kicad/pcbnew/class_pad_draw_functions.cpp

774 lines
26 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2012 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_pad_draw_functions.cpp
*/
#include <fctsys.h>
#include <gr_basic.h>
#include <common.h>
#include <trigo.h>
#include <class_pcb_screen.h>
#include <class_drawpanel.h>
#include <drawtxt.h>
#include <layers_id_colors_and_visibility.h>
#include <wxBasePcbFrame.h>
#include <pcbcommon.h>
#include <pcbnew_id.h> // ID_TRACK_BUTT
#include <pcbnew.h>
#include <class_board.h>
/* uncomment this line to show this pad with its specfic size and color
* when it is not on copper layers, and only one solder mask layer or solder paste layer
* is displayed for this pad
* After testing this feature,I am not sure this is a good idea
* but the code is left here.
*/
//#define SHOW_PADMASK_REAL_SIZE_AND_COLOR
// Helper class to store parameters used to draw a pad
PAD_DRAWINFO::PAD_DRAWINFO()
{
m_DrawPanel = NULL;
m_DrawMode = GR_COPY;
m_Color = BLACK;
m_HoleColor = BLACK; // could be DARKGRAY;
m_NPHoleColor = YELLOW;
m_PadClearance = 0;
m_Display_padnum = true;
m_Display_netname = true;
m_ShowPadFilled = true;
m_ShowNCMark = true;
m_ShowNotPlatedHole = false;
m_IsPrinting = false;
}
void D_PAD::Draw( EDA_DRAW_PANEL* aPanel, wxDC* aDC, GR_DRAWMODE aDraw_mode,
const wxPoint& aOffset )
{
wxSize mask_margin; // margin (clearance) used for some non copper layers
#ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR
int showActualMaskSize = 0; /* Layer number if the actual pad size on mask layer can
* be displayed i.e. if only one layer is shown for this pad
* and this layer is a mask (solder mask or solder paste
*/
#endif
if( m_Flags & DO_NOT_DRAW )
return;
PAD_DRAWINFO drawInfo;
drawInfo.m_Offset = aOffset;
/* We can show/hide pads from the layer manager.
* options are show/hide pads on front and/or back side of the board
* For through pads, we hide them only if both sides are hidden.
* smd pads on back are hidden for all layers (copper and technical layers)
* on back side of the board
* smd pads on front are hidden for all layers (copper and technical layers)
* on front side of the board
* ECO, edge and Draw layers and not considered
*/
BOARD* brd = GetBoard();
bool frontVisible = brd->IsElementVisible( PCB_VISIBLE( PAD_FR_VISIBLE ) );
bool backVisible = brd->IsElementVisible( PCB_VISIBLE( PAD_BK_VISIBLE ) );
if( !frontVisible && !backVisible )
return;
/* If pad are only on front side (no layer on back side)
* and if hide front side pads is enabled, do not draw
*/
if( !frontVisible && ( (m_layerMask & BACK_LAYERS) == 0 ) )
return;
/* If pad are only on back side (no layer on front side)
* and if hide back side pads is enabled, do not draw
*/
if( !backVisible && ( (m_layerMask & FRONT_LAYERS) == 0 ) )
return;
PCB_BASE_FRAME* frame = (PCB_BASE_FRAME*) aPanel->GetParent();
PCB_SCREEN* screen = frame->GetScreen();
if( frame->m_DisplayPadFill == FILLED )
drawInfo.m_ShowPadFilled = true;
else
drawInfo.m_ShowPadFilled = false;
EDA_COLOR_T color = BLACK;
if( m_layerMask & LAYER_FRONT )
{
color = brd->GetVisibleElementColor( PAD_FR_VISIBLE );
}
if( m_layerMask & LAYER_BACK )
{
color = ColorMix( color, brd->GetVisibleElementColor( PAD_BK_VISIBLE ) );
}
if( color == BLACK ) // Not on a visible copper layer (i.e. still nothing to show)
{
// If the pad is on only one tech layer, use the layer color else use DARKGRAY
LAYER_MSK mask_non_copper_layers = m_layerMask & ~ALL_CU_LAYERS;
#ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR
mask_non_copper_layers &= brd->GetVisibleLayers();
#endif
LAYER_NUM pad_layer = ExtractLayer( mask_non_copper_layers );
switch( pad_layer )
{
case UNDEFINED_LAYER: // More than one layer
color = DARKGRAY;
break;
case UNSELECTED_LAYER: // Shouldn't really happen...
