kicad/include/boost/polygon/polygon_45_set_data.hpp

1878 lines
78 KiB
C++
Raw Normal View History

/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_SET_DATA_HPP
#define BOOST_POLYGON_POLYGON_45_SET_DATA_HPP
#include "polygon_90_set_data.hpp"
#include "detail/boolean_op_45.hpp"
#include "detail/polygon_45_formation.hpp"
#include "detail/polygon_45_touch.hpp"
#include "detail/property_merge_45.hpp"
namespace boost { namespace polygon{
enum RoundingOption { CLOSEST = 0, OVERSIZE = 1, UNDERSIZE = 2, SQRT2 = 3, SQRT1OVER2 = 4 };
enum CornerOption { INTERSECTION = 0, ORTHOGONAL = 1, UNFILLED = 2 };
template <typename ltype, typename rtype, int op_type>
class polygon_45_set_view;
struct polygon_45_set_concept {};
template <typename Unit>
class polygon_45_set_data {
public:
typedef typename polygon_45_formation<Unit>::Vertex45Compact Vertex45Compact;
typedef std::vector<Vertex45Compact> Polygon45VertexData;
typedef Unit coordinate_type;
typedef Polygon45VertexData value_type;
typedef typename value_type::const_iterator iterator_type;
typedef polygon_45_set_data operator_arg_type;
// default constructor
inline polygon_45_set_data() : error_data_(), data_(), dirty_(false), unsorted_(false), is_manhattan_(true) {}
// constructor from a geometry object
template <typename geometry_type>
inline polygon_45_set_data(const geometry_type& that) : error_data_(), data_(), dirty_(false), unsorted_(false), is_manhattan_(true) {
insert(that);
}
// copy constructor
inline polygon_45_set_data(const polygon_45_set_data& that) :
error_data_(that.error_data_), data_(that.data_), dirty_(that.dirty_),
unsorted_(that.unsorted_), is_manhattan_(that.is_manhattan_) {}
template <typename ltype, typename rtype, int op_type>
inline polygon_45_set_data(const polygon_45_set_view<ltype, rtype, op_type>& that) :
error_data_(), data_(), dirty_(false), unsorted_(false), is_manhattan_(true) {
(*this) = that.value();
}
// destructor
inline ~polygon_45_set_data() {}
// assignement operator
inline polygon_45_set_data& operator=(const polygon_45_set_data& that) {
if(this == &that) return *this;
error_data_ = that.error_data_;
data_ = that.data_;
dirty_ = that.dirty_;
unsorted_ = that.unsorted_;
is_manhattan_ = that.is_manhattan_;
return *this;
}
template <typename ltype, typename rtype, int op_type>
inline polygon_45_set_data& operator=(const polygon_45_set_view<ltype, rtype, op_type>& that) {
(*this) = that.value();
return *this;
}
template <typename geometry_object>
inline polygon_45_set_data& operator=(const geometry_object& geometry) {
data_.clear();
insert(geometry);
return *this;
}
// insert iterator range
inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) {
if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
dirty_ = true;
unsorted_ = true;
while(input_begin != input_end) {
insert(*input_begin, is_hole);
++input_begin;
}
}
// insert iterator range
template <typename iT>
inline void insert(iT input_begin, iT input_end, bool is_hole = false) {
if(input_begin == input_end) return;
dirty_ = true;
unsorted_ = true;
while(input_begin != input_end) {
insert(*input_begin, is_hole);
++input_begin;
}
}
inline void insert(const polygon_45_set_data& polygon_set, bool is_hole = false);
template <typename coord_type>
inline void insert(const polygon_45_set_data<coord_type>& polygon_set, bool is_hole = false);
template <typename geometry_type>
inline void insert(const geometry_type& geometry_object, bool is_hole = false) {
insert_dispatch(geometry_object, is_hole, typename geometry_concept<geometry_type>::type());
}
inline void insert_clean(const Vertex45Compact& vertex_45, bool is_hole = false) {
if(vertex_45.count.is_45()) is_manhattan_ = false;
data_.push_back(vertex_45);
if(is_hole) data_.back().count.invert();
}
inline void insert(const Vertex45Compact& vertex_45, bool is_hole = false) {
dirty_ = true;
unsorted_ = true;
insert_clean(vertex_45, is_hole);
}
template <typename coordinate_type_2>
inline void insert(const polygon_90_set_data<coordinate_type_2>& polygon_set, bool is_hole = false) {
if(polygon_set.orient() == VERTICAL) {
for(typename polygon_90_set_data<coordinate_type_2>::iterator_type itr = polygon_set.begin();
itr != polygon_set.end(); ++itr) {
Vertex45Compact vertex_45(point_data<Unit>((*itr).first, (*itr).second.first), 2, (*itr).second.second);
vertex_45.count[1] = (*itr).second.second;
if(is_hole) vertex_45.count[1] *= - 1;
insert_clean(vertex_45, is_hole);
}
} else {
for(typename polygon_90_set_data<coordinate_type_2>::iterator_type itr = polygon_set.begin();
itr != polygon_set.end(); ++itr) {
Vertex45Compact vertex_45(point_data<Unit>((*itr).second.first, (*itr).first), 2, (*itr).second.second);
vertex_45.count[1] = (*itr).second.second;
if(is_hole) vertex_45.count[1] *= - 1;
insert_clean(vertex_45, is_hole);
}
}
dirty_ = true;
unsorted_ = true;
}
template <typename output_container>
inline void get(output_container& output) const {
get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
}
inline bool has_error_data() const { return !error_data_.empty(); }
inline std::size_t error_count() const { return error_data_.size() / 4; }
inline void get_error_data(polygon_45_set_data& p) const {
p.data_.insert(p.data_.end(), error_data_.begin(), error_data_.end());
}
// equivalence operator
inline bool operator==(const polygon_45_set_data& p) const {
clean();
p.clean();
return data_ == p.data_;
}
// inequivalence operator
inline bool operator!=(const polygon_45_set_data& p) const {
return !((*this) == p);
}
// get iterator to begin vertex data
inline iterator_type begin() const {
return data_.begin();
}
// get iterator to end vertex data
inline iterator_type end() const {
return data_.end();
}
const value_type& value() const {
return data_;
}
// clear the contents of the polygon_45_set_data
inline void clear() { data_.clear(); error_data_.clear(); dirty_ = unsorted_ = false; is_manhattan_ = true; }
// find out if Polygon set is empty
inline bool empty() const { return data_.empty(); }
// get the Polygon set size in vertices
inline std::size_t size() const { clean(); return data_.size(); }
// get the current Polygon set capacity in vertices
inline std::size_t capacity() const { return data_.capacity(); }
// reserve size of polygon set in vertices
inline void reserve(std::size_t size) { return data_.reserve(size); }
// find out if Polygon set is sorted
inline bool sorted() const { return !unsorted_; }
// find out if Polygon set is clean
inline bool dirty() const { return dirty_; }
// find out if Polygon set is clean
inline bool is_manhattan() const { return is_manhattan_; }
bool clean() const;
void sort() const{
if(unsorted_) {
gtlsort(data_.begin(), data_.end());
unsorted_ = false;
}
}
template <typename input_iterator_type>
void set(input_iterator_type input_begin, input_iterator_type input_end) {
data_.clear();
insert(input_begin, input_end);
dirty_ = true;
unsorted_ = true;
}
void set_clean(const value_type& value) {
data_ = value;
dirty_ = false;
unsorted_ = false;
}
void set(const value_type& value) {
data_ = value;
dirty_ = true;
unsorted_ = true;
}
// append to the container cT with polygons (holes will be fractured vertically)
template <class cT>
void get_polygons(cT& container) const {
get_dispatch(container, polygon_45_concept());
}
// append to the container cT with PolygonWithHoles objects
template <class cT>
void get_polygons_with_holes(cT& container) const {
get_dispatch(container, polygon_45_with_holes_concept());
}
// append to the container cT with polygons of three or four verticies
// slicing orientation is vertical
template <class cT>
void get_trapezoids(cT& container) const {
clean();
typename polygon_45_formation<Unit>::Polygon45Tiling pf;
//std::cout << "FORMING POLYGONS\n";
pf.scan(container, data_.begin(), data_.end());
//std::cout << "DONE FORMING POLYGONS\n";
}
// append to the container cT with polygons of three or four verticies
template <class cT>
void get_trapezoids(cT& container, orientation_2d slicing_orientation) const {
