kicad/pcbnew/import_gfx/graphics_importer_buffer.cpp

216 lines
7.2 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2017 CERN
* @author Janito Vaqueiro Ferreira Filho <janito.vff@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <eda_item.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_poly_set.h>
#include "graphics_importer_buffer.h"
using namespace std;
template <typename T, typename... Args>
static std::unique_ptr<T> make_shape( const Args&... aArguments )
{
return std::make_unique<T>( aArguments... );
}
void GRAPHICS_IMPORTER_BUFFER::AddLine( const VECTOR2D& aStart, const VECTOR2D& aEnd, double aWidth )
{
m_shapes.push_back( make_shape< IMPORTED_LINE >( aStart, aEnd, aWidth ) );
}
void GRAPHICS_IMPORTER_BUFFER::AddCircle( const VECTOR2D& aCenter, double aRadius, double aWidth, bool aFilled )
{
m_shapes.push_back( make_shape<IMPORTED_CIRCLE>( aCenter, aRadius, aWidth, aFilled ) );
}
void GRAPHICS_IMPORTER_BUFFER::AddArc( const VECTOR2D& aCenter, const VECTOR2D& aStart,
double aAngle, double aWidth )
{
m_shapes.push_back( make_shape< IMPORTED_ARC >( aCenter, aStart, aAngle, aWidth ) );
}
void GRAPHICS_IMPORTER_BUFFER::AddPolygon( const std::vector< VECTOR2D >& aVertices, double aWidth )
{
m_shapes.push_back( make_shape< IMPORTED_POLYGON >( aVertices, aWidth ) );
m_shapes.back()->SetParentShapeIndex( m_shapeFillRules.size() - 1 );
}
void GRAPHICS_IMPORTER_BUFFER::AddText( const VECTOR2D& aOrigin, const wxString& aText,
double aHeight, double aWidth, double aThickness, double aOrientation,
EDA_TEXT_HJUSTIFY_T aHJustify, EDA_TEXT_VJUSTIFY_T aVJustify )
{
m_shapes.push_back( make_shape< IMPORTED_TEXT >( aOrigin, aText, aHeight, aWidth,
aThickness, aOrientation, aHJustify, aVJustify ) );
}
void GRAPHICS_IMPORTER_BUFFER::AddSpline( const VECTOR2D& aStart, const VECTOR2D& aBezierControl1,
const VECTOR2D& aBezierControl2, const VECTOR2D& aEnd , double aWidth )
{
m_shapes.push_back( make_shape< IMPORTED_SPLINE >( aStart, aBezierControl1, aBezierControl2, aEnd, aWidth ) );
}
void GRAPHICS_IMPORTER_BUFFER::AddShape( std::unique_ptr<IMPORTED_SHAPE>& aShape )
{
m_shapes.push_back( std::move( aShape ) );
}
void GRAPHICS_IMPORTER_BUFFER::ImportTo( GRAPHICS_IMPORTER& aImporter )
{
for( auto& shape : m_shapes )
shape->ImportTo( aImporter );
}
// converts a single SVG-style polygon (multiple outlines, hole detection based on orientation, custom fill rule) to a format that can be digested by KiCad (single outline, fractured)
static void convertPolygon( std::list<std::unique_ptr<IMPORTED_SHAPE>>& aShapes,
std::vector<IMPORTED_POLYGON*>& aPaths,
GRAPHICS_IMPORTER::POLY_FILL_RULE aFillRule,
int aWidth )
{
double minX = std::numeric_limits<double>::max();
double minY = minX;
double maxX = std::numeric_limits<double>::min();
double maxY = maxX;
// as Clipper/SHAPE_POLY_SET uses ints we first need to upscale to a reasonably large size (in integer coordinates)
// to avoid loosing accuracy
const double convert_scale = 1000000000.0;
for( IMPORTED_POLYGON* path : aPaths )
{
for( VECTOR2D& v : path->Vertices() )
{
minX = std::min( minX, v.x );
minY = std::min( minY, v.y );
maxX = std::max( maxX, v.x );
maxY = std::max( maxY, v.y );
}
}
double origW = ( maxX - minX );
double origH = ( maxY - minY );
double upscaledW, upscaledH;
if( origW > origH )
{
upscaledW = convert_scale;
upscaledH = ( origH == 0.0f ? 0.0 : origH * convert_scale / origW );
}
else
{
upscaledH = convert_scale;
upscaledW = ( origW == 0.0f ? 0.0 : origW * convert_scale / origH );
}
std::vector<SHAPE_LINE_CHAIN> upscaledPaths;
for( IMPORTED_POLYGON* path : aPaths )
{
SHAPE_LINE_CHAIN lc;
for( VECTOR2D& v : path->Vertices() )
{
int xp = KiROUND( ( v.x - minX ) * ( upscaledW / origW ) );
int yp = KiROUND( ( v.y - minY ) * ( upscaledH / origH ) );
lc.Append( xp, yp );
}
lc.SetClosed( true );
upscaledPaths.push_back( lc );
}
SHAPE_POLY_SET result = SHAPE_POLY_SET::BuildPolysetFromOrientedPaths(
upscaledPaths, false, aFillRule == GRAPHICS_IMPORTER::PF_EVEN_ODD );
result.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
for( int outl = 0; outl < result.OutlineCount(); outl++ )
{
const SHAPE_LINE_CHAIN& ro = result.COutline( outl );
std::vector<VECTOR2D> pts;
for( int i = 0; i < ro.PointCount(); i++ )
{
double xp = (double) ro.CPoint( i ).x * ( origW / upscaledW ) + minX;
double yp = (double) ro.CPoint( i ).y * ( origH / upscaledH ) + minY;
pts.emplace_back( VECTOR2D( xp, yp ) );
}
aShapes.push_back( std::make_unique<IMPORTED_POLYGON>( pts, aWidth ) );
}
}
void GRAPHICS_IMPORTER_BUFFER::PostprocessNestedPolygons()
{
int curShapeIdx = -1;
int lastWidth = 1;
std::list<std::unique_ptr<IMPORTED_SHAPE>> newShapes;
std::vector<IMPORTED_POLYGON*> polypaths;
for( auto& shape : m_shapes )
{
IMPORTED_POLYGON* poly = dynamic_cast<IMPORTED_POLYGON*>( shape.get() );
if( !poly || poly->GetParentShapeIndex() < 0 )
{
newShapes.push_back( shape->clone() );
continue;
}
lastWidth = poly->GetWidth();
int index = poly->GetParentShapeIndex();
if( curShapeIdx < 0 )
index = curShapeIdx;
if( index == curShapeIdx )
{
polypaths.push_back( poly );
}
else if( index >= curShapeIdx + 1 )
{
convertPolygon( newShapes, polypaths, m_shapeFillRules[curShapeIdx], lastWidth );
curShapeIdx++;
polypaths.clear();
polypaths.push_back( poly );
}
}
POLY_FILL_RULE last_rule = ( curShapeIdx >= 0 && m_shapeFillRules.size() )
? m_shapeFillRules[curShapeIdx]
: POLY_FILL_RULE::PF_EVEN_ODD;
convertPolygon( newShapes, polypaths, last_rule, lastWidth );
m_shapes.swap( newShapes );
}