2007-12-08 18:19:48 +00:00
|
|
|
// file php_polygon.cpp
|
|
|
|
// This is a port of a php class written by Brenor Brophy (see below)
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------------------
|
|
|
|
** File: polygon.php
|
|
|
|
** Description: PHP class for a polygon.
|
|
|
|
** Version: 1.1
|
|
|
|
** Author: Brenor Brophy
|
|
|
|
** Email: brenor at sbcglobal dot net
|
|
|
|
** Homepage: www.brenorbrophy.com
|
|
|
|
**------------------------------------------------------------------------------
|
|
|
|
** COPYRIGHT (c) 2005 BRENOR BROPHY
|
|
|
|
**
|
|
|
|
** The source code included in this package is free software; you can
|
|
|
|
** redistribute it and/or modify it under the terms of the GNU General Public
|
|
|
|
** License as published by the Free Software Foundation. This license can be
|
|
|
|
** read at:
|
|
|
|
**
|
|
|
|
** http://www.opensource.org/licenses/gpl-license.php
|
|
|
|
**
|
|
|
|
** This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
** FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
**------------------------------------------------------------------------------
|
|
|
|
**
|
|
|
|
** Based on the paper "Efficient Clipping of Arbitary Polygons" by Gunther
|
|
|
|
** Greiner (greiner at informatik dot uni-erlangen dot de) and Kai Hormann
|
|
|
|
** (hormann at informatik dot tu-clausthal dot de), ACM Transactions on Graphics
|
|
|
|
** 1998;17(2):71-83.
|
|
|
|
**
|
|
|
|
** Available at: www.in.tu-clausthal.de/~hormann/papers/clipping.pdf
|
|
|
|
**
|
|
|
|
** Another useful site describing the algorithm and with some example
|
|
|
|
** C code by Ionel Daniel Stroe is at:
|
|
|
|
**
|
|
|
|
** http://davis.wpi.edu/~matt/courses/clipping/
|
|
|
|
**
|
|
|
|
** The algorithm is extended by Brenor Brophy to allow polygons with
|
|
|
|
** arcs between vertices.
|
|
|
|
**
|
|
|
|
** Rev History
|
|
|
|
** -----------------------------------------------------------------------------
|
|
|
|
** 1.0 08/25/2005 Initial Release
|
|
|
|
** 1.1 09/04/2005 Added Move(), Rotate(), isPolyInside() and bRect() methods.
|
|
|
|
** Added software license language to header comments
|
|
|
|
*/
|
|
|
|
//#include "stdafx.h"
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#include "php_polygon_vertex.h"
|
|
|
|
#include "php_polygon.h"
|
|
|
|
|
|
|
|
const double PT = 0.99999;
|
|
|
|
//const double eps = (1.0 - PT)/10.0;
|
|
|
|
const double eps = 0.0;
|
|
|
|
|
|
|
|
polygon::polygon( vertex * first )
|
|
|
|
{
|
|
|
|
m_first = first;
|
|
|
|
m_cnt = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
polygon::~polygon()
|
|
|
|
{
|
|
|
|
while( m_cnt > 1 )
|
|
|
|
{
|
|
|
|
vertex * v = getFirst();
|
|
|
|
del( v->m_nextV );
|
|
|
|
}
|
|
|
|
if( m_first )
|
|
|
|
{
|
|
|
|
delete m_first;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vertex * polygon::getFirst()
|
|
|
|
{
|
|
|
|
return m_first;
|
|
|
|
}
|
|
|
|
|
|
|
|
polygon * polygon::NextPoly()
|
|
|
|
{
|
|
|
|
return m_first->NextPoly();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Add a vertex object to the polygon (vertex is added at the "end" of the list)
|
|
|
|
** Which because polygons are closed lists means it is added just before the first
|
|
|
|
** vertex.
|
|
|
|
*/
|
|
|
|
void polygon::add( vertex * nv )
|
|
|
|
{
|
|
|
|
if ( m_cnt == 0 ) // If this is the first vertex in the polygon
|
|
|
|
{
|
|
|
|
m_first = nv; // Save a reference to it in the polygon
|
|
|
|
m_first->setNext(nv); // Set its pointer to point to itself
|
|
|
|
m_first->setPrev(nv); // because it is the only vertex in the list
|
|
|
|
segment * ps = m_first->Nseg(); // Get ref to the Next segment object
|
|
|
|
m_first->setPseg(ps); // and save it as Prev segment as well
|
|
|
|
}
|
|
|
|
else // At least one other vertex already exists
|
|
|
|
{
|
|
|
|
// p <-> nv <-> n
|
|
|
|
// ps ns
|
|
|
|
vertex * n = m_first; // Get a ref to the first vertex in the list
|
|
|
|
vertex * p = n->Prev(); // Get ref to previous vertex
|
|
|
|
n->setPrev(nv); // Add at end of list (just before first)
|
|
|
|
nv->setNext(n); // link the new vertex to it
|
|
|
|
nv->setPrev(p); // link to the pervious EOL vertex
|
|
|
|
p->setNext(nv); // And finally link the previous EOL vertex
|
|
|
|
// Segments
|
|
|
|
segment * ns = nv->Nseg(); // Get ref to the new next segment
|
|
|
|
segment * ps = p->Nseg(); // Get ref to the previous segment
|
|
|
|
n->setPseg(ns); // Set new previous seg for m_first
|
|
|
|
nv->setPseg(ps); // Set previous seg of the new vertex
|
|
|
|
}
|
|
|
|
m_cnt++; // Increment the count of vertices
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Create a vertex and then add it to the polygon
|
|
|
|
*/
|
|
|
|
void polygon::addv ( double x, double y,
|
|
|
|
double xc, double yc, int d )
|
|
|
|
{
|
|
|
|
vertex * nv = new vertex( x, y, xc, yc, d );
|
|
|
|
add( nv );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Delete a vertex object from the polygon. This is not used by the main algorithm