if(slicing_orientation == VERTICAL) {
get_trapezoids(container);
} else {
polygon_45_set_data<Unit> ps(*this);
ps.transform(axis_transformation(axis_transformation::SWAP_XY));
cT result;
ps.get_trapezoids(result);
for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) {
::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
}
container.insert(container.end(), result.begin(), result.end());
}
}
// insert vertex sequence
template <class iT>
void insert_vertex_sequence(iT begin_vertex, iT end_vertex,
direction_1d winding, bool is_hole = false);
// get the external boundary rectangle
template <typename rectangle_type>
bool extents(rectangle_type& rect) const;
// snap verticies of set to even,even or odd,odd coordinates
void snap() const;
// |= &= += *= -= ^= binary operators
polygon_45_set_data& operator|=(const polygon_45_set_data& b);
polygon_45_set_data& operator&=(const polygon_45_set_data& b);
polygon_45_set_data& operator+=(const polygon_45_set_data& b);
polygon_45_set_data& operator*=(const polygon_45_set_data& b);
polygon_45_set_data& operator-=(const polygon_45_set_data& b);
polygon_45_set_data& operator^=(const polygon_45_set_data& b);
// resizing operations
polygon_45_set_data& operator+=(Unit delta);
polygon_45_set_data& operator-=(Unit delta);
// shrink the Polygon45Set by shrinking
polygon_45_set_data& resize(coordinate_type resizing, RoundingOption rounding = CLOSEST,
CornerOption corner = INTERSECTION);
// transform set
template <typename transformation_type>
polygon_45_set_data& transform(const transformation_type& tr);
// scale set
polygon_45_set_data& scale_up(typename coordinate_traits<Unit>::unsigned_area_type factor);
polygon_45_set_data& scale_down(typename coordinate_traits<Unit>::unsigned_area_type factor);
polygon_45_set_data& scale(double scaling);
// self_intersect
polygon_45_set_data& self_intersect() {
sort();
applyAdaptiveUnary_<1>(); //1 = AND
dirty_ = false;
return *this;
}
// self_xor
polygon_45_set_data& self_xor() {
sort();
applyAdaptiveUnary_<3>(); //3 = XOR
dirty_ = false;
return *this;
}
// accumulate the bloated polygon
template <typename geometry_type>
polygon_45_set_data& insert_with_resize(const geometry_type& poly,
coordinate_type resizing, RoundingOption rounding = CLOSEST,
CornerOption corner = INTERSECTION,
bool hole = false) {
return insert_with_resize_dispatch(poly, resizing, rounding, corner, hole, typename geometry_concept<geometry_type>::type());
}
private:
mutable value_type error_data_;
mutable value_type data_;
mutable bool dirty_;
mutable bool unsorted_;
mutable bool is_manhattan_;
private:
//functions
template <typename output_container>
void get_dispatch(output_container& output, polygon_45_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_45_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container, typename concept_type>
void get_fracture(output_container& container, bool fracture_holes, concept_type ) const {
clean();
typename polygon_45_formation<Unit>::Polygon45Formation pf(fracture_holes);
//std::cout << "FORMING POLYGONS\n";
pf.scan(container, data_.begin(), data_.end());
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, undefined_concept) {
insert(geometry_object.begin(), geometry_object.end(), is_hole);
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, rectangle_concept tag);
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, polygon_90_concept ) {
insert_vertex_sequence(begin_points(geometry_object), end_points(geometry_object), winding(geometry_object), is_hole);
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, polygon_90_with_holes_concept ) {
insert_vertex_sequence(begin_points(geometry_object), end_points(geometry_object), winding(geometry_object), is_hole);
for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
begin_holes(geometry_object); itr != end_holes(geometry_object);
++itr) {
insert_vertex_sequence(begin_points(*itr), end_points(*itr), winding(*itr), !is_hole);
}
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, polygon_45_concept ) {
insert_vertex_sequence(begin_points(geometry_object), end_points(geometry_object), winding(geometry_object), is_hole);
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, polygon_45_with_holes_concept ) {
insert_vertex_sequence(begin_points(geometry_object), end_points(geometry_object), winding(geometry_object), is_hole);
for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
begin_holes(geometry_object); itr != end_holes(geometry_object);
++itr) {
insert_vertex_sequence(begin_points(*itr), end_points(*itr), winding(*itr), !is_hole);
}
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, polygon_45_set_concept ) {
polygon_45_set_data ps;
assign(ps, geometry_object);
insert(ps, is_hole);
}
template <typename geometry_type>
void insert_dispatch(const geometry_type& geometry_object, bool is_hole, polygon_90_set_concept ) {
std::list<polygon_90_data<coordinate_type> > pl;
assign(pl, geometry_object);
insert(pl.begin(), pl.end(), is_hole);
}
void insert_vertex_half_edge_45_pair(const point_data<Unit>& pt1, point_data<Unit>& pt2,
const point_data<Unit>& pt3, direction_1d wdir);
template <typename geometry_type>
polygon_45_set_data& insert_with_resize_dispatch(const geometry_type& poly,
coordinate_type resizing, RoundingOption rounding,
CornerOption corner, bool hole, polygon_45_concept tag);
// accumulate the bloated polygon with holes
template <typename geometry_type>
polygon_45_set_data& insert_with_resize_dispatch(const geometry_type& poly,
coordinate_type resizing, RoundingOption rounding,
CornerOption corner, bool hole, polygon_45_with_holes_concept tag);
static void snap_vertex_45(Vertex45Compact& vertex);
public:
template <int op>
void applyAdaptiveBoolean_(const polygon_45_set_data& rvalue) const;
template <int op>
void applyAdaptiveBoolean_(polygon_45_set_data& result, const polygon_45_set_data& rvalue) const;
template <int op>
void applyAdaptiveUnary_() const;
};
template <typename T>
struct geometry_concept<polygon_45_set_data<T> > {
typedef polygon_45_set_concept type;
};
template <typename iT, typename T>
void scale_up_vertex_45_compact_range(iT beginr, iT endr, T factor) {
for( ; beginr != endr; ++beginr) {
scale_up((*beginr).pt, factor);
}
}
template <typename iT, typename T>
void scale_down_vertex_45_compact_range_blindly(iT beginr, iT endr, T factor) {
for( ; beginr != endr; ++beginr) {
scale_down((*beginr).pt, factor);
}
}
template <typename Unit>
inline std::pair<int, int> characterizeEdge45(const point_data<Unit>& pt1, const point_data<Unit>& pt2) {
std::pair<int, int> retval(0, 1);
if(pt1.x() == pt2.x()) {
retval.first = 3;
retval.second = -1;
return retval;
}
//retval.second = pt1.x() < pt2.x() ? -1 : 1;
retval.second = 1;
if(pt1.y() == pt2.y()) {
retval.first = 1;
} else if(pt1.x() < pt2.x()) {
if(pt1.y() < pt2.y()) {
retval.first = 2;
} else {
retval.first = 0;
}
} else {
if(pt1.y() < pt2.y()) {
retval.first = 0;
} else {
retval.first = 2;
}
}
return retval;
}
template <typename cT, typename pT>
bool insert_vertex_half_edge_45_pair_into_vector(cT& output,
const pT& pt1, pT& pt2,
const pT& pt3,
direction_1d wdir) {
int multiplier = wdir == LOW ? -1 : 1;
typename cT::value_type vertex(pt2, 0, 0);
//std::cout << pt1 << " " << pt2 << " " << pt3 << std::endl;
std::pair<int, int> check;
check = characterizeEdge45(pt1, pt2);
//std::cout << "index " << check.first << " " << check.second * -multiplier << std::endl;
vertex.count[check.first] += check.second * -multiplier;
check = characterizeEdge45(pt2, pt3);
//std::cout << "index " << check.first << " " << check.second * multiplier << std::endl;
vertex.count[check.first] += check.second * multiplier;
output.push_back(vertex);
return vertex.count.is_45();
}
template <typename Unit>
inline void polygon_45_set_data<Unit>::insert_vertex_half_edge_45_pair(const point_data<Unit>& pt1, point_data<Unit>& pt2,
const point_data<Unit>& pt3,
direction_1d wdir) {
if(insert_vertex_half_edge_45_pair_into_vector(data_, pt1, pt2, pt3, wdir)) is_manhattan_ = false;