break;
default:
color = brd->GetLayerColor( pad_layer );
#ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR
showActualMaskSize = pad_layer;
#endif
}
}
// if SMD or connector pad and high contrast mode
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
if( ( aDraw_mode & GR_ALLOW_HIGHCONTRAST ) &&
( GetAttribute() == PAD_SMD || GetAttribute() == PAD_CONN ) &&
DisplayOpt.ContrastModeDisplay )
{
// when routing tracks
if( frame && frame->GetToolId() == ID_TRACK_BUTT )
{
LAYER_NUM routeTop = screen->m_Route_Layer_TOP;
LAYER_NUM routeBot = screen->m_Route_Layer_BOTTOM;
// if routing between copper and component layers,
// or the current layer is one of said 2 external copper layers,
// then highlight only the current layer.
if( ( ::GetLayerMask( routeTop ) | ::GetLayerMask( routeBot ) ) == ( LAYER_BACK | LAYER_FRONT )
|| ( ::GetLayerMask( screen->m_Active_Layer ) & ( LAYER_BACK | LAYER_FRONT ) ) )
{
if( !IsOnLayer( screen->m_Active_Layer ) )
ColorTurnToDarkDarkGray( &color );
}
// else routing between an internal signal layer and some other
// layer. Grey out all PAD_SMD pads not on current or the single
// selected external layer.
else if( !IsOnLayer( screen->m_Active_Layer )
&& !IsOnLayer( routeTop )
&& !IsOnLayer( routeBot ) )
{
ColorTurnToDarkDarkGray( &color );
}
}
// when not edting tracks, show PAD_SMD components not on active layer
// as greyed out
else
{
if( !IsOnLayer( screen->m_Active_Layer ) )
ColorTurnToDarkDarkGray( &color );
}
}
#ifdef SHOW_PADMASK_REAL_SIZE_AND_COLOR
if( showActualMaskSize )
{
switch( showActualMaskSize )
{
case SOLDERMASK_N_BACK:
case SOLDERMASK_N_FRONT:
mask_margin.x = mask_margin.y = GetSolderMaskMargin();
break;
case SOLDERPASTE_N_BACK:
case SOLDERPASTE_N_FRONT:
mask_margin = GetSolderPasteMargin();
break;
default:
// Another layer which has no margin to handle
break;
}
}
#endif
// if Contrast mode is ON and a technical layer active, show pads on this
// layer so we can see pads on paste or solder layer and the size of the
// mask
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
if( ( aDraw_mode & GR_ALLOW_HIGHCONTRAST ) &&
DisplayOpt.ContrastModeDisplay && !IsCopperLayer( screen->m_Active_Layer ) )
2009-03-26 19:27:50 +00:00
{
if( IsOnLayer( screen->m_Active_Layer ) )
{
color = brd->GetLayerColor( screen->m_Active_Layer );
// In high contrast mode, and if the active layer is the mask
// layer shows the pad size with the mask clearance
switch( screen->m_Active_Layer )
{
case SOLDERMASK_N_BACK:
case SOLDERMASK_N_FRONT:
mask_margin.x = mask_margin.y = GetSolderMaskMargin();
break;
case SOLDERPASTE_N_BACK:
case SOLDERPASTE_N_FRONT:
mask_margin = GetSolderPasteMargin();
break;
default:
break;
}
}
2009-03-26 19:27:50 +00:00
else
color = DARKDARKGRAY;
}
if( aDraw_mode & GR_HIGHLIGHT )
ColorChangeHighlightFlag( &color, !(aDraw_mode & GR_AND) );
ColorApplyHighlightFlag( &color );
bool DisplayIsol = DisplayOpt.DisplayPadIsol;
if( ( m_layerMask & ALL_CU_LAYERS ) == 0 )
DisplayIsol = false;
if( ( GetAttribute() == PAD_HOLE_NOT_PLATED ) &&
brd->IsElementVisible( NON_PLATED_VISIBLE ) )
{
drawInfo.m_ShowNotPlatedHole = true;
drawInfo.m_NPHoleColor = brd->GetVisibleElementColor( NON_PLATED_VISIBLE );
}
drawInfo.m_DrawMode = aDraw_mode;
drawInfo.m_Color = color;
drawInfo.m_DrawPanel = aPanel;
drawInfo.m_Mask_margin = mask_margin;
drawInfo.m_ShowNCMark = brd->IsElementVisible( PCB_VISIBLE( NO_CONNECTS_VISIBLE ) );
drawInfo.m_IsPrinting = screen->m_IsPrinting;
SetAlpha( &color, 170 );
/* Get the pad clearance. This has a meaning only for Pcbnew.
