kicad/include/boost/heap/detail/mutable_heap.hpp

512 lines
14 KiB
C++
Raw Normal View History

2012-05-16 01:42:04 +00:00
// boost heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_DETAIL_MUTABLE_HEAP_HPP
#define BOOST_HEAP_DETAIL_MUTABLE_HEAP_HPP
/*! \file
* INTERNAL ONLY
*/
#include <list>
#include <utility>
#include <boost/noncopyable.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/heap/detail/ordered_adaptor_iterator.hpp>
namespace boost {
namespace heap {
namespace detail {
/* wrapper for a mutable heap container adaptors
*
* this wrapper introduces an additional indirection. the heap is not constructed from objects,
* but instead from std::list iterators. this way, the mutability is achieved
*
*/
template <typename PriorityQueueType>
class priority_queue_mutable_wrapper
{
public:
typedef typename PriorityQueueType::value_type value_type;
typedef typename PriorityQueueType::size_type size_type;
typedef typename PriorityQueueType::value_compare value_compare;
typedef typename PriorityQueueType::allocator_type allocator_type;
typedef typename PriorityQueueType::reference reference;
typedef typename PriorityQueueType::const_reference const_reference;
typedef typename PriorityQueueType::pointer pointer;
typedef typename PriorityQueueType::const_pointer const_pointer;
static const bool is_stable = PriorityQueueType::is_stable;
private:
typedef std::pair<value_type, size_type> node_type;
typedef std::list<node_type, typename allocator_type::template rebind<node_type>::other> object_list;
typedef typename object_list::iterator list_iterator;
typedef typename object_list::const_iterator const_list_iterator;
template <typename Heap1, typename Heap2>
friend struct heap_merge_emulate;
typedef typename PriorityQueueType::super_t::stability_counter_type stability_counter_type;
stability_counter_type get_stability_count(void) const
{
return q_.get_stability_count();
}
void set_stability_count(stability_counter_type new_count)
{
q_.set_stability_count(new_count);
}
template <typename value_type>
struct index_updater
{
template <typename It>
void operator()(It & it, size_type new_index)
{
q_type::get_value(it)->second = new_index;
}
template <typename U>
struct rebind {
typedef index_updater<U> other;
};
};
public:
struct handle_type
{
value_type & operator*() const
{
return iterator->first;
}
handle_type (void)
{}
private:
explicit handle_type(list_iterator const & it):
iterator(it)
{}
list_iterator iterator;
friend class priority_queue_mutable_wrapper;
};
private:
struct indirect_cmp:
public value_compare
{
indirect_cmp(value_compare const & cmp = value_compare()):
value_compare(cmp)
{}
bool operator()(const_list_iterator const & lhs, const_list_iterator const & rhs) const
{
return value_compare::operator()(lhs->first, rhs->first);
}
};
typedef typename PriorityQueueType::template rebind<list_iterator,
indirect_cmp,
allocator_type, index_updater<list_iterator> >::other q_type;
protected:
q_type q_;
object_list objects;
protected:
priority_queue_mutable_wrapper(value_compare const & cmp = value_compare()):
q_(cmp)
{}
priority_queue_mutable_wrapper(priority_queue_mutable_wrapper const & rhs):
objects(rhs.objects)
{
for (typename object_list::iterator it = objects.begin(); it != objects.end(); ++it)
q_.push(it);
}
priority_queue_mutable_wrapper & operator=(priority_queue_mutable_wrapper const & rhs)
{
objects = rhs.objects;
q_.clear();
for (typename object_list::iterator it = objects.begin(); it != objects.end(); ++it)
q_.push(it);
return *this;
}
#ifdef BOOST_HAS_RVALUE_REFS
priority_queue_mutable_wrapper (priority_queue_mutable_wrapper && rhs):
q_(std::move(rhs.q_))
{
/// FIXME: msvc seems to invalidate iterators when moving std::list
std::swap(objects, rhs.objects);
}
priority_queue_mutable_wrapper & operator=(priority_queue_mutable_wrapper && rhs)
{
q_ = std::move(rhs.q_);
objects.clear();
std::swap(objects, rhs.objects);
return *this;
}
#endif
public:
class iterator:
public boost::iterator_adaptor<iterator,
const_list_iterator,
value_type const,
boost::bidirectional_traversal_tag>
{
typedef boost::iterator_adaptor<iterator,
const_list_iterator,
value_type const,
boost::bidirectional_traversal_tag> super_t;
friend class boost::iterator_core_access;
friend class priority_queue_mutable_wrapper;
iterator(void):
super_t(0)
{}
explicit iterator(const_list_iterator const & it):
super_t(it)
{}
value_type const & dereference() const
{
return super_t::base()->first;
}
};
typedef iterator const_iterator;
typedef typename object_list::difference_type difference_type;
class ordered_iterator:
public boost::iterator_adaptor<ordered_iterator,
const_list_iterator,
value_type const,
boost::forward_traversal_tag
>,
q_type::ordered_iterator_dispatcher
{
typedef boost::iterator_adaptor<ordered_iterator,
const_list_iterator,
value_type const,
boost::forward_traversal_tag
> adaptor_type;
typedef const_list_iterator iterator;
typedef typename q_type::ordered_iterator_dispatcher ordered_iterator_dispatcher;
friend class boost::iterator_core_access;
public:
ordered_iterator(void):
adaptor_type(0), unvisited_nodes(indirect_cmp()), q_(NULL)
{}
ordered_iterator(const priority_queue_mutable_wrapper * q, indirect_cmp const & cmp):
adaptor_type(0), unvisited_nodes(cmp), q_(q)
{}
