kicad/eeschema/sch_shape.cpp

444 lines
12 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2004-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sch_draw_panel.h>
#include <macros.h>
#include <plotters/plotter.h>
#include <base_units.h>
#include <widgets/msgpanel.h>
#include <bitmaps.h>
#include <eda_draw_frame.h>
#include <general.h>
#include <schematic.h>
#include <sch_shape.h>
#include "plotters/plotter.h"
SCH_SHAPE::SCH_SHAPE( SHAPE_T aShape, int aLineWidth, FILL_T aFillType, KICAD_T aType ) :
SCH_ITEM( nullptr, aType ),
EDA_SHAPE( aShape, aLineWidth, aFillType )
{
SetLayer( LAYER_NOTES );
}
EDA_ITEM* SCH_SHAPE::Clone() const
{
return new SCH_SHAPE( *this );
}
void SCH_SHAPE::SwapData( SCH_ITEM* aItem )
{
SCH_SHAPE* shape = static_cast<SCH_SHAPE*>( aItem );
EDA_SHAPE::SwapShape( shape );
std::swap( m_layer, shape->m_layer );
}
void SCH_SHAPE::SetStroke( const STROKE_PARAMS& aStroke )
{
m_stroke = aStroke;
}
void SCH_SHAPE::Move( const VECTOR2I& aOffset )
{
move( aOffset );
}
void SCH_SHAPE::Normalize()
{
if( GetShape() == SHAPE_T::RECT )
{
VECTOR2I size = GetEnd() - GetPosition();
if( size.y < 0 )
{
SetStartY( GetStartY() + size.y );
SetEndY( GetStartY() - size.y );
}
if( size.x < 0 )
{
SetStartX( GetStartX() + size.x );
SetEndX( GetStartX() - size.x );
}
}
}
void SCH_SHAPE::MirrorHorizontally( int aCenter )
{
2022-01-01 18:08:03 +00:00
flip( VECTOR2I( aCenter, 0 ), true );
}
void SCH_SHAPE::MirrorVertically( int aCenter )
{
2022-01-01 18:08:03 +00:00
flip( VECTOR2I( 0, aCenter ), false );
}
void SCH_SHAPE::Rotate( const VECTOR2I& aCenter )
{
rotate( aCenter, -ANGLE_90 );
}
void SCH_SHAPE::Plot( PLOTTER* aPlotter, bool aBackground ) const
{
int pen_size = std::max( GetPenWidth(), aPlotter->RenderSettings()->GetMinPenWidth() );
2022-01-01 18:08:03 +00:00
static std::vector<VECTOR2I> cornerList;
if( GetShape() == SHAPE_T::POLY )
{
cornerList.clear();
for( const VECTOR2I& pt : m_poly.Outline( 0 ).CPoints() )
2022-01-01 18:08:03 +00:00
cornerList.push_back( pt );
}
if( aBackground )
{
if( !aPlotter->GetColorMode() )
return;
if( m_fill == FILL_T::FILLED_WITH_COLOR && GetFillColor() != COLOR4D::UNSPECIFIED )
{
if( GetFillColor() != COLOR4D::UNSPECIFIED )
aPlotter->SetColor( GetFillColor() );
else
aPlotter->SetColor( aPlotter->RenderSettings()->GetLayerColor( LAYER_NOTES ) );
switch( GetShape() )
{
case SHAPE_T::ARC:
{
// In some plotters (not all) the arc is approximated by segments, and
// a error max is needed. We try to approximate by 360/5 segments by 360 deg
int arc2segment_error = CircleToEndSegmentDeltaRadius( GetRadius(), 360/5 );
aPlotter->Arc( getCenter(), GetStart(), GetEnd(), m_fill, 0, arc2segment_error );
}
break;
case SHAPE_T::CIRCLE:
aPlotter->Circle( getCenter(), GetRadius() * 2, m_fill, 0 );
break;
case SHAPE_T::RECT:
aPlotter->Rect( GetStart(), GetEnd(), m_fill, 0 );
break;
case SHAPE_T::POLY:
aPlotter->PlotPoly( cornerList, m_fill, 0 );
break;
case SHAPE_T::BEZIER:
aPlotter->PlotPoly( m_bezierPoints, m_fill, 0 );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