* for CvPcb (and GerbView) GetClearance() creates debug errors because
* there is no net classes so a call to GetClearance() is made only when
* needed (never needed in CvPcb nor in GerbView)
*/
drawInfo.m_PadClearance = DisplayIsol ? GetClearance() : 0;
// Draw the pad number
if( frame && !frame->m_DisplayPadNum )
drawInfo.m_Display_padnum = false;
2009-09-10 15:22:26 +00:00
if( ( DisplayOpt.DisplayNetNamesMode == 0 ) || ( DisplayOpt.DisplayNetNamesMode == 2 ) )
drawInfo.m_Display_netname = false;
// Display net names is restricted to pads that are on the active layer
// in high contrast mode display
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
if( ( aDraw_mode & GR_ALLOW_HIGHCONTRAST ) &&
!IsOnLayer( screen->m_Active_Layer ) && DisplayOpt.ContrastModeDisplay )
drawInfo.m_Display_netname = false;
DrawShape( aPanel->GetClipBox(), aDC, drawInfo );
}
void D_PAD::DrawShape( EDA_RECT* aClipBox, wxDC* aDC, PAD_DRAWINFO& aDrawInfo )
{
wxPoint coord[4];
int delta_cx, delta_cy;
double angle = m_Orient;
int seg_width;
GRSetDrawMode( aDC, aDrawInfo.m_DrawMode );
// calculate pad shape position :
wxPoint shape_pos = ReturnShapePos() - aDrawInfo.m_Offset;
wxSize halfsize = m_Size;
halfsize.x >>= 1;
halfsize.y >>= 1;
switch( GetShape() )
{
case PAD_CIRCLE:
if( aDrawInfo.m_ShowPadFilled )
GRFilledCircle( aClipBox, aDC, shape_pos.x, shape_pos.y,
halfsize.x + aDrawInfo.m_Mask_margin.x, 0,
aDrawInfo.m_Color, aDrawInfo.m_Color );
else
GRCircle( aClipBox, aDC, shape_pos.x, shape_pos.y,
halfsize.x + aDrawInfo.m_Mask_margin.x,
m_PadSketchModePenSize, aDrawInfo.m_Color );
if( aDrawInfo.m_PadClearance )
{
GRCircle( aClipBox,
aDC, shape_pos.x, shape_pos.y,
halfsize.x + aDrawInfo.m_PadClearance,
2009-03-26 19:27:50 +00:00
0,
aDrawInfo.m_Color );
}
break;
case PAD_OVAL:
{
wxPoint segStart, segEnd;
seg_width = BuildSegmentFromOvalShape(segStart, segEnd, angle);
segStart += shape_pos;
segEnd += shape_pos;
if( aDrawInfo.m_ShowPadFilled )
{
GRFillCSegm( aClipBox, aDC, segStart.x, segStart.y, segEnd.x, segEnd.y,
seg_width, aDrawInfo.m_Color );
}
else
{
GRCSegm( aClipBox, aDC, segStart.x, segStart.y, segEnd.x, segEnd.y,
seg_width, m_PadSketchModePenSize, aDrawInfo.m_Color );
}
// Draw the clearance line
if( aDrawInfo.m_PadClearance )
{
seg_width += 2 * aDrawInfo.m_PadClearance;
GRCSegm( aClipBox, aDC, segStart.x, segStart.y, segEnd.x, segEnd.y,
seg_width, aDrawInfo.m_Color );
}
}
break;
case PAD_RECT:
case PAD_TRAPEZOID:
BuildPadPolygon( coord, aDrawInfo.m_Mask_margin, angle );
for( int ii = 0; ii < 4; ii++ )
coord[ii] += shape_pos;
GRClosedPoly( aClipBox, aDC, 4, coord, aDrawInfo.m_ShowPadFilled,
aDrawInfo.m_ShowPadFilled ? 0 : m_PadSketchModePenSize,
aDrawInfo.m_Color, aDrawInfo.m_Color );
if( aDrawInfo.m_PadClearance )
{
BuildPadPolygon( coord, wxSize( aDrawInfo.m_PadClearance,
aDrawInfo.m_PadClearance ), angle );
for( int ii = 0; ii < 4; ii++ )
coord[ii] += shape_pos;
GRClosedPoly( aClipBox, aDC, 4, coord, 0, aDrawInfo.m_Color, aDrawInfo.m_Color );
}
break;
default:
break;
}
// Draw the pad hole
wxPoint holepos = m_Pos - aDrawInfo.m_Offset;
int hole = m_Drill.x >> 1;
bool drawhole = hole > 0;
if( !aDrawInfo.m_ShowPadFilled && !aDrawInfo.m_ShowNotPlatedHole )
drawhole = false;
if( drawhole )
{
bool blackpenstate = false;
if( aDrawInfo.m_IsPrinting )
{
blackpenstate = GetGRForceBlackPenState();
GRForceBlackPen( false );
