kicad/pcb_calculator/calculator_panels/panel_electrical_spacing.cpp

198 lines
6.8 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2011 jean-pierre.charras
* Copyright (C) 1992-2021 Kicad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* see
* http://www.desmith.net/NMdS/Electronics/TraceWidth.html
* http://www.ultracad.com/articles/pcbtemp.pdf
* for more info
*/
#include <calculator_panels/panel_electrical_spacing.h>
#include <pcb_calculator_settings.h>
#include <string_utils.h>
#include <widgets/unit_selector.h>
#include <units_scales.h>
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
extern double DoubleFromString( const wxString& TextValue );
// The IPC2221 formula used to calculate track width is valid only for copper material
const double copper_resistivity = 1.72e-8;
#define VALUE_COUNT 7
#define CLASS_COUNT 10
/* These values come from IPC2221
* there are 10 voltage classes:
* "0 ... 15V" "16 ... 30V" "31 ... 50V" "51 ... 100V"
* "101 ... 150V" "151 ... 170V" "171 ... 250V"
* "251 ... 300V" "301 ... 500V" " > 500V"
* and for each voltage class
* there ar e 7 cases:
* "B1" "B2" "B3" "B4" "A5" "A6" "A7"
* B1 - Internal Conductors
* B2 - External Conductors, uncoated, sea level to 3050 m
* B3 - External Conductors, uncoated, over 3050 m
* B4 - External Conductors, with permanent polymer coating (any elevation)
* A5 - External Conductors, with conformal coating over assembly (any elevation)
* A6 - External Component lead/termination, uncoated
* A7 - External Component lead termination, with conformal coating (any elevation)
*/
/* For voltages greater than 500V, the (per volt) table values
* must be added to the 500V values. For example, the elec-
* trical spacing for a Type B1 board with 600V is calculated
* as:
* 600V - 500V = 100V
* 0.25 mm + (100V x 0.0025
*/
static double clist[CLASS_COUNT][VALUE_COUNT] =
{
{ 0.05 * UNIT_MM, 0.1 * UNIT_MM, 0.1 * UNIT_MM, 0.05 * UNIT_MM, 0.13 * UNIT_MM, 0.13 *
UNIT_MM,
0.13 * UNIT_MM }, // 0 ... 15V
{ 0.05 * UNIT_MM, 0.1 * UNIT_MM, 0.1 * UNIT_MM, 0.05 * UNIT_MM, 0.13 * UNIT_MM, 0.25 *
UNIT_MM,
0.13 * UNIT_MM }, // 16 ... 30V
{ 0.1 * UNIT_MM, 0.6 * UNIT_MM, 0.6 * UNIT_MM, 0.13 * UNIT_MM, 0.13 * UNIT_MM, 0.4 *
UNIT_MM,
0.13 * UNIT_MM }, // 31 ... 50V
{ 0.1 * UNIT_MM, 0.6 * UNIT_MM, 1.5 * UNIT_MM, 0.13 * UNIT_MM, 0.13 * UNIT_MM, 0.5 *
UNIT_MM,
0.13 * UNIT_MM }, // 51 ... 100V
{ 0.2 * UNIT_MM, 0.6 * UNIT_MM, 3.2 * UNIT_MM, 0.4 * UNIT_MM, 0.4 * UNIT_MM, 0.8 *
UNIT_MM,
0.4 * UNIT_MM }, // 101 ... 150V
{ 0.2 * UNIT_MM, 1.25 * UNIT_MM, 3.2 * UNIT_MM, 0.4 * UNIT_MM, 0.4 * UNIT_MM, 0.8 *
UNIT_MM,
0.4 * UNIT_MM }, // 151 ... 170V
{ 0.2 * UNIT_MM, 1.25 * UNIT_MM, 6.4 * UNIT_MM, 0.4 * UNIT_MM, 0.4 * UNIT_MM, 0.8 *
UNIT_MM,
0.4 * UNIT_MM }, // 171 ... 250V
{ 0.2 * UNIT_MM, 1.25 * UNIT_MM, 12.5 * UNIT_MM, 0.4 * UNIT_MM, 0.4 * UNIT_MM, 0.8 *
UNIT_MM,
0.8 * UNIT_MM }, // 251 ... 300V
{ 0.25 * UNIT_MM, 2.5 * UNIT_MM, 12.5 * UNIT_MM, 0.8 * UNIT_MM, 0.8 * UNIT_MM, 1.5 *
