kicad/3d-viewer/3d_rendering/3d_render_raytracing/shapes3D/croundseg.cpp

469 lines
16 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file croundseg.cpp
* @brief
*/
#include "croundseg.h"
CROUNDSEG::CROUNDSEG( const CROUNDSEGMENT2D &aSeg2D,
float aZmin,
float aZmax ) : COBJECT( OBJ3D_ROUNDSEG ),
m_segment( aSeg2D.m_segment )
{
m_radius = aSeg2D.GetRadius();
m_radius_squared = m_radius * m_radius;
m_inv_radius = 1.0f / m_radius;
m_plane_dir_left = SFVEC3F( -m_segment.m_Dir.y, m_segment.m_Dir.x, 0.0f );
m_plane_dir_right = SFVEC3F( m_segment.m_Dir.y, -m_segment.m_Dir.x, 0.0f );
m_bbox.Reset();
m_bbox.Set( SFVEC3F( m_segment.m_Start.x, m_segment.m_Start.y, aZmin),
SFVEC3F( m_segment.m_End.x, m_segment.m_End.y, aZmax) );
m_bbox.Set( m_bbox.Min() - SFVEC3F( m_radius, m_radius, 0.0f ),
m_bbox.Max() + SFVEC3F( m_radius, m_radius, 0.0f ) );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
m_center_left = m_centroid + m_plane_dir_left * m_radius;
m_center_right = m_centroid + m_plane_dir_right * m_radius;
m_seglen_over_two_squared = (m_segment.m_Length / 2.0f) *
(m_segment.m_Length / 2.0f);
}
bool CROUNDSEG::Intersect( const RAY &aRay, HITINFO &aHitInfo ) const
{
// Top / Botton plane
// /////////////////////////////////////////////////////////////////////////
float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z;
float tPlane = ( zPlanePos - aRay.m_Origin.z) * aRay.m_InvDir.z;
if( ( tPlane >= aHitInfo.m_tHit ) || ( tPlane < FLT_EPSILON ) )
return false; // Early exit
SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane,
aRay.m_Origin.y + aRay.m_Dir.y * tPlane );
float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d );
if( dSquared <= m_radius_squared )
{
if( tPlane < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = tPlane;
//aHitInfo.m_HitPoint = SFVEC3F( planeHitPoint2d.x,
// planeHitPoint2d.y,
// aRay.m_Origin.z + aRay.m_Dir.z * tPlane );
aHitInfo.m_HitNormal = SFVEC3F( 0.0f,
0.0f,
aRay.m_dirIsNeg[2]? 1.0f: -1.0f );
aHitInfo.pHitObject = this;
if (m_material->GetNormalPerturbator())
{
aHitInfo.m_HitNormal = aHitInfo.m_HitNormal +
m_material->GetNormalPerturbator()->Generate( aRay, aHitInfo );
aHitInfo.m_HitNormal = glm::normalize( aHitInfo.m_HitNormal );
}
return true;
}
return false;
}
// Test LEFT / RIGHT plane
// /////////////////////////////////////////////////////////////////////////
float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir );
if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
{
const float n_dot_ray_origin = glm::dot( m_plane_dir_right,
m_center_right - aRay.m_Origin );
const float t = n_dot_ray_origin / normal_dot_ray;
if( t > 0.0f )
{
const SFVEC3F hitP = aRay.at( t );
const SFVEC3F v = hitP - m_center_right;
const float len = glm::dot( v, v );
if( (len <= m_seglen_over_two_squared) &&
(hitP.z >= m_bbox.Min().z) &&
(hitP.z <= m_bbox.Max().z) )
{
if( t < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = t;
//aHitInfo.m_HitPoint = hitP;
aHitInfo.m_HitNormal = SFVEC3F( m_plane_dir_right.x,
m_plane_dir_right.y,
0.0f );
aHitInfo.pHitObject = this;
if (m_material->GetNormalPerturbator())
{
aHitInfo.m_HitNormal = aHitInfo.m_HitNormal +
m_material->GetNormalPerturbator()->Generate( aRay, aHitInfo );
aHitInfo.m_HitNormal = glm::normalize( aHitInfo.m_HitNormal );
}
return true;
}
return false;
}
}
}
else
{
normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir );
if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
{
const float n_dot_ray_origin = glm::dot( m_plane_dir_left,
m_center_left - aRay.m_Origin );
const float t = n_dot_ray_origin / normal_dot_ray;
if( t > 0.0f )
{
const SFVEC3F hitP = aRay.at( t );
