kicad/qa/common/geometry/test_fillet.cpp

212 lines
5.9 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 KiCad Developers, see CHANGELOG.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <boost/test/unit_test.hpp>
#include <boost/test/test_case_template.hpp>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_line_chain.h>
#include <algorithm>
#include "geom_test_utils.h"
struct FilletFixture
{
};
/**
* Declares the FilletFixture struct as the boost test fixture.
*/
BOOST_FIXTURE_TEST_SUITE( Fillet, FilletFixture )
/*
* @brief check that a single segment of a fillet complies with the geometric
* constraint:
*
* 1: The end points are radius from the centre point
* 2: The mid point error is acceptable
* 3: The segment midpoints are perpendicular to the radius
*/
void TestFilletSegmentConstraints( const SEG& aSeg, VECTOR2I aRadCentre,
int aRadius, int aError )
{
using namespace GEOM_TEST;
const auto diffA = aRadCentre - aSeg.A;
const auto diffB = aRadCentre - aSeg.B;
const auto diffC = aRadCentre - aSeg.Center();
// Check 1: radii (error of 1 for rounding)
BOOST_CHECK_PREDICATE( IsWithinAndBelow<int>,
( diffA.EuclideanNorm() )( aRadius )( 1 ) );
BOOST_CHECK_PREDICATE( IsWithinAndBelow<int>,
( diffB.EuclideanNorm() )( aRadius )( 1 ) );
// Check 2: Mid-point error
BOOST_CHECK_PREDICATE( IsWithinAndBelow<int>,
( diffC.EuclideanNorm() )( aRadius )( aError + 1 ) );
// Check 3: Mid-point -> radius centre perpendicular
const auto perpendularityMaxError = ( M_PI / 2 ) / 10;
BOOST_CHECK_PREDICATE( ArePerpendicular<int>,
( diffC )( aSeg.A - aSeg.B )( perpendularityMaxError ) );
}
/**
* @brief: Create a square, fillet it, and check a corner for correctness
*/
void TestSquareFillet( int aSquareSize, int aRadius, int aError )
{
using namespace GEOM_TEST;
SHAPE_POLY_SET squarePolySet;
squarePolySet.AddOutline( MakeSquarePolyLine(aSquareSize, VECTOR2I(0, 0) ) );
SHAPE_POLY_SET filleted = FilletPolySet(squarePolySet, aRadius, aError);
// expect a single filleted polygon
BOOST_CHECK_EQUAL( filleted.OutlineCount(), 1 );
auto segIter = filleted.IterateSegments();
const VECTOR2I radCentre { aSquareSize / 2 - aRadius,
aSquareSize / 2 - aRadius };
int checked = 0;
for( ; segIter; segIter++ )
{
// Only check the first Quadrant
if ( SegmentCompletelyInQuadrant( *segIter, QUADRANT::Q1 ) )
{
TestFilletSegmentConstraints( *segIter, radCentre, aRadius, aError );
checked++;
}
}
// we expect there to be at least one segment in the fillet
BOOST_CHECK( checked > 0 );
}
/**
* @brief: Create a square concave corner, fillet and check correctness
*/
void TestConcaveSquareFillet( int aSquareSize, int aRadius, int aError )
{
using namespace GEOM_TEST;
SHAPE_POLY_SET polySet;
SHAPE_LINE_CHAIN polyLine;
/*
* L-shape:
* ----
* | |
* ---- |
* | |
* --------
*/
polyLine.Append( VECTOR2I{ 0, 0 } );
polyLine.Append( VECTOR2I{ 0, aSquareSize / 2 } );
polyLine.Append( VECTOR2I{ aSquareSize / 2 , aSquareSize / 2 } );
polyLine.Append( VECTOR2I{ aSquareSize / 2 , aSquareSize } );
polyLine.Append( VECTOR2I{ aSquareSize, aSquareSize } );
polyLine.Append( VECTOR2I{ aSquareSize, 0 } );
polyLine.SetClosed( true );
polySet.AddOutline( polyLine );
SHAPE_POLY_SET filleted = FilletPolySet(polySet, aRadius, aError);
// expect a single filleted polygon
BOOST_CHECK_EQUAL( filleted.OutlineCount(), 1 );
auto segIter = filleted.IterateSegments();
const VECTOR2I radCentre { aSquareSize / 2 - aRadius,
aSquareSize / 2 + aRadius };
int checked = 0;
for( ; segIter; segIter++ )
{
// Only check segments around the concave corner
if ( SegmentCompletelyWithinRadius( *segIter, radCentre, aRadius + 1) )
{
TestFilletSegmentConstraints( *segIter, radCentre, aRadius, aError );
checked++;
}
}
// we expect there to be at least one segment in the fillet
BOOST_CHECK( checked > 0 );
}
struct SquareFilletTestCase
{
int squareSize;
int radius;
int error;
};
const std::vector<SquareFilletTestCase> squareFilletCases {
{ 1000, 120, 10 },
{ 1000, 10, 1 },
/* Large error relative to fillet */
{ 1000, 10, 5 },
/* Very small error relative to fillet(many segments in interpolation) */
{ 70000, 1000, 1 },
};
/**
* Tests the SHAPE_POLY_SET::FilletPolygon method against certain geometric
* constraints.
*/
BOOST_AUTO_TEST_CASE( SquareFillet )
{
for ( const auto& testCase : squareFilletCases )
{
TestSquareFillet( testCase.squareSize, testCase.radius, testCase.error );
}
}
BOOST_AUTO_TEST_CASE( SquareConcaveFillet )
{
for ( const auto& testCase : squareFilletCases )
{
TestConcaveSquareFillet( testCase.squareSize, testCase.radius, testCase.error );
}
}
BOOST_AUTO_TEST_SUITE_END()