[i].end_contour )
{
if( ncont == icont )
return i;
ncont++;
}
}
wxASSERT( 0 );
return 0;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
int CPolyLine::GetContourSize( int icont )
{
return GetContourEnd( icont ) - GetContourStart( icont ) + 1;
2007-12-29 19:27:58 +00:00
}
void CPolyLine::SetSideStyle( int is, int style )
{
Undraw();
CPoint p1, p2;
if( is == (int) (corner.size() - 1) )
{
p1.x = corner[corner.size() - 1].x;
p1.y = corner[corner.size() - 1].y;
p2.x = corner[0].x;
p2.y = corner[0].y;
}
else
{
p1.x = corner[is].x;
p1.y = corner[is].y;
p2.x = corner[is + 1].x;
p2.y = corner[is + 1].y;
}
if( p1.x == p2.x || p1.y == p2.y )
side_style[is] = STRAIGHT;
else
side_style[is] = style;
Draw();
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetSideStyle( int is )
{
return side_style[is];
2007-12-29 19:27:58 +00:00
}
int CPolyLine::GetClosed()
{
if( corner.size() == 0 )
return 0;
else
return corner[corner.size() - 1].end_contour;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// draw hatch lines
//
void CPolyLine::Hatch()
{
m_HatchLines.clear();
if( m_HatchStyle == NO_HATCH )
{
return;
}
2008-06-02 10:23:50 +00:00
int layer = GetLayer();
if( GetClosed() ) // If not closed, the poly is beeing created and not finalised. Not not hatch
{
enum {
MAXPTS = 100,
};
int xx[MAXPTS], yy[MAXPTS];
// define range for hatch lines
int min_x = corner[0].x;
int max_x = corner[0].x;
int min_y = corner[0].y;
int max_y = corner[0].y;
for( unsigned ic = 1; ic < corner.size(); ic++ )
{
if( corner[ic].x < min_x )
min_x = corner[ic].x;
if( corner[ic].x > max_x )
max_x = corner[ic].x;
if( corner[ic].y < min_y )
min_y = corner[ic].y;
if( corner[ic].y > max_y )
max_y = corner[ic].y;
}
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag;
int spacing;
if( m_HatchStyle == DIAGONAL_EDGE )
spacing = 10 * PCBU_PER_MIL;
else
spacing = 50 * PCBU_PER_MIL;
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = (int) (max_y - slope * min_x);
min_a = (int) (min_y - slope * max_x);
}
else
{
max_a = (int) (max_y - slope * max_x);
min_a = (int) (min_y - slope * min_x);
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number, for a better display of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// now calculate and draw hatch lines
int nc = corner.size();
// loop through hatch lines
for( int a = min_a; a<max_a; a += spacing )
{
// get intersection points for this hatch line
int nloops = 0;
int npts;
// make this a loop in case my homebrew hatching algorithm screws up
do
{
npts = 0;
int i_start_contour = 0;
for( int ic = 0; ic<nc; ic++ )
{
double x, y, x2, y2;
int ok;
if( corner[ic].end_contour || ( ic == (int) (corner.size() - 1) ) )
{
ok = FindLineSegmentIntersection( a, slope,
corner[ic].x, corner[ic].y,
corner[i_start_contour].x,
corner[i_start_contour].y,
side_style[ic],
&x, &y, &x2, &y2 );
i_start_contour = ic + 1;
}
else
{
ok = FindLineSegmentIntersection( a, slope,
corner[ic].x, corner[ic].y,
corner[ic + 1].x, corner[ic + 1].y,
side_style[ic],
&x, &y, &x2, &y2 );
}
if( ok )
{
xx[npts] = (int) x;
yy[npts] = (int) y;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
if( ok == 2 )
{
xx[npts] = (int) x2;
yy[npts] = (int) y2;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