UNIT_MM,
0.8 * UNIT_MM }, // 301 ... 500V
// These last values are used to calculate spacing for voltage > 500V
// there are not the spacing
{ 0.0025 * UNIT_MM, 0.005 * UNIT_MM, 0.025 * UNIT_MM, 0.00305 * UNIT_MM,
0.00305 * UNIT_MM, 0.00305 * UNIT_MM, 0.00305 * UNIT_MM }, // > 500V
};
PANEL_ELECTRICAL_SPACING::PANEL_ELECTRICAL_SPACING( wxWindow* parent, wxWindowID id,
const wxPoint& pos, const wxSize& size,
long style, const wxString& name ) :
PANEL_ELECTRICAL_SPACING_BASE( parent, id, pos, size, style, name )
{
// Autosize the row label column to be sure label are not truncated
m_gridElectricalSpacingValues->SetRowLabelSize( wxGRID_AUTOSIZE );
// Needed on wxWidgets 3.0 to ensure sizers are correctly set
GetSizer()->SetSizeHints( this );
}
PANEL_ELECTRICAL_SPACING::~PANEL_ELECTRICAL_SPACING()
{
}
void PANEL_ELECTRICAL_SPACING::ThemeChanged()
{
// TODO: Only the grid needs updating, but it isn't done automatically (https://trac.wxwidgets.org/ticket/19279)
}
void PANEL_ELECTRICAL_SPACING::SaveSettings( PCB_CALCULATOR_SETTINGS* aCfg )
{
aCfg->m_Electrical.spacing_units = m_ElectricalSpacingUnitsSelector->GetSelection();
aCfg->m_Electrical.spacing_voltage = m_ElectricalSpacingVoltage->GetValue();
}
void PANEL_ELECTRICAL_SPACING::LoadSettings( PCB_CALCULATOR_SETTINGS* aCfg )
{
m_ElectricalSpacingUnitsSelector->SetSelection( aCfg->m_Electrical.spacing_units );
m_ElectricalSpacingVoltage->SetValue( aCfg->m_Electrical.spacing_voltage );
ElectricalSpacingUpdateData( m_ElectricalSpacingUnitsSelector->GetUnitScale() );
}
void PANEL_ELECTRICAL_SPACING::OnElectricalSpacingUnitsSelection( wxCommandEvent& event )
{
ElectricalSpacingUpdateData( m_ElectricalSpacingUnitsSelector->GetUnitScale() );
}
void PANEL_ELECTRICAL_SPACING::OnElectricalSpacingRefresh( wxCommandEvent& event )
{
ElectricalSpacingUpdateData( m_ElectricalSpacingUnitsSelector->GetUnitScale() );
}
void PANEL_ELECTRICAL_SPACING::ElectricalSpacingUpdateData( double aUnitScale )
{
wxString txt;
double voltage = 500.0; // to calculate values at V > 500V
txt = m_ElectricalSpacingVoltage->GetValue();
if( ! txt.IsEmpty() )
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
voltage = DoubleFromString(txt);
if( voltage < 500.0 )
voltage = 500.0;
txt.Printf( wxT( "%g" ), voltage );
m_ElectricalSpacingVoltage->SetValue( txt );
for( int ii = 0; ii < CLASS_COUNT-1; ii++ )
{
for( int jj = 0; jj < VALUE_COUNT; jj++ )
{
txt.Printf( wxT( "%g" ), clist[ii][jj] / aUnitScale );
m_gridElectricalSpacingValues->SetCellValue( ii, jj, txt );
}
}
for( int jj = 0; jj < VALUE_COUNT; jj++ )
{
double spacing = clist[CLASS_COUNT-2][jj];
double spacing_extra = clist[CLASS_COUNT-1][jj];
spacing += spacing_extra * ( voltage - 500.0 );
txt.Printf( wxT( "%g" ), spacing / aUnitScale );
m_gridElectricalSpacingValues->SetCellValue( CLASS_COUNT-1, jj, txt );
}
m_gridElectricalSpacingValues->SetRowLabelSize( wxGRID_AUTOSIZE );
}