}
template <typename Unit>
template <class iT>
inline void polygon_45_set_data<Unit>::insert_vertex_sequence(iT begin_vertex, iT end_vertex,
direction_1d winding, bool is_hole) {
if(begin_vertex == end_vertex) return;
if(is_hole) winding = winding.backward();
iT itr = begin_vertex;
if(itr == end_vertex) return;
point_data<Unit> firstPt = *itr;
++itr;
point_data<Unit> secondPt(firstPt);
//skip any duplicate points
do {
if(itr == end_vertex) return;
secondPt = *itr;
++itr;
} while(secondPt == firstPt);
point_data<Unit> prevPt = secondPt;
point_data<Unit> prevPrevPt = firstPt;
while(itr != end_vertex) {
point_data<Unit> pt = *itr;
//skip any duplicate points
if(pt == prevPt) {
++itr;
continue;
}
//operate on the three points
insert_vertex_half_edge_45_pair(prevPrevPt, prevPt, pt, winding);
prevPrevPt = prevPt;
prevPt = pt;
++itr;
}
if(prevPt != firstPt) {
insert_vertex_half_edge_45_pair(prevPrevPt, prevPt, firstPt, winding);
insert_vertex_half_edge_45_pair(prevPt, firstPt, secondPt, winding);
} else {
insert_vertex_half_edge_45_pair(prevPrevPt, firstPt, secondPt, winding);
}
dirty_ = true;
unsorted_ = true;
}
// insert polygon set
template <typename Unit>
inline void polygon_45_set_data<Unit>::insert(const polygon_45_set_data<Unit>& polygon_set, bool is_hole) {
std::size_t count = data_.size();
data_.insert(data_.end(), polygon_set.data_.begin(), polygon_set.data_.end());
error_data_.insert(error_data_.end(), polygon_set.error_data_.begin(),
polygon_set.error_data_.end());
if(is_hole) {
for(std::size_t i = count; i < data_.size(); ++i) {
data_[i].count = data_[i].count.invert();
}
}
dirty_ = true;
unsorted_ = true;
if(polygon_set.is_manhattan_ == false) is_manhattan_ = false;
return;
}
// insert polygon set
template <typename Unit>
template <typename coord_type>
inline void polygon_45_set_data<Unit>::insert(const polygon_45_set_data<coord_type>& polygon_set, bool is_hole) {
std::size_t count = data_.size();
for(typename polygon_45_set_data<coord_type>::iterator_type itr = polygon_set.begin();
itr != polygon_set.end(); ++itr) {
const typename polygon_45_set_data<coord_type>::Vertex45Compact& v = *itr;
typename polygon_45_set_data<Unit>::Vertex45Compact v2;
v2.pt.x(static_cast<Unit>(v.pt.x()));
v2.pt.y(static_cast<Unit>(v.pt.y()));
v2.count = typename polygon_45_formation<Unit>::Vertex45Count(v.count[0], v.count[1], v.count[2], v.count[3]);
data_.push_back(v2);
}
polygon_45_set_data<coord_type> tmp;
polygon_set.get_error_data(tmp);
for(typename polygon_45_set_data<coord_type>::iterator_type itr = tmp.begin();
itr != tmp.end(); ++itr) {
const typename polygon_45_set_data<coord_type>::Vertex45Compact& v = *itr;
typename polygon_45_set_data<Unit>::Vertex45Compact v2;
v2.pt.x(static_cast<Unit>(v.pt.x()));
v2.pt.y(static_cast<Unit>(v.pt.y()));
v2.count = typename polygon_45_formation<Unit>::Vertex45Count(v.count[0], v.count[1], v.count[2], v.count[3]);
error_data_.push_back(v2);
}
if(is_hole) {
for(std::size_t i = count; i < data_.size(); ++i) {
data_[i].count = data_[i].count.invert();
}
}
dirty_ = true;
unsorted_ = true;
if(polygon_set.is_manhattan() == false) is_manhattan_ = false;
return;
}
template <typename cT, typename rT>
void insert_rectangle_into_vector_45(cT& output, const rT& rect, bool is_hole) {
point_data<typename rectangle_traits<rT>::coordinate_type>
llpt = ll(rect), lrpt = lr(rect), ulpt = ul(rect), urpt = ur(rect);
direction_1d dir = COUNTERCLOCKWISE;
if(is_hole) dir = CLOCKWISE;
insert_vertex_half_edge_45_pair_into_vector(output, llpt, lrpt, urpt, dir);
insert_vertex_half_edge_45_pair_into_vector(output, lrpt, urpt, ulpt, dir);
insert_vertex_half_edge_45_pair_into_vector(output, urpt, ulpt, llpt, dir);
insert_vertex_half_edge_45_pair_into_vector(output, ulpt, llpt, lrpt, dir);
}
template <typename Unit>
template <typename geometry_type>
inline void polygon_45_set_data<Unit>::insert_dispatch(const geometry_type& geometry_object,
bool is_hole, rectangle_concept ) {
dirty_ = true;
unsorted_ = true;
insert_rectangle_into_vector_45(data_, geometry_object, is_hole);
}
// get the external boundary rectangle
template <typename Unit>
template <typename rectangle_type>
inline bool polygon_45_set_data<Unit>::extents(rectangle_type& rect) const{
clean();
if(empty()) {
return false;
}
Unit low = (std::numeric_limits<Unit>::max)();
Unit high = (std::numeric_limits<Unit>::min)();
interval_data<Unit> xivl(low, high);
interval_data<Unit> yivl(low, high);
for(typename value_type::const_iterator itr = data_.begin();
itr != data_.end(); ++ itr) {
if((*itr).pt.x() > xivl.get(HIGH))
xivl.set(HIGH, (*itr).pt.x());
if((*itr).pt.x() < xivl.get(LOW))
xivl.set(LOW, (*itr).pt.x());
if((*itr).pt.y() > yivl.get(HIGH))
yivl.set(HIGH, (*itr).pt.y());
if((*itr).pt.y() < yivl.get(LOW))
yivl.set(LOW, (*itr).pt.y());
}
rect = construct<rectangle_type>(xivl, yivl);
return true;
}
//this function snaps the vertex and two half edges
//to be both even or both odd coordinate values if one of the edges is 45
//and throws an excpetion if an edge is non-manhattan, non-45.
template <typename Unit>
inline void polygon_45_set_data<Unit>::snap_vertex_45(typename polygon_45_set_data<Unit>::Vertex45Compact& vertex) {
bool plus45 = vertex.count[2] != 0;
bool minus45 = vertex.count[0] != 0;
if(plus45 || minus45) {
if(abs(vertex.pt.x()) % 2 != abs(vertex.pt.y()) % 2) {
if(vertex.count[1] != 0 ||
(plus45 && minus45)) {
//move right
vertex.pt.x(vertex.pt.x() + 1);
} else {
//assert that vertex.count[3] != 0
Unit modifier = plus45 ? -1 : 1;
vertex.pt.y(vertex.pt.y() + modifier);
}
}
}
}
template <typename Unit>
inline void polygon_45_set_data<Unit>::snap() const {
for(typename value_type::iterator itr = data_.begin();
itr != data_.end(); ++itr) {
snap_vertex_45(*itr);
}
}
// |= &= += *= -= ^= binary operators
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator|=(const polygon_45_set_data<Unit>& b) {
insert(b);
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator&=(const polygon_45_set_data<Unit>& b) {
//b.sort();
//sort();
applyAdaptiveBoolean_<1>(b);
dirty_ = false;
unsorted_ = false;
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator+=(const polygon_45_set_data<Unit>& b) {
return (*this) |= b;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator*=(const polygon_45_set_data<Unit>& b) {
return (*this) &= b;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator-=(const polygon_45_set_data<Unit>& b) {
//b.sort();
//sort();
applyAdaptiveBoolean_<2>(b);
dirty_ = false;
unsorted_ = false;
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator^=(const polygon_45_set_data<Unit>& b) {
//b.sort();
//sort();
applyAdaptiveBoolean_<3>(b);
dirty_ = false;
unsorted_ = false;
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator+=(Unit delta) {
return resize(delta);
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::operator-=(Unit delta) {
return (*this) += -delta;
}
template <typename Unit>
inline polygon_45_set_data<Unit>&
polygon_45_set_data<Unit>::resize(Unit resizing, RoundingOption rounding, CornerOption corner) {
if(resizing == 0) return *this;
std::list<polygon_45_with_holes_data<Unit> > pl;
get_polygons_with_holes(pl);
clear();
for(typename std::list<polygon_45_with_holes_data<Unit> >::iterator itr = pl.begin(); itr != pl.end(); ++itr) {
insert_with_resize(*itr, resizing, rounding, corner);
}
clean();
//perterb 45 edges to prevent non-integer intersection errors upon boolean op
//snap();
return *this;
}
//distance is assumed to be positive
inline int roundClosest(double distance) {
int f = (int)distance;
if(distance - (double)f < 0.5) return f;
return f+1;
}
//distance is assumed to be positive
template <typename Unit>
inline Unit roundWithOptions(double distance, RoundingOption rounding) {
if(rounding == CLOSEST) {
return roundClosest(distance);
} else if(rounding == OVERSIZE) {
return (Unit)distance + 1;
} else { //UNDERSIZE
return (Unit)distance;
}
}
// 0 is east, 1 is northeast, 2 is north, 3 is northwest, 4 is west, 5 is southwest, 6 is south
// 7 is southwest
