kicad/common/eda_rect.cpp

547 lines
14 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 Jean-Pierre Charras, jaen-pierre.charras@gipsa-lab.inpg.com
* Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @brief Implementation of EDA_RECT base class for KiCad.
*/
#include <algorithm>
#include <deque>
#include <eda_rect.h>
#include <trigo.h>
void EDA_RECT::Normalize()
{
2020-11-14 18:11:28 +00:00
if( m_size.y < 0 )
{
2020-11-14 18:11:28 +00:00
m_size.y = -m_size.y;
m_pos.y -= m_size.y;
}
2020-11-14 18:11:28 +00:00
if( m_size.x < 0 )
{
2020-11-14 18:11:28 +00:00
m_size.x = -m_size.x;
m_pos.x -= m_size.x;
}
}
void EDA_RECT::Move( const VECTOR2I& aMoveVector )
{
2020-11-14 18:11:28 +00:00
m_pos += aMoveVector;
}
bool EDA_RECT::Contains( const VECTOR2I& aPoint ) const
{
VECTOR2I rel_pos = aPoint - m_pos;
VECTOR2I size = m_size;
if( size.x < 0 )
{
size.x = -size.x;
rel_pos.x += size.x;
}
if( size.y < 0 )
{
size.y = -size.y;
rel_pos.y += size.y;
}
return ( rel_pos.x >= 0 ) && ( rel_pos.y >= 0 ) && ( rel_pos.y <= size.y )
&& ( rel_pos.x <= size.x );
}
bool EDA_RECT::Contains( const EDA_RECT& aRect ) const
{
return Contains( aRect.GetOrigin() ) && Contains( aRect.GetEnd() );
}
bool EDA_RECT::Intersects( const VECTOR2I& aPoint1, const VECTOR2I& aPoint2 ) const
{
VECTOR2I point2, point4;
if( Contains( aPoint1 ) || Contains( aPoint2 ) )
return true;
point2.x = GetEnd().x;
point2.y = GetOrigin().y;
point4.x = GetOrigin().x;
point4.y = GetEnd().y;
//Only need to test 3 sides since a straight line can't enter and exit on same side
if( SegmentIntersectsSegment( aPoint1, aPoint2, GetOrigin(), point2 ) )
return true;
if( SegmentIntersectsSegment( aPoint1, aPoint2, point2, GetEnd() ) )
return true;
if( SegmentIntersectsSegment( aPoint1, aPoint2, GetEnd(), point4 ) )
return true;
return false;
}
bool EDA_RECT::Intersects( const VECTOR2I& aPoint1, const VECTOR2I& aPoint2,
VECTOR2I* aIntersection1, VECTOR2I* aIntersection2 ) const
{
VECTOR2I point2, point4;
point2.x = GetEnd().x;
point2.y = GetOrigin().y;
point4.x = GetOrigin().x;
point4.y = GetEnd().y;
bool intersects = false;
VECTOR2I* aPointToFill = aIntersection1;
if( SegmentIntersectsSegment( aPoint1, aPoint2, GetOrigin(), point2, aPointToFill ) )
intersects = true;
if( intersects )
aPointToFill = aIntersection2;
if( SegmentIntersectsSegment( aPoint1, aPoint2, point2, GetEnd(), aPointToFill ) )
intersects = true;
if( intersects )
aPointToFill = aIntersection2;
if( SegmentIntersectsSegment( aPoint1, aPoint2, GetEnd(), point4, aPointToFill ) )
intersects = true;
if( intersects )
aPointToFill = aIntersection2;
if( SegmentIntersectsSegment( aPoint1, aPoint2, point4, GetOrigin(), aPointToFill ) )
intersects = true;
return intersects;
}
bool EDA_RECT::Intersects( const EDA_RECT& aRect ) const
{
if( !m_init )
return false;
// this logic taken from wxWidgets' geometry.cpp file:
bool rc;
EDA_RECT me( *this );
EDA_RECT rect( aRect );
me.Normalize(); // ensure size is >= 0
rect.Normalize(); // ensure size is >= 0
// calculate the left common area coordinate:
2020-11-14 18:11:28 +00:00
int left = std::max( me.m_pos.x, rect.m_pos.x );
// calculate the right common area coordinate:
2020-11-14 18:11:28 +00:00
int right = std::min( me.m_pos.x + me.m_size.x, rect.m_pos.x + rect.m_size.x );
// calculate the upper common area coordinate:
2020-11-14 18:11:28 +00:00
int top = std::max( me.m_pos.y, aRect.m_pos.y );
// calculate the lower common area coordinate:
2020-11-14 18:11:28 +00:00
int bottom = std::min( me.m_pos.y + me.m_size.y, rect.m_pos.y + rect.m_size.y );
// if a common area exists, it must have a positive (null accepted) size
if( left <= right && top <= bottom )
rc = true;
else
rc = false;
return rc;
}
bool EDA_RECT::Intersects( const EDA_RECT& aRect, double aRot ) const
{
if( !m_init )
return false;
/* Most rectangles will be axis aligned.