aDrawInfo.m_HoleColor = g_DrawBgColor;
}
if( aDrawInfo.m_DrawMode != GR_XOR )
GRSetDrawMode( aDC, GR_COPY );
else
GRSetDrawMode( aDC, GR_XOR );
EDA_COLOR_T hole_color = aDrawInfo.m_HoleColor;
if( aDrawInfo. m_ShowNotPlatedHole ) // Draw a specific hole color
hole_color = aDrawInfo.m_NPHoleColor;
switch( m_DrillShape )
{
case PAD_CIRCLE:
if( aDC->LogicalToDeviceXRel( hole ) > MIN_DRAW_WIDTH )
GRFilledCircle( aClipBox, aDC, holepos.x, holepos.y, hole, 0,
aDrawInfo.m_Color, hole_color );
break;
case PAD_OVAL:
halfsize.x = m_Drill.x >> 1;
halfsize.y = m_Drill.y >> 1;
if( m_Drill.x > m_Drill.y ) // horizontal
{
delta_cx = halfsize.x - halfsize.y;
delta_cy = 0;
seg_width = m_Drill.y;
}
else // vertical
{
delta_cx = 0;
delta_cy = halfsize.y - halfsize.x;
seg_width = m_Drill.x;
}
RotatePoint( &delta_cx, &delta_cy, angle );
GRFillCSegm( aClipBox, aDC, holepos.x + delta_cx, holepos.y + delta_cy,
holepos.x - delta_cx, holepos.y - delta_cy, seg_width,
hole_color );
break;
default:
break;
}
if( aDrawInfo.m_IsPrinting )
GRForceBlackPen( blackpenstate );
}
GRSetDrawMode( aDC, aDrawInfo.m_DrawMode );
// Draw "No connect" ( / or \ or cross X ) if necessary
if( m_Netname.IsEmpty() && aDrawInfo.m_ShowNCMark )
{
int dx0 = std::min( halfsize.x, halfsize.y );
EDA_COLOR_T nc_color = BLUE;
if( m_layerMask & LAYER_FRONT ) /* Draw \ */
GRLine( aClipBox, aDC, holepos.x - dx0, holepos.y - dx0,
holepos.x + dx0, holepos.y + dx0, 0, nc_color );
if( m_layerMask & LAYER_BACK ) // Draw /
GRLine( aClipBox, aDC, holepos.x + dx0, holepos.y - dx0,
holepos.x - dx0, holepos.y + dx0, 0, nc_color );
}
if( aDrawInfo.m_DrawMode != GR_XOR )
GRSetDrawMode( aDC, GR_COPY );
else
GRSetDrawMode( aDC, GR_XOR );
// Draw the pad number
if( !aDrawInfo.m_Display_padnum && !aDrawInfo.m_Display_netname )
return;
wxPoint tpos0 = shape_pos; // Position of the centre of text
wxPoint tpos = tpos0;
wxSize AreaSize; // size of text area, normalized to AreaSize.y < AreaSize.x
2009-03-26 19:27:50 +00:00
int shortname_len = m_ShortNetname.Len();
if( !aDrawInfo.m_Display_netname )
2009-03-26 19:27:50 +00:00
shortname_len = 0;
if( GetShape() == PAD_CIRCLE )
angle = 0;
AreaSize = m_Size;
if( m_Size.y > m_Size.x )
{
angle += 900;
AreaSize.x = m_Size.y;
AreaSize.y = m_Size.x;
}
if( shortname_len > 0 ) // if there is a netname, provides room to display this netname
{
AreaSize.y /= 2; // Text used only the upper area of the
// pad. The lower area displays the net name
tpos.y -= AreaSize.y / 2;
}
// Calculate the position of text, that is the middle point of the upper
// area of the pad
RotatePoint( &tpos, shape_pos, angle );
// Draw text with an angle between -90 deg and + 90 deg
double t_angle = angle;
NORMALIZE_ANGLE_90( t_angle );
/* Note: in next calculations, texte size is calculated for 3 or more
* chars. Of course, pads numbers and nets names can have less than 3
* chars. but after some tries, i found this is gives the best look
2009-03-26 19:27:50 +00:00
*/
#define MIN_CHAR_COUNT 3
wxString buffer;
int tsize;
if( aDrawInfo.m_Display_padnum )
{
2009-03-26 19:27:50 +00:00
ReturnStringPadName( buffer );
int numpad_len = buffer.Len();
2012-08-03 15:43:15 +00:00
numpad_len = std::max( numpad_len, MIN_CHAR_COUNT );
2012-08-03 15:43:15 +00:00
tsize = std::min( AreaSize.y, AreaSize.x / numpad_len );
if( aDC->LogicalToDeviceXRel( tsize ) >= MIN_TEXT_SIZE ) // Not drawable when size too small.