template <typename Unit>
inline point_data<Unit> bloatVertexInDirWithOptions(const point_data<Unit>& point, unsigned int dir,
Unit bloating, RoundingOption rounding) {
const double sqrt2 = 1.4142135623730950488016887242097;
if(dir & 1) {
Unit unitDistance = (Unit)bloating;
if(rounding != SQRT2) {
//45 degree bloating
double distance = (double)bloating;
distance /= sqrt2; // multiply by 1/sqrt2
unitDistance = roundWithOptions<Unit>(distance, rounding);
}
int xMultiplier = 1;
int yMultiplier = 1;
if(dir == 3 || dir == 5) xMultiplier = -1;
if(dir == 5 || dir == 7) yMultiplier = -1;
return point_data<Unit>(point.x()+xMultiplier*unitDistance,
point.y()+yMultiplier*unitDistance);
} else {
if(dir == 0)
return point_data<Unit>(point.x()+bloating, point.y());
if(dir == 2)
return point_data<Unit>(point.x(), point.y()+bloating);
if(dir == 4)
return point_data<Unit>(point.x()-bloating, point.y());
if(dir == 6)
return point_data<Unit>(point.x(), point.y()-bloating);
return point_data<Unit>();
}
}
template <typename Unit>
inline unsigned int getEdge45Direction(const point_data<Unit>& pt1, const point_data<Unit>& pt2) {
if(pt1.x() == pt2.x()) {
if(pt1.y() < pt2.y()) return 2;
return 6;
}
if(pt1.y() == pt2.y()) {
if(pt1.x() < pt2.x()) return 0;
return 4;
}
if(pt2.y() > pt1.y()) {
if(pt2.x() > pt1.x()) return 1;
return 3;
}
if(pt2.x() > pt1.x()) return 7;
return 5;
}
inline unsigned int getEdge45NormalDirection(unsigned int dir, int multiplier) {
if(multiplier < 0)
return (dir + 2) % 8;
return (dir + 4 + 2) % 8;
}
template <typename Unit>
inline point_data<Unit> getIntersectionPoint(const point_data<Unit>& pt1, unsigned int slope1,
const point_data<Unit>& pt2, unsigned int slope2) {
//the intention here is to use all integer arithmetic without causing overflow
//turncation error or divide by zero error
//I don't use floating point arithmetic because its precision may not be high enough
//at the extremes of the integer range
typedef typename coordinate_traits<Unit>::area_type LongUnit;
const Unit rises[8] = {0, 1, 1, 1, 0, -1, -1, -1};
const Unit runs[8] = {1, 1, 0, -1, -1, -1, 0, 1};
LongUnit rise1 = rises[slope1];
LongUnit rise2 = rises[slope2];
LongUnit run1 = runs[slope1];
LongUnit run2 = runs[slope2];
LongUnit x1 = (LongUnit)pt1.x();
LongUnit x2 = (LongUnit)pt2.x();
LongUnit y1 = (LongUnit)pt1.y();
LongUnit y2 = (LongUnit)pt2.y();
Unit x = 0;
Unit y = 0;
if(run1 == 0) {
x = pt1.x();
y = (Unit)(((x1 - x2) * rise2) / run2) + pt2.y();
} else if(run2 == 0) {
x = pt2.x();
y = (Unit)(((x2 - x1) * rise1) / run1) + pt1.y();
} else {
// y - y1 = (rise1/run1)(x - x1)
// y - y2 = (rise2/run2)(x - x2)
// y = (rise1/run1)(x - x1) + y1 = (rise2/run2)(x - x2) + y2
// (rise1/run1 - rise2/run2)x = y2 - y1 + rise1/run1 x1 - rise2/run2 x2
// x = (y2 - y1 + rise1/run1 x1 - rise2/run2 x2)/(rise1/run1 - rise2/run2)
// x = (y2 - y1 + rise1/run1 x1 - rise2/run2 x2)(rise1 run2 - rise2 run1)/(run1 run2)
x = (Unit)((y2 - y1 + ((rise1 * x1) / run1) - ((rise2 * x2) / run2)) *
(run1 * run2) / (rise1 * run2 - rise2 * run1));
if(rise1 == 0) {
y = pt1.y();
} else if(rise2 == 0) {
y = pt2.y();
} else {
// y - y1 = (rise1/run1)(x - x1)
// (run1/rise1)(y - y1) = x - x1
// x = (run1/rise1)(y - y1) + x1 = (run2/rise2)(y - y2) + x2
y = (Unit)((x2 - x1 + ((run1 * y1) / rise1) - ((run2 * y2) / rise2)) *
(rise1 * rise2) / (run1 * rise2 - run2 * rise1));
}
}
return point_data<Unit>(x, y);
}
template <typename Unit>
inline
void handleResizingEdge45_SQRT1OVER2(polygon_45_set_data<Unit>& sizingSet, point_data<Unit> first,
point_data<Unit> second, Unit resizing, CornerOption corner) {
if(first.x() == second.x()) {
sizingSet.insert(rectangle_data<Unit>(first.x() - resizing, first.y(), first.x() + resizing, second.y()));
return;
}
if(first.y() == second.y()) {
sizingSet.insert(rectangle_data<Unit>(first.x(), first.y() - resizing, second.x(), first.y() + resizing));
return;
}
std::vector<point_data<Unit> > pts;
Unit bloating = resizing < 0 ? -resizing : resizing;
if(corner == UNFILLED) {
//we have to round up
bloating = bloating / 2 + bloating % 2 ; //round up
if(second.x() < first.x()) std::swap(first, second);
if(first.y() < second.y()) { //upward sloping
pts.push_back(point_data<Unit>(first.x() + bloating, first.y() - bloating));
pts.push_back(point_data<Unit>(first.x() - bloating, first.y() + bloating));
pts.push_back(point_data<Unit>(second.x() - bloating, second.y() + bloating));
pts.push_back(point_data<Unit>(second.x() + bloating, second.y() - bloating));
sizingSet.insert_vertex_sequence(pts.begin(), pts.end(), CLOCKWISE, false);
} else { //downward sloping
pts.push_back(point_data<Unit>(first.x() + bloating, first.y() + bloating));
pts.push_back(point_data<Unit>(first.x() - bloating, first.y() - bloating));
pts.push_back(point_data<Unit>(second.x() - bloating, second.y() - bloating));
pts.push_back(point_data<Unit>(second.x() + bloating, second.y() + bloating));
sizingSet.insert_vertex_sequence(pts.begin(), pts.end(), COUNTERCLOCKWISE, false);
}
return;
}
if(second.x() < first.x()) std::swap(first, second);
if(first.y() < second.y()) { //upward sloping
pts.push_back(point_data<Unit>(first.x(), first.y() - bloating));
pts.push_back(point_data<Unit>(first.x() - bloating, first.y()));
pts.push_back(point_data<Unit>(second.x(), second.y() + bloating));
pts.push_back(point_data<Unit>(second.x() + bloating, second.y()));
sizingSet.insert_vertex_sequence(pts.begin(), pts.end(), CLOCKWISE, false);
} else { //downward sloping
pts.push_back(point_data<Unit>(first.x() - bloating, first.y()));
pts.push_back(point_data<Unit>(first.x(), first.y() + bloating));
pts.push_back(point_data<Unit>(second.x() + bloating, second.y()));
pts.push_back(point_data<Unit>(second.x(), second.y() - bloating));
sizingSet.insert_vertex_sequence(pts.begin(), pts.end(), CLOCKWISE, false);
}
}
template <typename Unit>
inline
void handleResizingEdge45(polygon_45_set_data<Unit>& sizingSet, point_data<Unit> first,
point_data<Unit> second, Unit resizing, RoundingOption rounding) {
if(first.x() == second.x()) {
sizingSet.insert(rectangle_data<int>(first.x() - resizing, first.y(), first.x() + resizing, second.y()));
return;
}
if(first.y() == second.y()) {
sizingSet.insert(rectangle_data<int>(first.x(), first.y() - resizing, second.x(), first.y() + resizing));
return;
}
//edge is 45
std::vector<point_data<Unit> > pts;
Unit bloating = resizing < 0 ? -resizing : resizing;
if(second.x() < first.x()) std::swap(first, second);
if(first.y() < second.y()) {
pts.push_back(bloatVertexInDirWithOptions(first, 3, bloating, rounding));
pts.push_back(bloatVertexInDirWithOptions(first, 7, bloating, rounding));
pts.push_back(bloatVertexInDirWithOptions(second, 7, bloating, rounding));
pts.push_back(bloatVertexInDirWithOptions(second, 3, bloating, rounding));
sizingSet.insert_vertex_sequence(pts.begin(), pts.end(), HIGH, false);
} else {
pts.push_back(bloatVertexInDirWithOptions(first, 1, bloating, rounding));
pts.push_back(bloatVertexInDirWithOptions(first, 5, bloating, rounding));
pts.push_back(bloatVertexInDirWithOptions(second, 5, bloating, rounding));
pts.push_back(bloatVertexInDirWithOptions(second, 1, bloating, rounding));
sizingSet.insert_vertex_sequence(pts.begin(), pts.end(), HIGH, false);
}
}
template <typename Unit>
inline point_data<Unit> bloatVertexInDirWithSQRT1OVER2(int edge1, int normal1, const point_data<Unit>& second, Unit bloating,
bool first) {
orientation_2d orient = first ? HORIZONTAL : VERTICAL;
orientation_2d orientp = orient.get_perpendicular();
int multiplier = first ? 1 : -1;
point_data<Unit> pt1(second);
if(edge1 == 1) {
if(normal1 == 3) {
move(pt1, orient, -multiplier * bloating);
} else {
move(pt1, orientp, -multiplier * bloating);
}
} else if(edge1 == 3) {
if(normal1 == 1) {
move(pt1, orient, multiplier * bloating);
} else {
move(pt1, orientp, -multiplier * bloating);
}
} else if(edge1 == 5) {
if(normal1 == 3) {
move(pt1, orientp, multiplier * bloating);
} else {
move(pt1, orient, multiplier * bloating);
}
} else {