ordered_iterator(const_list_iterator it, const priority_queue_mutable_wrapper * q, indirect_cmp const & cmp):
adaptor_type(it), unvisited_nodes(cmp), q_(q)
{
if (it != q->objects.end())
discover_nodes(it);
}
bool operator!=(ordered_iterator const & rhs) const
{
return adaptor_type::base() != rhs.base();
}
bool operator==(ordered_iterator const & rhs) const
{
return !operator!=(rhs);
}
private:
void increment(void)
{
if (unvisited_nodes.empty())
adaptor_type::base_reference() = q_->objects.end();
else {
iterator next = unvisited_nodes.top();
unvisited_nodes.pop();
discover_nodes(next);
adaptor_type::base_reference() = next;
}
}
value_type const & dereference() const
{
return adaptor_type::base()->first;
}
void discover_nodes(iterator current)
{
size_type current_index = current->second;
const q_type * q = &(q_->q_);
if (ordered_iterator_dispatcher::is_leaf(q, current_index))
return;
std::pair<size_type, size_type> child_range = ordered_iterator_dispatcher::get_child_nodes(q, current_index);
for (size_type i = child_range.first; i <= child_range.second; ++i) {
typename q_type::internal_type const & internal_value_at_index = ordered_iterator_dispatcher::get_internal_value(q, i);
typename q_type::value_type const & value_at_index = q_->q_.get_value(internal_value_at_index);
unvisited_nodes.push(value_at_index);
}
}
std::priority_queue<iterator,
std::vector<iterator, typename allocator_type::template rebind<iterator>::other >,
indirect_cmp
> unvisited_nodes;
const priority_queue_mutable_wrapper * q_;
};
bool empty(void) const
{
return q_.empty();
}
size_type size(void) const
{
return q_.size();
}
size_type max_size(void) const
{
return objects.max_size();
}
void clear(void)
{
q_.clear();
objects.clear();
}
allocator_type get_allocator(void) const
{
return q_.get_allocator();
}
void swap(priority_queue_mutable_wrapper & rhs)
{
objects.swap(rhs.objects);
q_.swap(rhs.q_);
}
const_reference top(void) const
{
BOOST_ASSERT(!empty());
return q_.top()->first;
}
handle_type push(value_type const & v)
{
objects.push_front(std::make_pair(v, 0));
list_iterator ret = objects.begin();
q_.push(ret);
return handle_type(ret);
}
#if defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_NO_VARIADIC_TEMPLATES)
template <class... Args>
handle_type emplace(Args&&... args)
{
objects.push_front(std::make_pair(std::forward<Args>(args)..., 0));
list_iterator ret = objects.begin();
q_.push(ret);
return handle_type(ret);
}
#endif
void pop(void)
{
BOOST_ASSERT(!empty());
list_iterator q_top = q_.top();
q_.pop();
objects.erase(q_top);
}
/**
* \b Effects: Merge with priority queue rhs.
*
* \b Complexity: N log(N)
*
* */
void merge(priority_queue_mutable_wrapper const & rhs)
{
q_.reserve(q_.size() + rhs.q_.size());
for (typename object_list::const_iterator it = rhs.objects.begin(); it != rhs.objects.end(); ++it)
push(it->first);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* */
void update(handle_type handle, const_reference v)
{
list_iterator it = handle.iterator;
value_type const & current_value = it->first;
value_compare const & cmp = q_;
if (cmp(v, current_value))
decrease(handle, v);
else
increase(handle, v);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void update(handle_type handle)
{
list_iterator it = handle.iterator;
size_type index = it->second;
q_.update(index);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be greater than the current one
* */
void increase(handle_type handle, const_reference v)
{
BOOST_ASSERT(!value_compare()(v, handle.iterator->first));
handle.iterator->first = v;
increase(handle);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be greater than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void increase(handle_type handle)
{
list_iterator it = handle.iterator;
size_type index = it->second;
q_.increase(index);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one
* */
void decrease(handle_type handle, const_reference v)
{
BOOST_ASSERT(!value_compare()(handle.iterator->first, v));
handle.iterator->first = v;
decrease(handle);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \b Complexity: Logarithmic.
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void decrease(handle_type handle)
{
list_iterator it = handle.iterator;
size_type index = it->second;
q_.decrease(index);
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \b Complexity: Logarithmic.
* */
void erase(handle_type handle)
{
list_iterator it = handle.iterator;
size_type index = it->second;
q_.erase(index);
objects.erase(it);
}
iterator begin(void) const
{
return iterator(objects.begin());
}
iterator end(void) const
{
return iterator(objects.end());
}
ordered_iterator ordered_begin(void) const
{
if (!empty())
return ordered_iterator(q_.top(), this, indirect_cmp(q_.value_comp()));
else
return ordered_end();
}
ordered_iterator ordered_end(void) const
{
return ordered_iterator(objects.end(), this, indirect_cmp(q_.value_comp()));
}
static handle_type s_handle_from_iterator(iterator const & it)
{
return handle_type(it);
}
value_compare const & value_comp(void) const
{
return q_.value_comp();
}
void reserve (size_type element_count)
{
q_.reserve(element_count);
}
};
} /* namespace detail */
} /* namespace heap */
} /* namespace boost */
#endif /* BOOST_HEAP_DETAIL_MUTABLE_HEAP_HPP */