}
nloops++;
a += PCBU_PER_MIL / 100;
} while( npts % 2 != 0 && nloops < 3 );
2008-01-22 20:38:43 +00:00
/* DICK 1/22/08: this was firing repeatedly on me, needed to comment out to get
* my work done:
* wxASSERT( npts%2==0 ); // odd number of intersection points, error
*/
// sort points in order of descending x (if more than 2)
if( npts>2 )
{
for( int istart = 0; istart<(npts - 1); istart++ )
{
int max_x = INT_MIN;
int imax = INT_MIN;
for( int i = istart; i<npts; i++ )
{
if( xx[i] > max_x )
{
max_x = xx[i];
imax = i;
}
}
int temp = xx[istart];
xx[istart] = xx[imax];
xx[imax] = temp;
temp = yy[istart];
yy[istart] = yy[imax];
yy[imax] = temp;
}
}
// draw lines
for( int ip = 0; ip<npts; ip += 2 )
{
double dx = xx[ip + 1] - xx[ip];
if( m_HatchStyle == DIAGONAL_FULL || fabs( dx ) < 40 * NM_PER_MIL )
{
m_HatchLines.push_back( CSegment( xx[ip], yy[ip], xx[ip + 1], yy[ip + 1] ) );
}
else
{
double dy = yy[ip + 1] - yy[ip];
double slope = dy / dx;
if( dx > 0 )
dx = 20 * NM_PER_MIL;
else
dx = -20 * NM_PER_MIL;
double x1 = xx[ip] + dx;
double x2 = xx[ip + 1] - dx;
double y1 = yy[ip] + dx * slope;
double y2 = yy[ip + 1] - dx * slope;
m_HatchLines.push_back( CSegment( xx[ip], yy[ip], to_int( x1 ), to_int( y1 ) ) );
m_HatchLines.push_back( CSegment( xx[ip + 1], yy[ip + 1], to_int( x2 ),
to_int( y2 ) ) );
}
}
}
// end for
}
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// test to see if a point is inside polyline
//
bool CPolyLine::TestPointInside( int px, int py )
2007-12-29 19:27:58 +00:00
{
if( !GetClosed() )
wxASSERT( 0 );
// define line passing through (x,y), with slope = 2/3;
// get intersection points
int xx, yy;
double slope = (double) 2.0 / 3.0;
double a = py - slope * px;
int nloops = 0;
int npts;
bool inside = false;
// make this a loop so if my homebrew algorithm screws up, we try it again
do
{
// now find all intersection points of line with polyline sides
npts = 0;
inside = false;
for( int icont = 0; icont<GetNumContours(); icont++ )
{
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int ic = istart; ic<=iend; ic++ )
{
double x, y, x2, y2;
int ok;
if( ic == istart )
ok = FindLineSegmentIntersection( a, slope,
corner[iend].x, corner[iend].y,
corner[istart].x, corner[istart].y,
side_style[iend],
&x, &y, &x2, &y2 );
else
ok = FindLineSegmentIntersection( a, slope,
corner[ic - 1].x, corner[ic - 1].y,
corner[ic].x, corner[ic].y,
side_style[ic - 1],
&x, &y, &x2, &y2 );
if( ok )
{
xx = (int) x;
yy = (int) y;
if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
npts++;
}
if( ok == 2 )
{
xx = (int) x2;
yy = (int) y2;
if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
npts++;
}
}
}
nloops++;
a += PCBU_PER_MIL / 100;
} while( npts % 2 != 0 && nloops < 3 );
wxASSERT( npts % 2==0 ); // odd number of intersection points, error
return inside;
2007-12-29 19:27:58 +00:00
}
2007-12-29 19:27:58 +00:00
// test to see if a point is inside polyline contour
//
bool CPolyLine::TestPointInsideContour( int icont, int px, int py )
2007-12-29 19:27:58 +00:00
{
if( icont >= GetNumContours() )
return FALSE;
if( !GetClosed() )
wxASSERT( 0 );
// define line passing through (x,y), with slope = 2/3;
// get intersection points