if(normal1 == 5) {
move(pt1, orient, -multiplier * bloating);
} else {
move(pt1, orientp, multiplier * bloating);
}
}
return pt1;
}
template <typename Unit>
inline
void handleResizingVertex45(polygon_45_set_data<Unit>& sizingSet, const point_data<Unit>& first,
const point_data<Unit>& second, const point_data<Unit>& third, Unit resizing,
RoundingOption rounding, CornerOption corner,
int multiplier) {
unsigned int edge1 = getEdge45Direction(first, second);
unsigned int edge2 = getEdge45Direction(second, third);
unsigned int diffAngle;
if(multiplier < 0)
diffAngle = (edge2 + 8 - edge1) % 8;
else
diffAngle = (edge1 + 8 - edge2) % 8;
if(diffAngle < 4) {
if(resizing > 0) return; //accute interior corner
else multiplier *= -1; //make it appear to be an accute exterior angle
}
Unit bloating = abs(resizing);
if(rounding == SQRT1OVER2) {
if(edge1 % 2 && edge2 % 2) return;
if(corner == ORTHOGONAL && edge1 % 2 == 0 && edge2 % 2 == 0) {
rectangle_data<Unit> insertion_rect;
set_points(insertion_rect, second, second);
bloat(insertion_rect, bloating);
sizingSet.insert(insertion_rect);
} else if(corner != ORTHOGONAL) {
point_data<Unit> pt1(0, 0);
point_data<Unit> pt2(0, 0);
unsigned int normal1 = getEdge45NormalDirection(edge1, multiplier);
unsigned int normal2 = getEdge45NormalDirection(edge2, multiplier);
if(edge1 % 2) {
pt1 = bloatVertexInDirWithSQRT1OVER2(edge1, normal1, second, bloating, true);
} else {
pt1 = bloatVertexInDirWithOptions(second, normal1, bloating, UNDERSIZE);
}
if(edge2 % 2) {
pt2 = bloatVertexInDirWithSQRT1OVER2(edge2, normal2, second, bloating, false);
} else {
pt2 = bloatVertexInDirWithOptions(second, normal2, bloating, UNDERSIZE);
}
std::vector<point_data<Unit> > pts;
pts.push_back(pt1);
pts.push_back(second);
pts.push_back(pt2);
pts.push_back(getIntersectionPoint(pt1, edge1, pt2, edge2));
polygon_45_data<Unit> poly(pts.begin(), pts.end());
sizingSet.insert(poly);
} else {
//ORTHOGONAL of a 45 degree corner
int normal = 0;
if(edge1 % 2) {
normal = getEdge45NormalDirection(edge2, multiplier);
} else {
normal = getEdge45NormalDirection(edge1, multiplier);
}
rectangle_data<Unit> insertion_rect;
point_data<Unit> edgePoint = bloatVertexInDirWithOptions(second, normal, bloating, UNDERSIZE);
set_points(insertion_rect, second, edgePoint);
if(normal == 0 || normal == 4)
bloat(insertion_rect, VERTICAL, bloating);
else
bloat(insertion_rect, HORIZONTAL, bloating);
sizingSet.insert(insertion_rect);
}
return;
}
unsigned int normal1 = getEdge45NormalDirection(edge1, multiplier);
unsigned int normal2 = getEdge45NormalDirection(edge2, multiplier);
point_data<Unit> edgePoint1 = bloatVertexInDirWithOptions(second, normal1, bloating, rounding);
point_data<Unit> edgePoint2 = bloatVertexInDirWithOptions(second, normal2, bloating, rounding);
//if the change in angle is 135 degrees it is an accute exterior corner
if((edge1+ multiplier * 3) % 8 == edge2) {
if(corner == ORTHOGONAL) {
rectangle_data<Unit> insertion_rect;
set_points(insertion_rect, edgePoint1, edgePoint2);
sizingSet.insert(insertion_rect);
return;
}
}
std::vector<point_data<Unit> > pts;
pts.push_back(edgePoint1);
pts.push_back(second);
pts.push_back(edgePoint2);
pts.push_back(getIntersectionPoint(edgePoint1, edge1, edgePoint2, edge2));
polygon_45_data<Unit> poly(pts.begin(), pts.end());
sizingSet.insert(poly);
}
template <typename Unit>
template <typename geometry_type>
inline polygon_45_set_data<Unit>&
polygon_45_set_data<Unit>::insert_with_resize_dispatch(const geometry_type& poly,
coordinate_type resizing,
RoundingOption rounding,
CornerOption corner,
bool hole, polygon_45_concept ) {
direction_1d wdir = winding(poly);
int multiplier = wdir == LOW ? -1 : 1;
if(hole) resizing *= -1;
typedef typename polygon_45_data<Unit>::iterator_type piterator;
piterator first, second, third, end, real_end;
real_end = end_points(poly);
third = begin_points(poly);
first = third;
if(first == real_end) return *this;
++third;
if(third == real_end) return *this;
second = end = third;
++third;
if(third == real_end) return *this;
polygon_45_set_data<Unit> sizingSet;
//insert minkofski shapes on edges and corners
do {
if(rounding != SQRT1OVER2) {
handleResizingEdge45(sizingSet, *first, *second, resizing, rounding);
} else {
handleResizingEdge45_SQRT1OVER2(sizingSet, *first, *second, resizing, corner);
}
if(corner != UNFILLED)
handleResizingVertex45(sizingSet, *first, *second, *third, resizing, rounding, corner, multiplier);
first = second;
second = third;
++third;
if(third == real_end) {
third = begin_points(poly);
if(*second == *third) {
++third; //skip first point if it is duplicate of last point
}
}
} while(second != end);
//sizingSet.snap();
polygon_45_set_data<Unit> tmp;
//insert original shape
tmp.insert_dispatch(poly, false, polygon_45_concept());
if(resizing < 0) tmp -= sizingSet;
else tmp += sizingSet;
tmp.clean();
insert(tmp, hole);
dirty_ = true;
unsorted_ = true;
return (*this);
}
// accumulate the bloated polygon with holes
template <typename Unit>
template <typename geometry_type>
inline polygon_45_set_data<Unit>&
polygon_45_set_data<Unit>::insert_with_resize_dispatch(const geometry_type& poly,
coordinate_type resizing,
RoundingOption rounding,
CornerOption corner,
bool hole, polygon_45_with_holes_concept ) {
insert_with_resize_dispatch(poly, resizing, rounding, corner, hole, polygon_45_concept());
for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
begin_holes(poly); itr != end_holes(poly);
++itr) {
insert_with_resize_dispatch(*itr, resizing, rounding, corner, !hole, polygon_45_concept());
}
return *this;
}
// transform set
template <typename Unit>
template <typename transformation_type>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::transform(const transformation_type& tr){
clean();
std::vector<polygon_45_with_holes_data<Unit> > polys;
get(polys);
for(typename std::vector<polygon_45_with_holes_data<Unit> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
::boost::polygon::transform(*itr, tr);
}
clear();
insert(polys.begin(), polys.end());
dirty_ = true;
unsorted_ = true;
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::scale_up(typename coordinate_traits<Unit>::unsigned_area_type factor) {
scale_up_vertex_45_compact_range(data_.begin(), data_.end(), factor);
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::scale_down(typename coordinate_traits<Unit>::unsigned_area_type factor) {
clean();
std::vector<polygon_45_with_holes_data<Unit> > polys;
get_polygons_with_holes(polys);
for(typename std::vector<polygon_45_with_holes_data<Unit> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
::boost::polygon::scale_down(*itr, factor);
}
clear();
insert(polys.begin(), polys.end());
dirty_ = true;
unsorted_ = true;
return *this;
}
template <typename Unit>
inline polygon_45_set_data<Unit>& polygon_45_set_data<Unit>::scale(double factor) {
clean();
std::vector<polygon_45_with_holes_data<Unit> > polys;
get_polygons_with_holes(polys);
for(typename std::vector<polygon_45_with_holes_data<Unit> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
::boost::polygon::scale(*itr, factor);
}
clear();
insert(polys.begin(), polys.end());
dirty_ = true;
unsorted_ = true;
return *this;
}
template <typename Unit>
inline bool polygon_45_set_data<Unit>::clean() const {
if(unsorted_) sort();
if(dirty_) {
applyAdaptiveUnary_<0>();
dirty_ = false;
}
return true;
}
template <typename Unit>
template <int op>
inline void polygon_45_set_data<Unit>::applyAdaptiveBoolean_(const polygon_45_set_data<Unit>& rvalue) const {
polygon_45_set_data<Unit> tmp;
applyAdaptiveBoolean_<op>(tmp, rvalue);
data_.swap(tmp.data_); //swapping vectors should be constant time operation
error_data_.swap(tmp.error_data_);
is_manhattan_ = tmp.is_manhattan_;
unsorted_ = false;
dirty_ = false;
}
template <typename Unit2, int op>
bool applyBoolean45OpOnVectors(std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact>& result_data,
std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact>& lvalue_data,
std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact>& rvalue_data