* It is quicker to check for this case and pass the rect
* to the simpler intersection test
*/
// Prevent floating point comparison errors
static const double ROT_EPS = 0.000000001;
static const double ROT_PARALLEL[] = { -3600, -1800, 0, 1800, 3600 };
static const double ROT_PERPENDICULAR[] = { -2700, -900, 0, 900, 2700 };
NORMALIZE_ANGLE_POS<double>( aRot );
// Test for non-rotated rectangle
for( int ii = 0; ii < 5; ii++ )
{
if( std::fabs( aRot - ROT_PARALLEL[ii] ) < ROT_EPS )
{
return Intersects( aRect );
}
}
// Test for rectangle rotated by multiple of 90 degrees
for( int jj = 0; jj < 4; jj++ )
{
if( std::fabs( aRot - ROT_PERPENDICULAR[jj] ) < ROT_EPS )
{
EDA_RECT rotRect;
// Rotate the supplied rect by 90 degrees
rotRect.SetOrigin( aRect.Centre() );
rotRect.Inflate( aRect.GetHeight(), aRect.GetWidth() );
return Intersects( rotRect );
}
}
/* There is some non-orthogonal rotation.
* There are three cases to test:
* A) One point of this rect is inside the rotated rect
* B) One point of the rotated rect is inside this rect
* C) One of the sides of the rotated rect intersect this
*/
VECTOR2I corners[4];
/* Test A : Any corners exist in rotated rect? */
2020-11-14 18:11:28 +00:00
corners[0] = m_pos;
2022-01-01 18:08:03 +00:00
corners[1] = m_pos + VECTOR2I( m_size.x, 0 );
corners[2] = m_pos + VECTOR2I( m_size.x, m_size.y );
corners[3] = m_pos + VECTOR2I( 0, m_size.y );
VECTOR2I rCentre = aRect.Centre();
for( int i = 0; i < 4; i++ )
{
VECTOR2I delta = corners[i] - rCentre;
RotatePoint( delta, -aRot );
delta += rCentre;
if( aRect.Contains( delta ) )
{
return true;
}
}
/* Test B : Any corners of rotated rect exist in this one? */
int w = aRect.GetWidth() / 2;
int h = aRect.GetHeight() / 2;
// Construct corners around center of shape
2022-01-01 18:08:03 +00:00
corners[0] = VECTOR2I( -w, -h );
corners[1] = VECTOR2I( w, -h );
corners[2] = VECTOR2I( w, h );
corners[3] = VECTOR2I( -w, h );
// Rotate and test each corner
for( int j = 0; j < 4; j++ )
{
RotatePoint( corners[j], aRot );
corners[j] += rCentre;
if( Contains( corners[j] ) )
{
return true;
}
}
/* Test C : Any sides of rotated rect intersect this */
if( Intersects( corners[0], corners[1] ) || Intersects( corners[1], corners[2] )
|| Intersects( corners[2], corners[3] ) || Intersects( corners[3], corners[0] ) )
{
return true;
}
return false;
}
const VECTOR2I EDA_RECT::ClosestPointTo( const VECTOR2I& aPoint ) const
{
EDA_RECT me( *this );
me.Normalize(); // ensure size is >= 0
// Determine closest point to the circle centre within this rect
int nx = std::max( me.GetLeft(), std::min( aPoint.x, me.GetRight() ) );
int ny = std::max( me.GetTop(), std::min( aPoint.y, me.GetBottom() ) );