const SFVEC3F v = hitP - m_center_left;
const float len = glm::dot( v, v );
if( (len <= m_seglen_over_two_squared) &&
(hitP.z >= m_bbox.Min().z) &&
(hitP.z <= m_bbox.Max().z) )
{
if( t < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = t;
//aHitInfo.m_HitPoint = hitP;
aHitInfo.m_HitNormal = SFVEC3F( m_plane_dir_left.x,
m_plane_dir_left.y,
0.0f );
aHitInfo.pHitObject = this;
if (m_material->GetNormalPerturbator())
{
aHitInfo.m_HitNormal = aHitInfo.m_HitNormal +
m_material->GetNormalPerturbator()->Generate( aRay, aHitInfo );
aHitInfo.m_HitNormal = glm::normalize( aHitInfo.m_HitNormal );
}
return true;
}
return false;
}
}
}
}
// Based on:
// http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
// Ray-sphere intersection: geometric
// /////////////////////////////////////////////////////////////////////////
const double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x;
const double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y;
const double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start;
const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
(double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
const double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start +
(double)aRay.m_Dir.y * (double)OCy_Start;
const double c_Start = p_dot_p_Start - m_radius_squared;
const float delta_Start = (float)(b_Start * b_Start - a * c_Start);
if( delta_Start > FLT_EPSILON )
{
const float sdelta = sqrtf( delta_Start );
const float t = (-b_Start - sdelta) / a;
const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
if( (z >= m_bbox.Min().z) &&
(z <= m_bbox.Max().z) )
{
if( t < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = t;
SFVEC2F hitPoint2D = aRay.at2D( t );
//aHitInfo.m_HitPoint = aRay.at( t );
aHitInfo.m_HitNormal = SFVEC3F(
(hitPoint2D.x - m_segment.m_Start.x) * m_inv_radius,
(hitPoint2D.y - m_segment.m_Start.y) * m_inv_radius,
0.0f );
aHitInfo.pHitObject = this;
if (m_material->GetNormalPerturbator())
{
aHitInfo.m_HitNormal = aHitInfo.m_HitNormal +
m_material->GetNormalPerturbator()->Generate( aRay, aHitInfo );
aHitInfo.m_HitNormal = glm::normalize( aHitInfo.m_HitNormal );
}
return true;
}
return false;
}
}
const double OCx_End = aRay.m_Origin.x - m_segment.m_End.x;
const double OCy_End = aRay.m_Origin.y - m_segment.m_End.y;
const double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End;
const double b_End = (double)aRay.m_Dir.x * (double)OCx_End +
(double)aRay.m_Dir.y * (double)OCy_End;
const double c_End = p_dot_p_End - m_radius_squared;
const float delta_End = (float)(b_End * b_End - a * c_End);
if( delta_End > FLT_EPSILON )
{
const float sdelta = sqrtf( delta_End );
const float t = (-b_End - sdelta) / a;
const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
if( (z >= m_bbox.Min().z) &&
(z <= m_bbox.Max().z) )
{
if( t < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = t;
//aHitInfo.m_HitPoint = aRay.at( t );
const SFVEC2F hitPoint2D = aRay.at2D( t );
aHitInfo.m_HitNormal = SFVEC3F(
(hitPoint2D.x - m_segment.m_End.x) * m_inv_radius,
(hitPoint2D.y - m_segment.m_End.y) * m_inv_radius,
0.0f );
aHitInfo.pHitObject = this;
if (m_material->GetNormalPerturbator())
{
aHitInfo.m_HitNormal = aHitInfo.m_HitNormal +
m_material->GetNormalPerturbator()->Generate( aRay, aHitInfo );
aHitInfo.m_HitNormal = glm::normalize( aHitInfo.m_HitNormal );
}
return true;
}
return false;
}
}
return false;
}
bool CROUNDSEG::IntersectP( const RAY &aRay, float aMaxDistance ) const
{
// Top / Botton plane
// /////////////////////////////////////////////////////////////////////////