2009-03-26 19:27:50 +00:00
{
// tsize reserve room for marges and segments thickness
tsize = ( tsize * 7 ) / 10;
DrawGraphicHaloText( aDrawInfo.m_DrawPanel, aDC, tpos,
aDrawInfo.m_Color, BLACK, WHITE,
buffer, t_angle,
wxSize( tsize , tsize ), GR_TEXT_HJUSTIFY_CENTER,
GR_TEXT_VJUSTIFY_CENTER, tsize / 7, false, false );
2009-03-26 19:27:50 +00:00
}
}
2009-03-26 19:27:50 +00:00
// display the short netname, if exists
if( shortname_len == 0 )
return;
2009-03-26 19:27:50 +00:00
shortname_len = std::max( shortname_len, MIN_CHAR_COUNT );
2012-08-03 15:43:15 +00:00
tsize = std::min( AreaSize.y, AreaSize.x / shortname_len );
if( aDC->LogicalToDeviceXRel( tsize ) >= MIN_TEXT_SIZE ) // Not drawable in size too small.
{
tpos = tpos0;
if( aDrawInfo.m_Display_padnum )
tpos.y += AreaSize.y / 2;
RotatePoint( &tpos, shape_pos, angle );
// tsize reserve room for marges and segments thickness
tsize = ( tsize * 7 ) / 10;
DrawGraphicHaloText( aDrawInfo.m_DrawPanel, aDC, tpos,
aDrawInfo.m_Color, BLACK, WHITE,
m_ShortNetname, t_angle,
wxSize( tsize, tsize ), GR_TEXT_HJUSTIFY_CENTER,
GR_TEXT_VJUSTIFY_CENTER, tsize / 7, false, false );
}
}
/**
* Function BuildSegmentFromOvalShape
* Has meaning only for OVAL (and ROUND) pads.
* Build an equivalent segment having the same shape as the OVAL shape,
* aSegStart and aSegEnd are the ending points of the equivalent segment of the shape
* aRotation is the asked rotation of the segment (usually m_Orient)
*/
int D_PAD::BuildSegmentFromOvalShape(wxPoint& aSegStart, wxPoint& aSegEnd,
double aRotation) const
{
int width;
if( m_Size.y < m_Size.x ) // Build an horizontal equiv segment
{
int delta = ( m_Size.x - m_Size.y ) / 2;
aSegStart.x = -delta;
aSegStart.y = 0;
aSegEnd.x = delta;
aSegEnd.y = 0;
width = m_Size.y;
}
else // Vertical oval: build a vertical equiv segment
{
int delta = ( m_Size.y -m_Size.x ) / 2;
aSegStart.x = 0;
aSegStart.y = -delta;
aSegEnd.x = 0;
aSegEnd.y = delta;
width = m_Size.x;
}
if( aRotation )
{
RotatePoint( &aSegStart, aRotation);
RotatePoint( &aSegEnd, aRotation);
}
return width;
}
void D_PAD::BuildPadPolygon( wxPoint aCoord[4], wxSize aInflateValue,
double aRotation ) const
{
wxSize delta;
wxSize halfsize;
halfsize.x = m_Size.x >> 1;
halfsize.y = m_Size.y >> 1;
switch( GetShape() )
{
case PAD_RECT:
// For rectangular shapes, inflate is easy
halfsize += aInflateValue;
// Verify if do not deflate more than than size
// Only possible for inflate negative values.