return VECTOR2I( nx, ny );
}
const VECTOR2I EDA_RECT::FarthestPointTo( const VECTOR2I& aPoint ) const
{
EDA_RECT me( *this );
me.Normalize(); // ensure size is >= 0
int fx = std::max( std::abs( aPoint.x - me.GetLeft() ), std::abs( aPoint.x - me.GetRight() ) );
int fy = std::max( std::abs( aPoint.y - me.GetTop() ), std::abs( aPoint.y - me.GetBottom() ) );
return VECTOR2I( fx, fy );
}
bool EDA_RECT::IntersectsCircle( const VECTOR2I& aCenter, const int aRadius ) const
{
if( !m_init )
return false;
VECTOR2I closest = ClosestPointTo( aCenter );
double dx = static_cast<double>( aCenter.x ) - closest.x;
double dy = static_cast<double>( aCenter.y ) - closest.y;
double r = static_cast<double>( aRadius );
return ( dx * dx + dy * dy ) <= ( r * r );
}
bool EDA_RECT::IntersectsCircleEdge( const VECTOR2I& aCenter, const int aRadius,
const int aWidth ) const
{
if( !m_init )
return false;
EDA_RECT me( *this );
me.Normalize(); // ensure size is >= 0
// Test if the circle intersects at all
if( !IntersectsCircle( aCenter, aRadius + aWidth / 2 ) )
{
return false;
}
VECTOR2I farpt = FarthestPointTo( aCenter );
// Farthest point must be further than the inside of the line
double fx = (double) farpt.x;
double fy = (double) farpt.y;
double r = (double) aRadius - (double) aWidth / 2;
return ( fx * fx + fy * fy ) > ( r * r );
}
EDA_RECT& EDA_RECT::Inflate( int aDelta )
{
Inflate( aDelta, aDelta );
return *this;
}
EDA_RECT& EDA_RECT::Inflate( wxCoord dx, wxCoord dy )
{
2020-11-14 18:11:28 +00:00
if( m_size.x >= 0 )
{
2020-11-14 18:11:28 +00:00
if( m_size.x < -2 * dx )
{
// Don't allow deflate to eat more width than we have,
2020-11-14 18:11:28 +00:00
m_pos.x += m_size.x / 2;
m_size.x = 0;
}
else
{
// The inflate is valid.
2020-11-14 18:11:28 +00:00
m_pos.x -= dx;
m_size.x += 2 * dx;
}
}
else // size.x < 0:
{
if( m_size.x > 2 * dx )
{
// Don't allow deflate to eat more width than we have,
2020-11-14 18:11:28 +00:00
m_pos.x -= m_size.x / 2;
m_size.x = 0;
}
else
{
// The inflate is valid.
2020-11-14 18:11:28 +00:00
m_pos.x += dx;
m_size.x -= 2 * dx; // m_Size.x <0: inflate when dx > 0
}
}
2020-11-14 18:11:28 +00:00
if( m_size.y >= 0 )
{
2020-11-14 18:11:28 +00:00
if( m_size.y < -2 * dy )
{
// Don't allow deflate to eat more height than we have,
2020-11-14 18:11:28 +00:00
m_pos.y += m_size.y / 2;
m_size.y = 0;
}
else
{
// The inflate is valid.
2020-11-14 18:11:28 +00:00
m_pos.y -= dy;
m_size.y += 2 * dy;
}
}
else // size.y < 0:
{
2020-11-14 18:11:28 +00:00
if( m_size.y > 2 * dy )
{
// Don't allow deflate to eat more height than we have,
2020-11-14 18:11:28 +00:00
m_pos.y -= m_size.y / 2;
m_size.y = 0;
}
else
{
// The inflate is valid.