) {
bool result_is_manhattan_ = true;
typename boolean_op_45<Unit2>::template Scan45<typename boolean_op_45<Unit2>::Count2,
typename boolean_op_45<Unit2>::template boolean_op_45_output_functor<op> > scan45;
std::vector<typename boolean_op_45<Unit2>::Vertex45> eventOut;
typedef std::pair<typename boolean_op_45<Unit2>::Point,
typename boolean_op_45<Unit2>::template Scan45CountT<typename boolean_op_45<Unit2>::Count2> > Scan45Vertex;
std::vector<Scan45Vertex> eventIn;
typedef std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact> value_type;
typename value_type::const_iterator iter1 = lvalue_data.begin();
typename value_type::const_iterator iter2 = rvalue_data.begin();
typename value_type::const_iterator end1 = lvalue_data.end();
typename value_type::const_iterator end2 = rvalue_data.end();
const Unit2 UnitMax = (std::numeric_limits<Unit2>::max)();
Unit2 x = UnitMax;
while(iter1 != end1 || iter2 != end2) {
Unit2 currentX = UnitMax;
if(iter1 != end1) currentX = iter1->pt.x();
if(iter2 != end2) currentX = (std::min)(currentX, iter2->pt.x());
if(currentX != x) {
//std::cout << "SCAN " << currentX << "\n";
//scan event
scan45.scan(eventOut, eventIn.begin(), eventIn.end());
gtlsort(eventOut.begin(), eventOut.end());
std::size_t ptCount = 0;
for(std::size_t i = 0; i < eventOut.size(); ++i) {
if(!result_data.empty() &&
result_data.back().pt == eventOut[i].pt) {
result_data.back().count += eventOut[i];
++ptCount;
} else {
if(!result_data.empty()) {
if(result_data.back().count.is_45()) {
result_is_manhattan_ = false;
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
}
result_data.push_back(eventOut[i]);
ptCount = 1;
}
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
eventOut.clear();
eventIn.clear();
x = currentX;
}
//std::cout << "get next\n";
if(iter2 != end2 && (iter1 == end1 || iter2->pt.x() < iter1->pt.x() ||
(iter2->pt.x() == iter1->pt.x() &&
iter2->pt.y() < iter1->pt.y()) )) {
//std::cout << "case1 next\n";
eventIn.push_back(Scan45Vertex
(iter2->pt,
typename polygon_45_formation<Unit2>::
Scan45Count(typename polygon_45_formation<Unit2>::Count2(0, iter2->count[0]),
typename polygon_45_formation<Unit2>::Count2(0, iter2->count[1]),
typename polygon_45_formation<Unit2>::Count2(0, iter2->count[2]),
typename polygon_45_formation<Unit2>::Count2(0, iter2->count[3]))));
++iter2;
} else if(iter1 != end1 && (iter2 == end2 || iter1->pt.x() < iter2->pt.x() ||
(iter1->pt.x() == iter2->pt.x() &&
iter1->pt.y() < iter2->pt.y()) )) {
//std::cout << "case2 next\n";
eventIn.push_back(Scan45Vertex
(iter1->pt,
typename polygon_45_formation<Unit2>::
Scan45Count(
typename polygon_45_formation<Unit2>::Count2(iter1->count[0], 0),
typename polygon_45_formation<Unit2>::Count2(iter1->count[1], 0),
typename polygon_45_formation<Unit2>::Count2(iter1->count[2], 0),
typename polygon_45_formation<Unit2>::Count2(iter1->count[3], 0))));
++iter1;
} else {
//std::cout << "case3 next\n";
eventIn.push_back(Scan45Vertex
(iter2->pt,
typename polygon_45_formation<Unit2>::
Scan45Count(typename polygon_45_formation<Unit2>::Count2(iter1->count[0],
iter2->count[0]),
typename polygon_45_formation<Unit2>::Count2(iter1->count[1],
iter2->count[1]),
typename polygon_45_formation<Unit2>::Count2(iter1->count[2],
iter2->count[2]),
typename polygon_45_formation<Unit2>::Count2(iter1->count[3],
iter2->count[3]))));
++iter1;
++iter2;
}
}
scan45.scan(eventOut, eventIn.begin(), eventIn.end());
gtlsort(eventOut.begin(), eventOut.end());
std::size_t ptCount = 0;
for(std::size_t i = 0; i < eventOut.size(); ++i) {
if(!result_data.empty() &&
result_data.back().pt == eventOut[i].pt) {
result_data.back().count += eventOut[i];
++ptCount;
} else {
if(!result_data.empty()) {
if(result_data.back().count.is_45()) {
result_is_manhattan_ = false;
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
}
result_data.push_back(eventOut[i]);
ptCount = 1;
}
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
if(!result_data.empty() &&
result_data.back().count.is_45()) {
result_is_manhattan_ = false;
}
return result_is_manhattan_;
}
template <typename Unit2, int op>
bool applyUnary45OpOnVectors(std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact>& result_data,
std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact>& lvalue_data ) {
bool result_is_manhattan_ = true;
typename boolean_op_45<Unit2>::template Scan45<typename boolean_op_45<Unit2>::Count1,
typename boolean_op_45<Unit2>::template unary_op_45_output_functor<op> > scan45;
std::vector<typename boolean_op_45<Unit2>::Vertex45> eventOut;
typedef typename boolean_op_45<Unit2>::template Scan45CountT<typename boolean_op_45<Unit2>::Count1> Scan45Count;
typedef std::pair<typename boolean_op_45<Unit2>::Point, Scan45Count> Scan45Vertex;
std::vector<Scan45Vertex> eventIn;
typedef std::vector<typename polygon_45_formation<Unit2>::Vertex45Compact> value_type;
typename value_type::const_iterator iter1 = lvalue_data.begin();
typename value_type::const_iterator end1 = lvalue_data.end();
const Unit2 UnitMax = (std::numeric_limits<Unit2>::max)();
Unit2 x = UnitMax;
while(iter1 != end1) {
Unit2 currentX = iter1->pt.x();
if(currentX != x) {
//std::cout << "SCAN " << currentX << "\n";
//scan event
scan45.scan(eventOut, eventIn.begin(), eventIn.end());
gtlsort(eventOut.begin(), eventOut.end());
std::size_t ptCount = 0;
for(std::size_t i = 0; i < eventOut.size(); ++i) {
if(!result_data.empty() &&
result_data.back().pt == eventOut[i].pt) {
result_data.back().count += eventOut[i];
++ptCount;
} else {
if(!result_data.empty()) {
if(result_data.back().count.is_45()) {
result_is_manhattan_ = false;
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
}
result_data.push_back(eventOut[i]);
ptCount = 1;
}
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
eventOut.clear();
eventIn.clear();
x = currentX;
}
//std::cout << "get next\n";
eventIn.push_back(Scan45Vertex
(iter1->pt,
Scan45Count( typename boolean_op_45<Unit2>::Count1(iter1->count[0]),
typename boolean_op_45<Unit2>::Count1(iter1->count[1]),
typename boolean_op_45<Unit2>::Count1(iter1->count[2]),
typename boolean_op_45<Unit2>::Count1(iter1->count[3]))));
++iter1;
}
scan45.scan(eventOut, eventIn.begin(), eventIn.end());
gtlsort(eventOut.begin(), eventOut.end());
std::size_t ptCount = 0;
for(std::size_t i = 0; i < eventOut.size(); ++i) {
if(!result_data.empty() &&
result_data.back().pt == eventOut[i].pt) {
result_data.back().count += eventOut[i];
++ptCount;
} else {
if(!result_data.empty()) {
if(result_data.back().count.is_45()) {
result_is_manhattan_ = false;
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
}
result_data.push_back(eventOut[i]);
ptCount = 1;
}
}
if(ptCount == 2 && result_data.back().count == (typename polygon_45_formation<Unit2>::Vertex45Count(0, 0, 0, 0))) {
result_data.pop_back();
}
if(!result_data.empty() &&
result_data.back().count.is_45()) {
result_is_manhattan_ = false;
}
return result_is_manhattan_;
}
template <typename cT, typename iT>
void get_error_rects_shell(cT& posE, cT& negE, iT beginr, iT endr) {
typedef typename iT::value_type Point;
typedef typename point_traits<Point>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::area_type area_type;
Point pt1, pt2, pt3;
bool i1 = true;
bool i2 = true;
bool not_done = beginr != endr;
bool next_to_last = false;
bool last = false;
Point first, second;
while(not_done) {
if(last) {
last = false;
not_done = false;
pt3 = second;
} else if(next_to_last) {
next_to_last = false;
last = true;
pt3 = first;
} else if(i1) {
const Point& pt = *beginr;
first = pt1 = pt;
i1 = false;
i2 = true;
++beginr;
if(beginr == endr) return; //too few points
continue;
} else if (i2) {
const Point& pt = *beginr;
second = pt2 = pt;
i2 = false;
++beginr;
if(beginr == endr) return; //too few points
continue;
} else {
const Point& pt = *beginr;
pt3 = pt;
++beginr;
if(beginr == endr) {
next_to_last = true;
//skip last point equal to first
continue;
}
}
if(local_abs(x(pt2)) % 2) { //y % 2 should also be odd
//is corner concave or convex?
