kicad/eeschema/cmp_tree_model.cpp

283 lines
7.9 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Chris Pavlina <pavlina.chris@gmail.com>
* Copyright (C) 2014 Henner Zeller <h.zeller@acm.org>
* Copyright (C) 2014-2017 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cmp_tree_model.h>
#include <class_library.h>
#include <eda_pattern_match.h>
#include <make_unique.h>
#include <utility>
// Each node gets this lowest score initially, without any matches applied.
// Matches will then increase this score depending on match quality. This way,
// an empty search string will result in all components being displayed as they
// have the minimum score. However, in that case, we avoid expanding all the
// nodes asd the result is very unspecific.
static const unsigned kLowestDefaultScore = 1;
// Creates a score depending on the position of a string match. If the position
// is 0 (= prefix match), this returns the maximum score. This degrades until
// pos == max, which returns a score of 0; Evertyhing else beyond that is just
// 0. Only values >= 0 allowed for position and max.
//
// @param aPosition is the position a string has been found in a substring.
// @param aMaximum is the maximum score this function returns.
// @return position dependent score.
static int matchPosScore(int aPosition, int aMaximum)
{
return ( aPosition < aMaximum ) ? aMaximum - aPosition : 0;
}
void CMP_TREE_NODE::ResetScore()
{
for( auto& child: Children )
child->ResetScore();
Score = kLowestDefaultScore;
}
void CMP_TREE_NODE::AssignIntrinsicRanks()
{
std::vector<CMP_TREE_NODE*> sort_buf;
for( auto const& node: Children )
sort_buf.push_back( &*node );
std::sort( sort_buf.begin(), sort_buf.end(),
[]( CMP_TREE_NODE* a, CMP_TREE_NODE* b ) -> bool
{ return a->MatchName > b->MatchName; } );
for( int i = 0; i < (int) sort_buf.size(); ++i )
sort_buf[i]->IntrinsicRank = i;
}
void CMP_TREE_NODE::SortNodes()
{
std::sort( Children.begin(), Children.end(),
[]( std::unique_ptr<CMP_TREE_NODE> const& a, std::unique_ptr<CMP_TREE_NODE> const& b )
{ return Compare( *a, *b ) > 0; } );
for( auto& node: Children )
{
node->SortNodes();
}
}
int CMP_TREE_NODE::Compare( CMP_TREE_NODE const& aNode1, CMP_TREE_NODE const& aNode2 )
{
if( aNode1.Type != aNode2.Type )
return 0;
if( aNode1.Score != aNode2.Score )
return aNode1.Score - aNode2.Score;
if( aNode1.Parent != aNode2.Parent )
return 0;
return aNode1.IntrinsicRank - aNode2.IntrinsicRank;
}
CMP_TREE_NODE::CMP_TREE_NODE()
: Parent( nullptr ),
Type( INVALID ),
IntrinsicRank( 0 ),
Score( kLowestDefaultScore ),
Unit( 0 )
{}
CMP_TREE_NODE_UNIT::CMP_TREE_NODE_UNIT( CMP_TREE_NODE* aParent, int aUnit )
{
Parent = aParent;
Type = UNIT;
Unit = aUnit;
LibId = aParent->LibId;
Name = _( "Unit" ) + " " + LIB_PART::SubReference( aUnit, false );
Desc = wxEmptyString;
MatchName = wxEmptyString;
IntrinsicRank = -aUnit;
}
CMP_TREE_NODE_LIB_ID::CMP_TREE_NODE_LIB_ID( CMP_TREE_NODE* aParent, LIB_ALIAS* aAlias )
{
wxASSERT( aParent && aAlias );
Type = LIBID;
Parent = aParent;
Name = aAlias->GetName();
Desc = aAlias->GetDescription();
// Parent node is the library nickname so set the LIB_ID library nickname.
IsRoot = aAlias->IsRoot();
// Pre-normalized strings for fast case-insensitive matching
// Search text spaces out keywords and description to penalize description
// matches - earlier matches are worth more.