2020-11-14 18:11:28 +00:00
m_pos.y += dy;
m_size.y -= 2 * dy; // m_Size.y <0: inflate when dy > 0
}
}
return *this;
}
void EDA_RECT::Merge( const EDA_RECT& aRect )
{
if( !m_init )
{
if( aRect.IsValid() )
{
2020-11-14 18:11:28 +00:00
m_pos = aRect.GetPosition();
m_size = aRect.GetSize();
m_init = true;
}
return;
}
Normalize(); // ensure width and height >= 0
EDA_RECT rect = aRect;
rect.Normalize(); // ensure width and height >= 0
VECTOR2I end = GetEnd();
VECTOR2I rect_end = rect.GetEnd();
// Change origin and size in order to contain the given rect
2020-11-14 18:11:28 +00:00
m_pos.x = std::min( m_pos.x, rect.m_pos.x );
m_pos.y = std::min( m_pos.y, rect.m_pos.y );
end.x = std::max( end.x, rect_end.x );
end.y = std::max( end.y, rect_end.y );
SetEnd( end );
}
void EDA_RECT::Merge( const VECTOR2I& aPoint )
{
if( !m_init )
{
2020-11-14 18:11:28 +00:00
m_pos = aPoint;
m_size = VECTOR2I( 0, 0 );
m_init = true;
return;
}
Normalize(); // ensure width and height >= 0
VECTOR2I end = GetEnd();
// Change origin and size in order to contain the given rect
2020-11-14 18:11:28 +00:00
m_pos.x = std::min( m_pos.x, aPoint.x );
m_pos.y = std::min( m_pos.y, aPoint.y );
end.x = std::max( end.x, aPoint.x );
end.y = std::max( end.y, aPoint.y );
SetEnd( end );
}
double EDA_RECT::GetArea() const
{
return (double) GetWidth() * (double) GetHeight();
}
EDA_RECT EDA_RECT::Common( const EDA_RECT& aRect ) const
{
EDA_RECT r;
if( Intersects( aRect ) )
{
VECTOR2I originA( std::min( GetOrigin().x, GetEnd().x ),
std::min( GetOrigin().y, GetEnd().y ) );
VECTOR2I originB( std::min( aRect.GetOrigin().x, aRect.GetEnd().x ),
std::min( aRect.GetOrigin().y, aRect.GetEnd().y ) );
VECTOR2I endA( std::max( GetOrigin().x, GetEnd().x ),
std::max( GetOrigin().y, GetEnd().y ) );
VECTOR2I endB( std::max( aRect.GetOrigin().x, aRect.GetEnd().x ),
std::max( aRect.GetOrigin().y, aRect.GetEnd().y ) );
r.SetOrigin(
VECTOR2I( std::max( originA.x, originB.x ), std::max( originA.y, originB.y ) ) );
r.SetEnd( VECTOR2I( std::min( endA.x, endB.x ), std::min( endA.y, endB.y ) ) );
}
return r;
}
const EDA_RECT EDA_RECT::GetBoundingBoxRotated( const VECTOR2I& aRotCenter, double aAngle ) const
{
VECTOR2I corners[4];
// Build the corners list
corners[0] = GetOrigin();
corners[2] = GetEnd();
corners[1].x = corners[0].x;
corners[1].y = corners[2].y;
corners[3].x = corners[2].x;
corners[3].y = corners[0].y;
// Rotate all corners, to find the bounding box
for( int ii = 0; ii < 4; ii++ )
RotatePoint( corners[ii], aRotCenter, aAngle );
// Find the corners bounding box
VECTOR2I start = corners[0];
VECTOR2I end = corners[0];
for( int ii = 1; ii < 4; ii++ )
{
start.x = std::min( start.x, corners[ii].x );
start.y = std::min( start.y, corners[ii].y );
end.x = std::max( end.x, corners[ii].x );
end.y = std::max( end.y, corners[ii].y );
}
EDA_RECT bbox;
bbox.SetOrigin( start );
bbox.SetEnd( end );
return bbox;
}