}
else /* if( aForeground ) */
{
if( aPlotter->GetColorMode() && GetStroke().GetColor() != COLOR4D::UNSPECIFIED )
aPlotter->SetColor( GetStroke().GetColor() );
else
aPlotter->SetColor( aPlotter->RenderSettings()->GetLayerColor( LAYER_NOTES ) );
aPlotter->SetCurrentLineWidth( pen_size );
aPlotter->SetDash( pen_size, GetEffectiveLineStyle() );
switch( GetShape() )
{
case SHAPE_T::ARC:
{
// In some plotters (not all) the arc is approximated by segments, and
// a error max is needed. We try to approximate by 360/5 segments by 360 deg
int arc2segment_error = CircleToEndSegmentDeltaRadius( GetRadius(), 360/5 );
aPlotter->Arc( getCenter(), GetStart(), GetEnd(), FILL_T::NO_FILL, pen_size, arc2segment_error );
}
break;
case SHAPE_T::CIRCLE:
aPlotter->Circle( getCenter(), GetRadius() * 2, FILL_T::NO_FILL, pen_size );
break;
case SHAPE_T::RECT:
{
std::vector<VECTOR2I> pts = GetRectCorners();
aPlotter->MoveTo( pts[0] );
aPlotter->LineTo( pts[1] );
aPlotter->LineTo( pts[2] );
aPlotter->LineTo( pts[3] );
aPlotter->FinishTo( pts[0] );
}
break;
case SHAPE_T::POLY:
aPlotter->PlotPoly( cornerList, FILL_T::NO_FILL, pen_size );
break;
case SHAPE_T::BEZIER:
aPlotter->PlotPoly( m_bezierPoints, FILL_T::NO_FILL, pen_size );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
aPlotter->SetDash( pen_size, PLOT_DASH_TYPE::SOLID );
}
}
int SCH_SHAPE::GetPenWidth() const
{
if( m_stroke.GetWidth() > 0 )
return m_stroke.GetWidth();
// Historically 0 meant "default width" and negative numbers meant "don't stroke".
if( GetWidth() < 0 )
return 0;
SCHEMATIC* schematic = Schematic();
if( schematic )
return schematic->Settings().m_DefaultLineWidth;
2022-09-16 23:42:20 +00:00
return schIUScale.MilsToIU( DEFAULT_LINE_WIDTH_MILS );
}
void SCH_SHAPE::Print( const RENDER_SETTINGS* aSettings, const VECTOR2I& aOffset )
{
int penWidth = GetPenWidth();
wxDC* DC = aSettings->GetPrintDC();
COLOR4D color;
penWidth = std::max( penWidth, aSettings->GetMinPenWidth() );
unsigned ptCount = 0;
VECTOR2I* buffer = nullptr;
if( GetShape() == SHAPE_T::POLY )
{
SHAPE_LINE_CHAIN poly = m_poly.Outline( 0 );
ptCount = poly.GetPointCount();
buffer = new VECTOR2I[ptCount];
for( unsigned ii = 0; ii < ptCount; ++ii )
2022-01-01 18:08:03 +00:00
buffer[ii] = poly.CPoint( ii );
}
else if( GetShape() == SHAPE_T::BEZIER )
{
ptCount = m_bezierPoints.size();
buffer = new VECTOR2I[ptCount];
for( size_t ii = 0; ii < ptCount; ++ii )
buffer[ii] = m_bezierPoints[ii];
}
if( GetFillMode() == FILL_T::FILLED_WITH_COLOR )
{
if( GetFillColor() == COLOR4D::UNSPECIFIED )
color = aSettings->GetLayerColor( LAYER_NOTES );
else
color = GetFillColor();
switch( GetShape() )
{
case SHAPE_T::ARC:
GRFilledArc( DC, GetEnd(), GetStart(), getCenter(), 0, color, color );
break;
case SHAPE_T::CIRCLE:
GRFilledCircle( DC, GetStart(), GetRadius(), 0, color, color );
break;
case SHAPE_T::RECT:
GRFilledRect( DC, GetStart(), GetEnd(), 0, color, color );
break;
case SHAPE_T::POLY:
GRPoly( DC, ptCount, buffer, true, 0, color, color );
break;
case SHAPE_T::BEZIER:
GRPoly( DC, ptCount, buffer, true, 0, color, color );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
if( GetStroke().GetColor() == COLOR4D::UNSPECIFIED )
color = aSettings->GetLayerColor( LAYER_NOTES );
else
color = GetStroke().GetColor();
if( GetEffectiveLineStyle() == PLOT_DASH_TYPE::SOLID )
{
switch( GetShape() )
{
case SHAPE_T::ARC:
GRArc( DC, GetEnd(), GetStart(), getCenter(), penWidth, color );
break;
case SHAPE_T::CIRCLE:
GRCircle( DC, GetStart(), GetRadius(), penWidth, color );
break;
case SHAPE_T::RECT:
GRRect( DC, GetStart(), GetEnd(), penWidth, color );
break;
case SHAPE_T::POLY:
GRPoly( DC, ptCount, buffer, false, penWidth, color, color );
break;
case SHAPE_T::BEZIER:
GRPoly( DC, ptCount, buffer, false, penWidth, color, color );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
else
{
std::vector<SHAPE*> shapes = MakeEffectiveShapes( true );
for( SHAPE* shape : shapes )
{
STROKE_PARAMS::Stroke( shape, GetEffectiveLineStyle(), penWidth, aSettings,
2022-01-01 18:08:03 +00:00
[&]( const VECTOR2I& a, const VECTOR2I& b )
{
GRLine( DC, a.x, a.y, b.x, b.y, penWidth, color );
} );
}
for( SHAPE* shape : shapes )
delete shape;
}
delete[] buffer;
}
void SCH_SHAPE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
SCH_ITEM::GetMsgPanelInfo( aFrame, aList );
ShapeGetMsgPanelInfo( aFrame, aList );
}
wxString SCH_SHAPE::GetSelectMenuText( UNITS_PROVIDER* aUnitsProvider ) const
{
switch( GetShape() )
{
case SHAPE_T::ARC:
return wxString::Format( _( "Arc, radius %s" ),
aUnitsProvider->MessageTextFromValue( GetRadius() ) );
case SHAPE_T::CIRCLE:
return wxString::Format( _( "Circle, radius %s" ),
aUnitsProvider->MessageTextFromValue( GetRadius() ) );
case SHAPE_T::RECT:
return wxString::Format( _( "Rectangle, width %s height %s" ),
aUnitsProvider->MessageTextFromValue( std::abs( m_start.x - m_end.x ) ),
aUnitsProvider->MessageTextFromValue( std::abs( m_start.y - m_end.y ) ) );
case SHAPE_T::POLY:
return wxString::Format( _( "Polyline, %d points" ),
int( m_poly.Outline( 0 ).GetPointCount() ) );
case SHAPE_T::BEZIER:
return wxString::Format( _( "Bezier Curve, %d points" ),
int( m_bezierPoints.size() ) );
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return wxEmptyString;
}
}
BITMAPS SCH_SHAPE::GetMenuImage() const
{
switch( GetShape() )
{
case SHAPE_T::SEGMENT: return BITMAPS::add_line;
case SHAPE_T::ARC: return BITMAPS::add_arc;
case SHAPE_T::CIRCLE: return BITMAPS::add_circle;
case SHAPE_T::RECT: return BITMAPS::add_rectangle;
case SHAPE_T::POLY: return BITMAPS::add_graphical_segments;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return BITMAPS::question_mark;
}
}
void SCH_SHAPE::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 3;
aLayers[0] = LAYER_NOTES;
aLayers[1] = LAYER_NOTES_BACKGROUND;
aLayers[2] = LAYER_SELECTION_SHADOWS;
}
void SCH_SHAPE::AddPoint( const VECTOR2I& aPosition )
{
if( GetShape() == SHAPE_T::POLY )
{
if( m_poly.IsEmpty() )
m_poly.NewOutline();
m_poly.Outline( 0 ).Append( aPosition, true );
}
else
{
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}