kicad/common/plotters/gbr_plotter_apertures.h

221 lines
7.2 KiB
C
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2020 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Plotting engine (Gerber)
*
* @file gbr_plotter_apertures.h
*/
#pragma once
/* Class to handle a D_CODE when plotting a board using Standard Aperture Templates
* (complex apertures need aperture macros to be flashed)
* 5 types:
* Circle (round)
* Rectangle
* Obround (oval)
* regular polygon
*
* We need round apertures to plot lines, so we also defined a aperture type for plotting
*
* Other aperture types are aperture macros
*/
#define FIRST_DCODE_VALUE 10 // D_CODE < 10 is a command, D_CODE >= 10 is a tool
class APERTURE
{
public:
enum APERTURE_TYPE {
AT_CIRCLE = 1, // round aperture, to flash pads
AT_RECT = 2, // rect aperture, to flash pads
AT_PLOTTING = 3, // round aperture, to plot lines
AT_OVAL = 4, // oval aperture, to flash pads
AT_REGULAR_POLY = 5, // Regular polygon (n vertices, n = 3 .. 12, with rotation)
AT_REGULAR_POLY3, // Regular polygon 3 vertices, with rotation
AT_REGULAR_POLY4, // Regular polygon 4 vertices, with rotation
AT_REGULAR_POLY5, // Regular polygon 5 vertices, with rotation
AT_REGULAR_POLY6, // Regular polygon 6 vertices, with rotation
AT_REGULAR_POLY7, // Regular polygon 7 vertices, with rotation
AT_REGULAR_POLY8, // Regular polygon 8 vertices, with rotation
AT_REGULAR_POLY9, // Regular polygon 9 vertices, with rotation
AT_REGULAR_POLY10, // Regular polygon 10 vertices, with rotation
AT_REGULAR_POLY11, // Regular polygon 11 vertices, with rotation
AT_REGULAR_POLY12, // Regular polygon 12 vertices, with rotation
AM_ROUND_RECT, // Aperture macro for round rect pads
AM_ROT_RECT, // Aperture macro for rotated rect pads
APER_MACRO_OUTLINE4P, // Aperture macro for trapezoid pads (outline with 4 corners)
APER_MACRO_OUTLINE5P, // Aperture macro for pad polygons with 5 corners (chamfered pads)
APER_MACRO_OUTLINE6P, // Aperture macro for pad polygons with 6 corners (chamfered pads)
APER_MACRO_OUTLINE7P, // Aperture macro for pad polygons with 7 corners (chamfered pads)
APER_MACRO_OUTLINE8P, // Aperture macro for pad polygons with 8 corners (chamfered pads)
AM_ROTATED_OVAL, // Aperture macro for rotated oval pads
// (not rotated uses a primitive)
AM_FREE_POLYGON // Aperture macro to create on the fly a free polygon, with
// only one parameter: rotation
};
void SetSize( const wxSize& aSize )
{
m_Size = aSize;
}
const wxSize GetSize()
{
return m_Size;
}
void SetDiameter( int aDiameter )
{
m_Radius = aDiameter/2;
}
int GetDiameter()
{
// For round primitive, the diameter is the m_Size.x ot m_Size.y
if( m_Type == AT_CIRCLE || m_Type == AT_PLOTTING )
return m_Size.x;
// For rounded shapes (macro apertures), return m_Radius * 2
// but usually they use the radius (m_Radius)
return m_Radius*2;
}
void SetRegPolyVerticeCount( int aCount )
{
if( aCount < 3 )
aCount = 3;
else if( aCount > 12 )
aCount = 12;
m_Type = (APERTURE_TYPE)(AT_REGULAR_POLY3 - 3 + aCount);
}
int GetRegPolyVerticeCount()
{
return m_Type - AT_REGULAR_POLY3 + 3;
}
void SetRotation( double aRotDegree )
{
// The rotation is stored in degree
m_Rotation = aRotDegree;
}
double GetRotation()
{
// The rotation is stored in degree
return m_Rotation;
}
// Type ( Line, rect , circulaire , ovale poly 3 to 12 vertices, aperture macro )
APERTURE_TYPE m_Type;
// horiz and Vert size
wxSize m_Size;
// list of corners for polygon shape
std::vector<wxPoint> m_Corners;
// Radius for polygon and round rect shape
int m_Radius;
// Rotation in degrees
double m_Rotation;
// code number ( >= 10 )
int m_DCode;
// the attribute attached to this aperture
// Only one attribute is allowed by aperture
// 0 = no specific aperture attribute
int m_ApertureAttribute;
};
/** A class to define an aperture macros based on a free polygon, i.e. using a
* primitive 4 to describe a free polygon with a rotation.
* the aperture macro has only one parameter: rotation and is defined on the fly
* for aGerber file
*/
class APER_MACRO_FREEPOLY
{
public:
APER_MACRO_FREEPOLY( const std::vector<wxPoint>& aPolygon, int aId )
{
m_Corners = aPolygon;
m_Id = aId;
}
/**
* @return true if aPolygon is the same as this, i.e. if the
* aPolygon is the same as m_Corners
* @param aOther is the candidate to compare
*/
bool IsSamePoly( const std::vector<wxPoint>& aPolygon ) const;
/**
* print the aperture macro definition to aOutput
* @param aOutput is the FILE to write
* @param aIu2GbrMacroUnit is the scaling factor from coordinates value to
* the Gerber file macros units (always mm or inches)
*/
void Format( FILE * aOutput, double aIu2GbrMacroUnit );
int CornersCount() const { return (int)m_Corners.size(); }
std::vector<wxPoint> m_Corners;
int m_Id;
};
class APER_MACRO_FREEPOLY_LIST
{
public:
APER_MACRO_FREEPOLY_LIST() {}
void ClearList() { m_AMList.clear(); }
int AmCount() const { return (int)m_AMList.size(); }
/**
* append a new APER_MACRO_FREEPOLY containing the polygon aPolygon to the current list
*/
void Append( const std::vector<wxPoint>& aPolygon );
/**
* @return the index in m_AMList of the APER_MACRO_FREEPOLY having the
* same polygon as aPolygon, or -1
* @param aCandidate is the polygon candidate to compare
*/
int FindAm( const std::vector<wxPoint>& aPolygon ) const;
/**
* print the aperture macro list to aOutput
* @param aOutput is the FILE to write
* @param aIu2GbrMacroUnit is the scaling factor from coordinates value to
* the Gerber file macros units (always mm or inches)
*/
void Format( FILE * aOutput, double aIu2GbrMacroUnit );
std::vector<APER_MACRO_FREEPOLY> m_AMList;
};