|
|
|
|
** but instead is used to clean-up a polygon so that a second boolean operation can
|
|
|
|
** be performed.
|
|
|
|
*/
|
|
|
|
vertex * polygon::del( vertex * v )
|
|
|
|
{
|
|
|
|
// p <-> v <-> n Will delete v and ns
|
|
|
|
// ps ns
|
|
|
|
vertex * p = v->Prev(); // Get ref to previous vertex
|
|
|
|
vertex * n = v->Next(); // Get ref to next vertex
|
|
|
|
p->setNext(n); // Link previous forward to next
|
|
|
|
n->setPrev(p); // Link next back to previous
|
|
|
|
// Segments
|
|
|
|
segment * ps = p->Nseg(); // Get ref to previous segment
|
|
|
|
segment * ns = v->Nseg(); // Get ref to next segment
|
|
|
|
n->setPseg(ps); // Link next back to previous segment
|
|
|
|
delete ns; //AMW
|
|
|
|
v->m_nSeg = NULL; // AMW
|
|
|
|
delete v; //AMW
|
|
|
|
// ns = NULL;
|
|
|
|
// v = NULL; // Free the memory
|
|
|
|
m_cnt--; // One less vertex
|
|
|
|
return n; // Return a ref to the next valid vertex
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Reset Polygon - Deletes all intersection vertices. This is used to
|
|
|
|
** restore a polygon that has been processed by the boolean method
|
|
|
|
** so that it can be processed again.
|
|
|
|
*/
|
|
|
|
void polygon::res()
|
|
|
|
{
|
|
|
|
vertex * v = getFirst(); // Get the first vertex
|
|
|
|
do
|
|
|
|
{
|
|
|
|
v = v->Next(); // Get the next vertex in the polygon
|
|
|
|
while (v->isIntersect()) // Delete all intersection vertices
|
|
|
|
v = del(v);
|
|
|
|
}
|
|
|
|
while (v->id() != m_first->id());
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Copy Polygon - Returns a reference to a new copy of the poly object
|
|
|
|
** including all its vertices & their segments
|
|
|
|
*/
|
|
|
|
polygon * polygon::copy_poly()
|
|
|
|
{
|
|
|
|
polygon * n = new polygon; // Create a new instance of this class
|
|
|
|
vertex * v = getFirst();
|
|
|
|
do
|
|
|
|
{
|
|
|
|
n->addv(v->X(),v->Y(),v->Xc(),v->Yc(),v->d());
|
|
|
|
v = v->Next();
|
|
|
|
}
|
|
|
|
while (v->id() != m_first->id());
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Insert and Sort a vertex between a specified pair of vertices (start and end)