const float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z;
const float tPlane = ( zPlanePos - aRay.m_Origin.z) * aRay.m_InvDir.z;
if( ( tPlane >= aMaxDistance) || ( tPlane < FLT_EPSILON ) )
return false; // Early exit
const SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane,
aRay.m_Origin.y + aRay.m_Dir.y * tPlane );
const float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d );
if( dSquared <= m_radius_squared )
{
if( tPlane < aMaxDistance )
return true;
return false;
}
// Since the IntersectP is used for shadows, we are simplifying the test
// intersection and only consider the top/bottom plane of the segment
return false;
#if 0
// Test LEFT / RIGHT plane
// /////////////////////////////////////////////////////////////////////////
float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir );
if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
{
float n_dot_ray_origin = glm::dot( m_plane_dir_right,
m_center_right - aRay.m_Origin );
float t = n_dot_ray_origin / normal_dot_ray;
if( t > 0.0f )
{
SFVEC3F hitP = aRay.at( t );
SFVEC3F v = hitP - m_center_right;
float len = glm::dot( v, v );
if( (len <= m_seglen_over_two_squared) &&
(hitP.z >= m_bbox.Min().z) && (hitP.z <= m_bbox.Max().z) )
{
if( t < aMaxDistance )
return true;
return false;
}
}
}
else
{
normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir );
if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
{
const float n_dot_ray_origin = glm::dot( m_plane_dir_left,
m_center_left - aRay.m_Origin );
const float t = n_dot_ray_origin / normal_dot_ray;
if( t > 0.0f )
{
SFVEC3F hitP = aRay.at( t );
SFVEC3F v = hitP - m_center_left;
float len = glm::dot( v, v );
if( (len <= m_seglen_over_two_squared) &&
(hitP.z >= m_bbox.Min().z) && (hitP.z <= m_bbox.Max().z) )
{
if( t < aMaxDistance )
return true;
return false;
}
}
}
}
// Based on:
// http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
// Ray-sphere intersection: geometric
// /////////////////////////////////////////////////////////////////////////
double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x;
double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y;
double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start;
double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
(double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start +
(double)aRay.m_Dir.y * (double)OCy_Start;
double c_Start = p_dot_p_Start - m_radius_squared;
float delta_Start = (float)(b_Start * b_Start - a * c_Start);
if( delta_Start > FLT_EPSILON )
{
float sdelta = sqrtf( delta_Start );
float t = (-b_Start - sdelta) / a;
float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
if( (z >= m_bbox.Min().z) &&
(z <= m_bbox.Max().z) )
{
if( t < aMaxDistance )
return true;
return false;
}
}
double OCx_End = aRay.m_Origin.x - m_segment.m_End.x;
double OCy_End = aRay.m_Origin.y - m_segment.m_End.y;
double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End;
double b_End = (double)aRay.m_Dir.x * (double)OCx_End +
(double)aRay.m_Dir.y * (double)OCy_End;
double c_End = p_dot_p_End - m_radius_squared;
float delta_End = (float)(b_End * b_End - a * c_End);
if( delta_End > FLT_EPSILON )
{
float sdelta = sqrtf( delta_End );
float t = (-b_End - sdelta) / a;
float z = aRay.m_Origin.z + t * aRay.m_Dir.z;
if( (z >= m_bbox.Min().z) &&
(z <= m_bbox.Max().z) )
{
if( t < aMaxDistance )
return true;
return false;
}
}
return false;
#endif
}
bool CROUNDSEG::Intersects( const CBBOX &aBBox ) const
{
//!TODO: improove
return m_bbox.Intersects( aBBox );
}
SFVEC3F CROUNDSEG::GetDiffuseColor( const HITINFO &aHitInfo ) const
{
(void)aHitInfo; // unused
return m_diffusecolor;
}