Point pts[] = {pt1, pt2, pt3};
area_type ar = point_sequence_area<Point*, area_type>(pts, pts+3);
direction_1d dir = ar < 0 ? COUNTERCLOCKWISE : CLOCKWISE;
//std::cout << pt1 << " " << pt2 << " " << pt3 << " " << ar << std::endl;
if(dir == CLOCKWISE) {
posE.push_back(rectangle_data<typename Point::coordinate_type>
(x(pt2) - 1, y(pt2) - 1, x(pt2) + 1, y(pt2) + 1));
} else {
negE.push_back(rectangle_data<typename Point::coordinate_type>
(x(pt2) - 1, y(pt2) - 1, x(pt2) + 1, y(pt2) + 1));
}
}
pt1 = pt2;
pt2 = pt3;
}
}
template <typename cT, typename pT>
void get_error_rects(cT& posE, cT& negE, const pT& p) {
get_error_rects_shell(posE, negE, p.begin(), p.end());
for(typename pT::iterator_holes_type iHb = p.begin_holes();
iHb != p.end_holes(); ++iHb) {
get_error_rects_shell(posE, negE, iHb->begin(), iHb->end());
}
}
template <typename Unit>
template <int op>
inline void polygon_45_set_data<Unit>::applyAdaptiveBoolean_(polygon_45_set_data<Unit>& result,
const polygon_45_set_data<Unit>& rvalue) const {
result.clear();
result.error_data_ = error_data_;
result.error_data_.insert(result.error_data_.end(), rvalue.error_data_.begin(),
rvalue.error_data_.end());
if(is_manhattan() && rvalue.is_manhattan()) {
//convert each into polygon_90_set data and call boolean operations
polygon_90_set_data<Unit> l90sd(VERTICAL), r90sd(VERTICAL), output(VERTICAL);
for(typename value_type::const_iterator itr = data_.begin(); itr != data_.end(); ++itr) {
if((*itr).count[3] == 0) continue; //skip all non vertical edges
l90sd.insert(std::make_pair((*itr).pt.x(), std::make_pair<Unit, int>((*itr).pt.y(), (*itr).count[3])), false, VERTICAL);
}
for(typename value_type::const_iterator itr = rvalue.data_.begin(); itr != rvalue.data_.end(); ++itr) {
if((*itr).count[3] == 0) continue; //skip all non vertical edges
r90sd.insert(std::make_pair((*itr).pt.x(), std::make_pair<Unit, int>((*itr).pt.y(), (*itr).count[3])), false, VERTICAL);
}
l90sd.sort();
r90sd.sort();
#ifdef BOOST_POLYGON_MSVC
#pragma warning (disable: 4127)
#endif
if(op == 0) {
output.applyBooleanBinaryOp(l90sd.begin(), l90sd.end(),
r90sd.begin(), r90sd.end(), boolean_op::BinaryCount<boolean_op::BinaryOr>());
} else if (op == 1) {
output.applyBooleanBinaryOp(l90sd.begin(), l90sd.end(),
r90sd.begin(), r90sd.end(), boolean_op::BinaryCount<boolean_op::BinaryAnd>());
} else if (op == 2) {
output.applyBooleanBinaryOp(l90sd.begin(), l90sd.end(),
r90sd.begin(), r90sd.end(), boolean_op::BinaryCount<boolean_op::BinaryNot>());
} else if (op == 3) {
output.applyBooleanBinaryOp(l90sd.begin(), l90sd.end(),
r90sd.begin(), r90sd.end(), boolean_op::BinaryCount<boolean_op::BinaryXor>());
}
#ifdef BOOST_POLYGON_MSVC
#pragma warning (default: 4127)
#endif
result.data_.clear();
result.insert(output);
result.is_manhattan_ = true;
result.dirty_ = false;
result.unsorted_ = false;
} else {
sort();
rvalue.sort();
try {
result.is_manhattan_ = applyBoolean45OpOnVectors<Unit, op>(result.data_, data_, rvalue.data_);
} catch (std::string str) {
std::string msg = "GTL 45 Boolean error, precision insufficient to represent edge intersection coordinate value.";
if(str == msg) {
result.clear();
typedef typename coordinate_traits<Unit>::manhattan_area_type Unit2;
typedef typename polygon_45_formation<Unit2>::Vertex45Compact Vertex45Compact2;
typedef std::vector<Vertex45Compact2> Data2;
Data2 rvalue_data, lvalue_data, result_data;
rvalue_data.reserve(rvalue.data_.size());
lvalue_data.reserve(data_.size());
for(std::size_t i = 0 ; i < data_.size(); ++i) {
const Vertex45Compact& vi = data_[i];
Vertex45Compact2 ci;
ci.pt = point_data<Unit2>(x(vi.pt), y(vi.pt));
ci.count = typename polygon_45_formation<Unit2>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
lvalue_data.push_back(ci);
}
for(std::size_t i = 0 ; i < rvalue.data_.size(); ++i) {
const Vertex45Compact& vi = rvalue.data_[i];
Vertex45Compact2 ci;
ci.pt = (point_data<Unit2>(x(vi.pt), y(vi.pt)));
ci.count = typename polygon_45_formation<Unit2>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
rvalue_data.push_back(ci);
}
scale_up_vertex_45_compact_range(lvalue_data.begin(), lvalue_data.end(), 2);
scale_up_vertex_45_compact_range(rvalue_data.begin(), rvalue_data.end(), 2);
bool result_is_manhattan = applyBoolean45OpOnVectors<Unit2, op>(result_data,
lvalue_data,
rvalue_data );
if(!result_is_manhattan) {
typename polygon_45_formation<Unit2>::Polygon45Formation pf(false);
//std::cout << "FORMING POLYGONS\n";
std::vector<polygon_45_with_holes_data<Unit2> > container;
pf.scan(container, result_data.begin(), result_data.end());
Data2 error_data_out;
std::vector<rectangle_data<Unit2> > pos_error_rects;
std::vector<rectangle_data<Unit2> > neg_error_rects;
for(std::size_t i = 0; i < container.size(); ++i) {
get_error_rects(pos_error_rects, neg_error_rects, container[i]);
}
for(std::size_t i = 0; i < pos_error_rects.size(); ++i) {
insert_rectangle_into_vector_45(result_data, pos_error_rects[i], false);
insert_rectangle_into_vector_45(error_data_out, pos_error_rects[i], false);
}
for(std::size_t i = 0; i < neg_error_rects.size(); ++i) {
insert_rectangle_into_vector_45(result_data, neg_error_rects[i], true);
insert_rectangle_into_vector_45(error_data_out, neg_error_rects[i], false);
}
scale_down_vertex_45_compact_range_blindly(error_data_out.begin(), error_data_out.end(), 2);
for(std::size_t i = 0 ; i < error_data_out.size(); ++i) {
const Vertex45Compact2& vi = error_data_out[i];
Vertex45Compact ci;
ci.pt.x(static_cast<Unit>(x(vi.pt)));
ci.pt.y(static_cast<Unit>(y(vi.pt)));
ci.count = typename polygon_45_formation<Unit>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
result.error_data_.push_back(ci);
}
Data2 new_result_data;
gtlsort(result_data.begin(), result_data.end());
applyUnary45OpOnVectors<Unit2, 0>(new_result_data, result_data); //OR operation
result_data.swap(new_result_data);
}
scale_down_vertex_45_compact_range_blindly(result_data.begin(), result_data.end(), 2);
//result.data_.reserve(result_data.size());
for(std::size_t i = 0 ; i < result_data.size(); ++i) {
const Vertex45Compact2& vi = result_data[i];
Vertex45Compact ci;
ci.pt.x(static_cast<Unit>(x(vi.pt)));
ci.pt.y(static_cast<Unit>(y(vi.pt)));
ci.count = typename polygon_45_formation<Unit>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
result.data_.push_back(ci);
}
result.is_manhattan_ = result_is_manhattan;
result.dirty_ = false;
result.unsorted_ = false;
} else { throw str; }
}
//std::cout << "DONE SCANNING\n";
}
}
template <typename Unit>
template <int op>
inline void polygon_45_set_data<Unit>::applyAdaptiveUnary_() const {
polygon_45_set_data<Unit> result;
result.error_data_ = error_data_;
if(is_manhattan()) {
//convert each into polygon_90_set data and call boolean operations
polygon_90_set_data<Unit> l90sd(VERTICAL);
for(typename value_type::const_iterator itr = data_.begin(); itr != data_.end(); ++itr) {
if((*itr).count[3] == 0) continue; //skip all non vertical edges
l90sd.insert(std::make_pair((*itr).pt.x(), std::make_pair<Unit, int>((*itr).pt.y(), (*itr).count[3])), false, VERTICAL);
}
l90sd.sort();
#ifdef BOOST_POLYGON_MSVC
#pragma warning (disable: 4127)
#endif
if(op == 0) {
l90sd.clean();
} else if (op == 1) {
l90sd.self_intersect();
