kicad/common/trigo.cpp

328 lines
8.8 KiB
C++
Raw Normal View History

/**
* @file trigo.cpp
* @brief Trigonometric and geometric basic functions.
*/
#include <fctsys.h>
#include <macros.h>
#include <trigo.h>
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
#include <common.h>
#include <math_for_graphics.h>
/* Function TestSegmentHit
* test for hit on line segment
* i.e. a reference point is within a given distance from segment
* aRefPoint = reference point to test
* aStart, aEnd are coordinates of end points segment
* aDist = maximum distance for hit
* Note: for calculation time reasons, the distance between the ref point
* and the segment is not always exactly calculated
* (we only know if the actual dist is < aDist, not exactly know this dist.
* Because many times we have horizontal or vertical segments,
* a special calcultaion is made for them
* Note: sometimes we need to calculate the distande between 2 points
* A square root should be calculated.
* However, because we just compare 2 distnaces, to avoid calculating square root,
* the square of distances are compared.
*/
static inline double square( int x ) // helper function to calculate x*x
2009-06-13 17:06:07 +00:00
{
return (double) x * x;
2009-06-13 17:06:07 +00:00
}
bool TestSegmentHit( const wxPoint &aRefPoint, wxPoint aStart,
wxPoint aEnd, int aDist )
2007-08-08 20:51:08 +00:00
{
// test for vertical or horizontal segment
if( aEnd.x == aStart.x )
2007-08-08 20:51:08 +00:00
{
// vertical segment
int ll = abs( aRefPoint.x - aStart.x );
if( ll > aDist )
return false;
2007-08-08 20:51:08 +00:00
// To have only one case to examine, ensure aEnd.y > aStart.y
if( aEnd.y < aStart.y )
EXCHG( aStart.y, aEnd.y );
2007-08-08 20:51:08 +00:00
if( aRefPoint.y <= aEnd.y && aRefPoint.y >= aStart.y )
return true;
// there is a special case: x,y near an end point (distance < dist )
// the distance should be carefully calculated
if( (aStart.y - aRefPoint.y) < aDist )
2007-08-08 20:51:08 +00:00
{
double dd = square( aRefPoint.x - aStart.x) +
square( aRefPoint.y - aStart.y );
if( dd <= square( aDist ) )
return true;
2007-08-08 20:51:08 +00:00
}
if( (aRefPoint.y - aEnd.y) < aDist )
2007-08-08 20:51:08 +00:00
{
double dd = square( aRefPoint.x - aEnd.x ) +
square( aRefPoint.y - aEnd.y );
if( dd <= square( aDist ) )
2007-08-08 20:51:08 +00:00
return true;
}
}
else if( aEnd.y == aStart.y )
2007-08-08 20:51:08 +00:00
{
// horizontal segment
int ll = abs( aRefPoint.y - aStart.y );
if( ll > aDist )
return false;
// To have only one case to examine, ensure xf > xi
if( aEnd.x < aStart.x )
EXCHG( aStart.x, aEnd.x );
if( aRefPoint.x <= aEnd.x && aRefPoint.x >= aStart.x )
return true;
// there is a special case: x,y near an end point (distance < dist )
// the distance should be carefully calculated
if( (aStart.x - aRefPoint.x) <= aDist )
2007-08-08 20:51:08 +00:00
{
double dd = square( aRefPoint.x - aStart.x ) +
square( aRefPoint.y - aStart.y );
if( dd <= square( aDist ) )
2007-08-08 20:51:08 +00:00
return true;
}
2007-08-08 20:51:08 +00:00
if( (aRefPoint.x - aEnd.x) <= aDist )
{
double dd = square( aRefPoint.x - aEnd.x ) +
square( aRefPoint.y - aEnd.y );
if( dd <= square( aDist ) )
return true;
2007-08-08 20:51:08 +00:00
}
}
else
2007-08-08 20:51:08 +00:00
{
// oblique segment:
// First, we need to calculate the distance between the point
// and the line defined by aStart and aEnd
// this dist should be < dist
//
// find a,slope such that aStart and aEnd lie on y = a + slope*x
double slope = (double) (aEnd.y - aStart.y) / (aEnd.x - aStart.x);
double a = (double) aStart.y - slope * aStart.x;
// find c,orthoslope such that (x,y) lies on y = c + orthoslope*x,
// where orthoslope=(-1/slope)
// to calculate xp, yp = near point from aRefPoint
// which is on the line defined by aStart, aEnd
double orthoslope = -1.0 / slope;
double c = (double) aRefPoint.y - orthoslope * aRefPoint.x;
// find nearest point to (x,y) on line defined by aStart, aEnd
double xp = (a - c) / (orthoslope - slope);
double yp = a + slope * xp;
// find distance to line, in fact the square of dist,
// because we just know if it is > or < aDist
double dd = square( aRefPoint.x - xp ) + square( aRefPoint.y - yp );
double dist = square( aDist );
if( dd > dist ) // this reference point is not a good candiadte.
return false;
// dd is < dist, therefore we should make a fine test
if( fabs( slope ) > 0.7 )
2007-08-08 20:51:08 +00:00
{
// line segment more vertical than horizontal
if( (aEnd.y > aStart.y && yp <= aEnd.y && yp >= aStart.y) ||
(aEnd.y < aStart.y && yp >= aEnd.y && yp <= aStart.y) )
2007-08-08 20:51:08 +00:00
return true;
}
else
{
// line segment more horizontal than vertical
if( (aEnd.x > aStart.x && xp <= aEnd.x && xp >= aStart.x) ||
(aEnd.x < aStart.x && xp >= aEnd.x && xp <= aStart.x) )
return true;
}
// Here, the test point is still a good candidate,
// however it is not "between" the end points of the segment.