MatchName = aAlias->GetName().Lower();
SearchText = (aAlias->GetKeyWords() + " " + Desc).Lower();
// Extract default footprint text
LIB_PART* part = aAlias->GetPart();
wxString footprint;
if( part )
{
LibId = part->GetLibId();
footprint = part->GetFootprintField().GetText();
}
// If a footprint is defined for the part,
// add it to the serach string
if( !footprint.IsEmpty() )
{
SearchText += " ";
SearchText += footprint.Lower();
}
if( part->IsMulti() )
{
for( int u = 1; u <= part->GetUnitCount(); ++u )
{
AddUnit( u );
}
}
}
CMP_TREE_NODE_UNIT& CMP_TREE_NODE_LIB_ID::AddUnit( int aUnit )
{
CMP_TREE_NODE_UNIT* unit = new CMP_TREE_NODE_UNIT( this, aUnit );
Children.push_back( std::unique_ptr<CMP_TREE_NODE>( unit ) );
return *unit;
}
void CMP_TREE_NODE_LIB_ID::UpdateScore( EDA_COMBINED_MATCHER& aMatcher )
{
if( Score <= 0 )
return; // Leaf nodes without scores are out of the game.
// Keywords and description we only count if the match string is at
// least two characters long. That avoids spurious, low quality
// matches. Most abbreviations are at three characters long.
int found_pos = EDA_PATTERN_NOT_FOUND;
int matchers_fired = 0;
if( aMatcher.GetPattern() == MatchName )
{
Score += 1000; // exact match. High score :)
}
else if( aMatcher.Find( MatchName, matchers_fired, found_pos ) )
{
// Substring match. The earlier in the string the better.
Score += matchPosScore( found_pos, 20 ) + 20;
}
else if( aMatcher.Find( Parent->MatchName, matchers_fired, found_pos ) )
{
Score += 19; // parent name matches. score += 19
}
else if( aMatcher.Find( SearchText, matchers_fired, found_pos ) )
{
// If we have a very short search term (like one or two letters),
// we don't want to accumulate scores if they just happen to be in
// keywords or description as almost any one or two-letter
// combination shows up in there.
if( aMatcher.GetPattern().length() >= 2 )
{
// For longer terms, we add scores 1..18 for positional match
// (higher in the front, where the keywords are).
Score += matchPosScore( found_pos, 17 ) + 1;
}
}
else
{
// No match. That's it for this item.
Score = 0;
}
// More matchers = better match
Score += 2 * matchers_fired;
}
CMP_TREE_NODE_LIB::CMP_TREE_NODE_LIB( CMP_TREE_NODE* aParent, wxString const& aName )
{
Type = LIB;
Name = aName;
MatchName = aName.Lower();
Parent = aParent;
LibId.SetLibNickname( aName );
}
CMP_TREE_NODE_LIB_ID& CMP_TREE_NODE_LIB::AddAlias( LIB_ALIAS* aAlias )
{
CMP_TREE_NODE_LIB_ID* alias = new CMP_TREE_NODE_LIB_ID( this, aAlias );
Children.push_back( std::unique_ptr<CMP_TREE_NODE>( alias ) );
return *alias;
}
void CMP_TREE_NODE_LIB::UpdateScore( EDA_COMBINED_MATCHER& aMatcher )
{
Score = 0;
for( auto& child: Children )
{
child->UpdateScore( aMatcher );
Score = std::max( Score, child->Score );
}
}
CMP_TREE_NODE_ROOT::CMP_TREE_NODE_ROOT()
{
Type = ROOT;
}
CMP_TREE_NODE_LIB& CMP_TREE_NODE_ROOT::AddLib( wxString const& aName )
{
CMP_TREE_NODE_LIB* lib = new CMP_TREE_NODE_LIB( this, aName );
Children.push_back( std::unique_ptr<CMP_TREE_NODE>( lib ) );
return *lib;
}
void CMP_TREE_NODE_ROOT::UpdateScore( EDA_COMBINED_MATCHER& aMatcher )
{
for( auto& child: Children )
child->UpdateScore( aMatcher );
}