int xx, yy;
double slope = (double) 2.0 / 3.0;
double a = py - slope * px;
int nloops = 0;
int npts;
bool inside = false;
// make this a loop so if my homebrew algorithm screws up, we try it again
do
{
// now find all intersection points of line with polyline sides
npts = 0;
inside = false;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int ic = istart; ic<=iend; ic++ )
{
double x, y, x2, y2;
int ok;
if( ic == istart )
ok = FindLineSegmentIntersection( a, slope,
corner[iend].x, corner[iend].y,
corner[istart].x, corner[istart].y,
side_style[iend],
&x, &y, &x2, &y2 );
else
ok = FindLineSegmentIntersection( a, slope,
corner[ic - 1].x, corner[ic - 1].y,
corner[ic].x, corner[ic].y,
side_style[ic - 1],
&x, &y, &x2, &y2 );
if( ok )
{
xx = (int) x;
yy = (int) y;
npts++;
if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
}
if( ok == 2 )
{
xx = (int) x2;
yy = (int) y2;
npts++;
if( xx == px && yy == py )
return FALSE; // (x,y) is on a side, call it outside
else if( xx > px )
inside = not inside;
}
}
nloops++;
a += PCBU_PER_MIL / 100;
} while( npts % 2 != 0 && nloops < 3 );
wxASSERT( npts % 2==0 ); // odd number of intersection points, error
return inside;
2007-12-29 19:27:58 +00:00
}
// copy data from another poly, but don't draw it
//
void CPolyLine::Copy( CPolyLine* src )
2007-12-29 19:27:58 +00:00
{
Undraw();
// copy corners
for( unsigned ii = 0; ii < src->corner.size(); ii++ )
corner.push_back( src->corner[ii] );
// copy side styles
for( unsigned ii = 0; ii < src->side_style.size(); ii++ )
side_style.push_back( src->side_style[ii] );
2007-12-29 19:27:58 +00:00
}
/*******************************************/
bool CPolyLine::IsCutoutContour( int icont )
/*******************************************/
/*
* return true if the corner icont is inside the outline (i.e it is a hole)
*/
{
int ncont = GetContour( icont );
if( ncont == 0 ) // the first contour is the main outline, not an hole
return false;
return true;
}
2007-12-29 19:27:58 +00:00
void CPolyLine::MoveOrigin( int x_off, int y_off )
{
Undraw();
for( int ic = 0; ic < GetNumCorners(); ic++ )
{
SetX( ic, GetX( ic ) + x_off );
SetY( ic, GetY( ic ) + y_off );
}
Draw();
2007-12-29 19:27:58 +00:00
}
// Set various parameters:
// the calling function should Undraw() before calling them,
// and Draw() after
//
void CPolyLine::SetX( int ic, int x )
{
corner[ic].x = x;
}
void CPolyLine::SetY( int ic, int y )
{
corner[ic].y = y;
}
void CPolyLine::SetEndContour( int ic, bool end_contour )
{
corner[ic].end_contour = end_contour;
}
2007-12-29 19:27:58 +00:00
void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num )
2007-12-29 19:27:58 +00:00
{
// get radius
double r = sqrt( (double) (xi - xc) * (xi - xc) + (double) (yi - yc) * (yi - yc) );
// get angles of start and finish
double th_i = atan2( (double) yi - yc, (double) xi - xc );
double th_f = atan2( (double) yf - yc, (double) xf - xc );
double th_d = (th_f - th_i) / (num - 1);
double theta = th_i;
// generate arc
for( int ic = 0; ic<num; ic++ )
{
int x = to_int( xc + r * cos( theta ) );
int y = to_int( yc + r * sin( theta ) );
AppendCorner( x, y, STRAIGHT, 0 );
theta += th_d;
}
Close( STRAIGHT );
2007-12-29 19:27:58 +00:00
}