} else if (op == 3) {
l90sd.self_xor();
}
#ifdef BOOST_POLYGON_MSVC
#pragma warning (default: 4127)
#endif
result.data_.clear();
result.insert(l90sd);
result.is_manhattan_ = true;
result.dirty_ = false;
result.unsorted_ = false;
} else {
sort();
try {
result.is_manhattan_ = applyUnary45OpOnVectors<Unit, op>(result.data_, data_);
} catch (std::string str) {
std::string msg = "GTL 45 Boolean error, precision insufficient to represent edge intersection coordinate value.";
if(str == msg) {
result.clear();
typedef typename coordinate_traits<Unit>::manhattan_area_type Unit2;
typedef typename polygon_45_formation<Unit2>::Vertex45Compact Vertex45Compact2;
typedef std::vector<Vertex45Compact2> Data2;
Data2 lvalue_data, result_data;
lvalue_data.reserve(data_.size());
for(std::size_t i = 0 ; i < data_.size(); ++i) {
const Vertex45Compact& vi = data_[i];
Vertex45Compact2 ci;
ci.pt.x(static_cast<Unit>(x(vi.pt)));
ci.pt.y(static_cast<Unit>(y(vi.pt)));
ci.count = typename polygon_45_formation<Unit2>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
lvalue_data.push_back(ci);
}
scale_up_vertex_45_compact_range(lvalue_data.begin(), lvalue_data.end(), 2);
bool result_is_manhattan = applyUnary45OpOnVectors<Unit2, op>(result_data,
lvalue_data );
if(!result_is_manhattan) {
typename polygon_45_formation<Unit2>::Polygon45Formation pf(false);
//std::cout << "FORMING POLYGONS\n";
std::vector<polygon_45_with_holes_data<Unit2> > container;
pf.scan(container, result_data.begin(), result_data.end());
Data2 error_data_out;
std::vector<rectangle_data<Unit2> > pos_error_rects;
std::vector<rectangle_data<Unit2> > neg_error_rects;
for(std::size_t i = 0; i < container.size(); ++i) {
get_error_rects(pos_error_rects, neg_error_rects, container[i]);
}
for(std::size_t i = 0; i < pos_error_rects.size(); ++i) {
insert_rectangle_into_vector_45(result_data, pos_error_rects[i], false);
insert_rectangle_into_vector_45(error_data_out, pos_error_rects[i], false);
}
for(std::size_t i = 0; i < neg_error_rects.size(); ++i) {
insert_rectangle_into_vector_45(result_data, neg_error_rects[i], true);
insert_rectangle_into_vector_45(error_data_out, neg_error_rects[i], false);
}
scale_down_vertex_45_compact_range_blindly(error_data_out.begin(), error_data_out.end(), 2);
for(std::size_t i = 0 ; i < error_data_out.size(); ++i) {
const Vertex45Compact2& vi = error_data_out[i];
Vertex45Compact ci;
ci.pt.x(static_cast<Unit>(x(vi.pt)));
ci.pt.y(static_cast<Unit>(y(vi.pt)));
ci.count = typename polygon_45_formation<Unit>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
result.error_data_.push_back(ci);
}
Data2 new_result_data;
gtlsort(result_data.begin(), result_data.end());
applyUnary45OpOnVectors<Unit2, 0>(new_result_data, result_data); //OR operation
result_data.swap(new_result_data);
}
scale_down_vertex_45_compact_range_blindly(result_data.begin(), result_data.end(), 2);
//result.data_.reserve(result_data.size());
for(std::size_t i = 0 ; i < result_data.size(); ++i) {
const Vertex45Compact2& vi = result_data[i];
Vertex45Compact ci;
ci.pt.x(static_cast<Unit>(x(vi.pt)));
ci.pt.y(static_cast<Unit>(y(vi.pt)));
ci.count = typename polygon_45_formation<Unit>::Vertex45Count
( vi.count[0], vi.count[1], vi.count[2], vi.count[3]);
result.data_.push_back(ci);
}
result.is_manhattan_ = result_is_manhattan;
result.dirty_ = false;
result.unsorted_ = false;
} else { throw str; }
}
//std::cout << "DONE SCANNING\n";
}
data_.swap(result.data_);
error_data_.swap(result.error_data_);
dirty_ = result.dirty_;
unsorted_ = result.unsorted_;
is_manhattan_ = result.is_manhattan_;
}
template <typename coordinate_type, typename property_type>
class property_merge_45 {
private:
typedef typename coordinate_traits<coordinate_type>::manhattan_area_type big_coord;
typedef typename polygon_45_property_merge<big_coord, property_type>::MergeSetData tsd;
tsd tsd_;
public:
inline property_merge_45() : tsd_() {}
inline property_merge_45(const property_merge_45& that) : tsd_(that.tsd_) {}
inline property_merge_45& operator=(const property_merge_45& that) {
tsd_ = that.tsd_;
return *this;
}
inline void insert(const polygon_45_set_data<coordinate_type>& ps, property_type property) {
ps.clean();
polygon_45_property_merge<big_coord, property_type>::populateMergeSetData(tsd_, ps.begin(), ps.end(), property);
}
template <class GeoObjT>
inline void insert(const GeoObjT& geoObj, property_type property) {
polygon_45_set_data<coordinate_type> ps;
ps.insert(geoObj);
insert(ps, property);
}
//merge properties of input geometries and store the resulting geometries of regions
//with unique sets of merged properties to polygons sets in a map keyed by sets of properties
// T = std::map<std::set<property_type>, polygon_45_set_data<coordiante_type> > or
// T = std::map<std::vector<property_type>, polygon_45_set_data<coordiante_type> >
template <class result_type>
inline void merge(result_type& result) {
typedef typename result_type::key_type keytype;
typedef std::map<keytype, polygon_45_set_data<big_coord> > bigtype;
bigtype result_big;
polygon_45_property_merge<big_coord, property_type>::performMerge(result_big, tsd_);
std::vector<polygon_45_with_holes_data<big_coord> > polys;
std::vector<rectangle_data<big_coord> > pos_error_rects;
std::vector<rectangle_data<big_coord> > neg_error_rects;
for(typename std::map<keytype, polygon_45_set_data<big_coord> >::iterator itr = result_big.begin();
itr != result_big.end(); ++itr) {
polys.clear();
(*itr).second.get(polys);
for(std::size_t i = 0; i < polys.size(); ++i) {
get_error_rects(pos_error_rects, neg_error_rects, polys[i]);
}
(*itr).second += pos_error_rects;
(*itr).second -= neg_error_rects;
(*itr).second.scale_down(2);
result[(*itr).first].insert((*itr).second);
}
}
};
//ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
//polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
template <typename coordinate_type>
class connectivity_extraction_45 {
private:
typedef typename coordinate_traits<coordinate_type>::manhattan_area_type big_coord;
typedef typename polygon_45_touch<big_coord>::TouchSetData tsd;
tsd tsd_;
unsigned int nodeCount_;
public:
inline connectivity_extraction_45() : tsd_(), nodeCount_(0) {}
inline connectivity_extraction_45(const connectivity_extraction_45& that) : tsd_(that.tsd_),
nodeCount_(that.nodeCount_) {}
inline connectivity_extraction_45& operator=(const connectivity_extraction_45& that) {
tsd_ = that.tsd_;
nodeCount_ = that.nodeCount_; {}
return *this;
}
//insert a polygon set graph node, the value returned is the id of the graph node
inline unsigned int insert(const polygon_45_set_data<coordinate_type>& ps) {
ps.clean();
polygon_45_touch<big_coord>::populateTouchSetData(tsd_, ps.begin(), ps.end(), nodeCount_);
return nodeCount_++;
}
template <class GeoObjT>
inline unsigned int insert(const GeoObjT& geoObj) {
polygon_45_set_data<coordinate_type> ps;
ps.insert(geoObj);
return insert(ps);
}
//extract connectivity and store the edges in the graph
//graph must be indexable by graph node id and the indexed value must be a std::set of
//graph node id
template <class GraphT>
inline void extract(GraphT& graph) {
polygon_45_touch<big_coord>::performTouch(graph, tsd_);
}
};
}
}
#endif