// It is "outside" the segment, but it could be near a segment end point
// Therefore, we test the dist from the test point to each segment end point
dd = square( aRefPoint.x - aEnd.x ) + square( aRefPoint.y - aEnd.y );
if( dd <= dist )
return true;
dd = square( aRefPoint.x - aStart.x ) + square( aRefPoint.y - aStart.y );
if( dd <= dist )
return true;
2007-08-08 20:51:08 +00:00
}
return false; // no hit
2007-08-08 20:51:08 +00:00
}
double ArcTangente( int dy, int dx )
{
/* gcc is surprisingly smart in optimizing these conditions in
a tree! */
if( dx == 0 && dy == 0 )
return 0;
if( dy == 0 )
{
if( dx >= 0 )
return 0;
else
return -1800;
}
if( dx == 0 )
{
if( dy >= 0 )
return 900;
else
return -900;
}
if( dx == dy )
{
if( dx >= 0 )
return 450;
else
return -1800 + 450;
}
if( dx == -dy )
{
if( dx >= 0 )
return -450;
else
return 1800 - 450;
}
// Of course dy and dx are treated as double
return RAD2DECIDEG( atan2( dy, dx ) );
}
2011-12-14 04:29:25 +00:00
void RotatePoint( int* pX, int* pY, double angle )
{
int tmp;
NORMALIZE_ANGLE_POS( angle );
// Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
if( angle == 0 )
return;
if( angle == 900 ) /* sin = 1, cos = 0 */
{
tmp = *pX;
*pX = *pY;
*pY = -tmp;
}
else if( angle == 1800 ) /* sin = 0, cos = -1 */
{
*pX = -*pX;
*pY = -*pY;
}
else if( angle == 2700 ) /* sin = -1, cos = 0 */
{
tmp = *pX;
*pX = -*pY;
*pY = tmp;
}
else
{
double fangle = DECIDEG2RAD( angle );
double sinus = sin( fangle );
double cosinus = cos( fangle );
double fpx = (*pY * sinus ) + (*pX * cosinus );
double fpy = (*pY * cosinus ) - (*pX * sinus );
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
*pX = KiROUND( fpx );
*pY = KiROUND( fpy );
}
}
2011-12-14 04:29:25 +00:00
void RotatePoint( int* pX, int* pY, int cx, int cy, double angle )
{
int ox, oy;
ox = *pX - cx;
oy = *pY - cy;
RotatePoint( &ox, &oy, angle );
*pX = ox + cx;
*pY = oy + cy;
}
2011-12-14 04:29:25 +00:00
void RotatePoint( wxPoint* point, const wxPoint& centre, double angle )
{
int ox, oy;
ox = point->x - centre.x;
oy = point->y - centre.y;
RotatePoint( &ox, &oy, angle );
point->x = ox + centre.x;
point->y = oy + centre.y;
}
2011-12-14 04:29:25 +00:00
void RotatePoint( double* pX, double* pY, double cx, double cy, double angle )
{
double ox, oy;
ox = *pX - cx;
oy = *pY - cy;
RotatePoint( &ox, &oy, angle );
*pX = ox + cx;
*pY = oy + cy;
}
2011-12-14 04:29:25 +00:00
void RotatePoint( double* pX, double* pY, double angle )
{
double tmp;
NORMALIZE_ANGLE_POS( angle );
// Cheap and dirty optimizations for 0, 90, 180, and 270 degrees.
if( angle == 0 )
return;
if( angle == 900 ) /* sin = 1, cos = 0 */
{
tmp = *pX;
*pX = *pY;
*pY = -tmp;
}
else if( angle == 1800 ) /* sin = 0, cos = -1 */
{
*pX = -*pX;
*pY = -*pY;
}
else if( angle == 2700 ) /* sin = -1, cos = 0 */
{
tmp = *pX;
*pX = -*pY;
*pY = tmp;
}
else
{
double fangle = DECIDEG2RAD( angle );
double sinus = sin( fangle );
double cosinus = cos( fangle );
double fpx = (*pY * sinus ) + (*pX * cosinus );
double fpy = (*pY * cosinus ) - (*pX * sinus );
2011-09-21 12:51:46 +00:00
*pX = fpx;
*pY = fpy;
}
}
2007-08-08 20:51:08 +00:00