if( halfsize.x < 0 )
halfsize.x = 0;
if( halfsize.y < 0 )
halfsize.y = 0;
break;
case PAD_TRAPEZOID:
// Trapezoidal pad: verify delta values
delta.x = ( m_DeltaSize.x >> 1 );
delta.y = ( m_DeltaSize.y >> 1 );
// be sure delta values are not to large
if( (delta.x < 0) && (delta.x <= -halfsize.y) )
delta.x = -halfsize.y + 1;
if( (delta.x > 0) && (delta.x >= halfsize.y) )
delta.x = halfsize.y - 1;
if( (delta.y < 0) && (delta.y <= -halfsize.x) )
delta.y = -halfsize.x + 1;
if( (delta.y > 0) && (delta.y >= halfsize.x) )
delta.y = halfsize.x - 1;
break;
default: // is used only for rect and trap. pads
return;
}
// Build the basic rectangular or trapezoid shape
// delta is null for rectangular shapes
aCoord[0].x = -halfsize.x - delta.y; // lower left
aCoord[0].y = +halfsize.y + delta.x;
aCoord[1].x = -halfsize.x + delta.y; // upper left
aCoord[1].y = -halfsize.y - delta.x;
aCoord[2].x = +halfsize.x - delta.y; // upper right
aCoord[2].y = -halfsize.y + delta.x;
aCoord[3].x = +halfsize.x + delta.y; // lower right
aCoord[3].y = +halfsize.y - delta.x;
// Offsetting the trapezoid shape id needed
// It is assumed delta.x or/and delta.y == 0
if( GetShape() == PAD_TRAPEZOID && (aInflateValue.x != 0 || aInflateValue.y != 0) )
{
double angle;
wxSize corr;
if( delta.y ) // lower and upper segment is horizontal
{
// Calculate angle of left (or right) segment with vertical axis
angle = atan2( m_DeltaSize.y, m_Size.y );
// left and right sides are moved by aInflateValue.x in their perpendicular direction
// We must calculate the corresponding displacement on the horizontal axis
// that is delta.x +- corr.x depending on the corner
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
corr.x = KiROUND( tan( angle ) * aInflateValue.x );
delta.x = KiROUND( aInflateValue.x / cos( angle ) );
// Horizontal sides are moved up and down by aInflateValue.y
delta.y = aInflateValue.y;
// corr.y = 0 by the constructor
}
else if( delta.x ) // left and right segment is vertical
{
// Calculate angle of lower (or upper) segment with horizontal axis
angle = atan2( m_DeltaSize.x, m_Size.x );
// lower and upper sides are moved by aInflateValue.x in their perpendicular direction
// We must calculate the corresponding displacement on the vertical axis
// that is delta.y +- corr.y depending on the corner
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
corr.y = KiROUND( tan( angle ) * aInflateValue.y );
delta.y = KiROUND( aInflateValue.y / cos( angle ) );
// Vertical sides are moved left and right by aInflateValue.x
delta.x = aInflateValue.x;
// corr.x = 0 by the constructor
}
else // the trapezoid is a rectangle
{
delta = aInflateValue; // this pad is rectangular (delta null).
}
aCoord[0].x += -delta.x - corr.x; // lower left
aCoord[0].y += delta.y + corr.y;
aCoord[1].x += -delta.x + corr.x; // upper left
aCoord[1].y += -delta.y - corr.y;
aCoord[2].x += delta.x - corr.x; // upper right
aCoord[2].y += -delta.y + corr.y;
aCoord[3].x += delta.x + corr.x; // lower right
aCoord[3].y += delta.y - corr.y;
/* test coordinates and clamp them if the offset correction is too large:
* Note: if a coordinate is bad, the other "symmetric" coordinate is bad
* So when a bad coordinate is found, the 2 symmetric coordinates
* are set to the minimun value (0)
*/
if( aCoord[0].x > 0 ) // lower left x coordinate must be <= 0
aCoord[0].x = aCoord[3].x = 0;
if( aCoord[1].x > 0 ) // upper left x coordinate must be <= 0
aCoord[1].x = aCoord[2].x = 0;
if( aCoord[0].y < 0 ) // lower left y coordinate must be >= 0
aCoord[0].y = aCoord[1].y = 0;
if( aCoord[3].y < 0 ) // lower right y coordinate must be >= 0
aCoord[3].y = aCoord[2].y = 0;
}
if( aRotation )
{
for( int ii = 0; ii < 4; ii++ )
RotatePoint( &aCoord[ii], aRotation );
}
}