|
|
|
|
**
|
|
|
|
** This function inserts a vertex (most likely an intersection point) between two
|
|
|
|
** other vertices. These other vertices cannot be intersections (that is they must
|
|
|
|
** be actual vertices of the original polygon). If there are multiple intersection
|
|
|
|
** points between the two vertices then the new vertex is inserted based on its
|
|
|
|
** alpha value.
|
|
|
|
*/
|
|
|
|
void polygon::insertSort( vertex * nv, vertex * s, vertex * e )
|
|
|
|
{
|
|
|
|
vertex * c = s; // Set current to the starting vertex
|
|
|
|
// Move current past any intersections
|
|
|
|
// whose alpha is lower but don't go past
|
|
|
|
// the end vertex
|
|
|
|
while( c->id() != e->id() && c->Alpha() < nv->Alpha() )
|
|
|
|
c = c->Next();
|
|
|
|
// p <-> nv <-> c
|
|
|
|
nv->setNext(c); // Link new vertex forward to curent one
|
|
|
|
vertex * p = c->Prev(); // Get a link to the previous vertex
|
|
|
|
nv->setPrev(p); // Link the new vertex back to the previous one
|
|
|
|
p->setNext(nv); // Link previous vertex forward to new vertex
|
|
|
|
c->setPrev(nv); // Link current vertex back to the new vertex
|
|
|
|
// Segments
|
|
|
|
segment * ps = p->Nseg();
|
|
|
|
nv->setPseg(ps);
|
|
|
|
segment * ns = nv->Nseg();
|
|
|
|
c->setPseg(ns);
|
|
|
|
m_cnt++; // Just added a new vertex
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** return the next non intersecting vertex after the one specified
|
|
|
|
*/
|
|
|
|
vertex * polygon::nxt( vertex * v )
|
|
|
|
{
|
|
|
|
vertex * c = v; // Initialize current vertex
|
|
|
|
while (c && c->isIntersect()) // Move until a non-intersection
|
|
|
|
c = c->Next(); // vertex if found
|
|
|
|
return c; // return that vertex
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Check if any unchecked intersections remain in the polygon. The boolean
|
|
|
|
** method is complete when all intersections have been checked.
|
|
|
|
*/
|
|
|
|
BOOL polygon::unckd_remain()
|
|
|
|
{
|
|
|
|
BOOL remain = FALSE;
|
|
|
|
vertex * v = m_first;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (v->isIntersect() && !v->isChecked())
|
|
|
|
remain = TRUE; // Set if an unchecked intersection is found
|
|
|
|
v = v->Next();
|
|
|
|
}
|
|
|
|
while (v->id() != m_first->id());
|
|
|
|
return remain;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return a ref to the first unchecked intersection point in the polygon.
|
|
|
|
** If none are found then just the first vertex is returned.
|
|
|
|
*/
|
|
|
|
vertex * polygon::first_unckd_intersect()
|
|
|
|
{
|
|
|
|
vertex * v = m_first;
|
|
|
|
do // Do-While
|
|
|
|
{ // Not yet reached end of the polygon
|
|
|
|
v = v->Next(); // AND the vertex if NOT an intersection
|
|
|
|
} // OR it IS an intersection, but has been checked already
|
|
|
|
while(v->id() != m_first->id() && ( !v->isIntersect() || ( v->isIntersect() && v->isChecked() ) ) );
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
** Return the distance between two points
|
|
|
|
*/
|
|
|
|
double polygon::dist( double x1, double y1, double x2, double y2 )
|
|
|
|
{
|
|
|
|
return sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
** Calculate the angle between 2 points, where Xc,Yc is the center of a circle
|
|
|
|
** and x,y is a point on its circumference. All angles are relative to
|
|
|
|
** the 3 O'Clock position. Result returned in radians
|
|
|
|
*/
|
|
|
|
double polygon::angle( double xc, double yc, double x1, double y1 )
|
|
|
|
{
|
|
|
|
double d = dist(xc, yc, x1, y1); // calc distance between two points
|
|
|
|
double a1;
|
|
|
|
if ( asin( (y1-yc)/d ) >= 0 )
|
|
|
|
a1 = acos( (x1-xc)/d );
|
|
|
|
else
|
|
|
|
a1 = 2*PI - acos( (x1-xc)/d );
|
|
|
|
return a1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return Alpha value for an Arc
|
|
|
|
**
|
|
|
|
** X1/Y1 & X2/Y2 are the end points of the arc, Xc/Yc is the center & Xi/Yi
|
|
|
|
** the intersection point on the arc. d is the direction of the arc
|
|
|
|
*/
|
|
|
|
double polygon::aAlpha( double x1, double y1, double x2, double y2,
|
|
|
|
double xc, double yc, double xi, double yi, double d )
|
|
|
|
{
|
|
|
|
double sa = angle(xc, yc, x1, y1); // Start Angle
|
|
|
|
double ea = angle(xc, yc, x2, y2); // End Angle
|
|
|
|
double ia = angle(xc, yc, xi, yi); // Intersection Angle
|
|
|
|
double arc, aint;
|
|
|
|
if (d == 1) // Anti-Clockwise
|
|
|
|
{
|
|
|
|
arc = ea - sa;
|
|
|
|
aint = ia - sa;
|
|
|
|
}
|
|
|
|
else // Clockwise
|
|
|
|
{
|
|
|
|
arc = sa - ea;
|
|
|
|
aint = sa - ia;
|
|
|
|
}
|
|
|
|
if (arc < 0)
|
|
|
|
arc += 2*PI;
|
|
|
|
if (aint < 0)
|
|
|
|
aint += 2*PI;
|
|
|
|
double a = aint/arc;
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This function handles the degenerate case where a vertex of one
|
|
|
|
** polygon lies directly on an edge of the other. This case can
|
|
|
|
** also occur during the isInside() function, where the search
|
|
|
|
** line exactly intersects with a vertex. The function works
|
|
|
|
** by shortening the line by a tiny amount.
|
|
|
|
*/
|
|
|
|
void polygon::perturb( vertex * p1, vertex * p2, vertex * q1, vertex * q2,
|
|
|
|
double aP, double aQ )
|
|
|
|
{
|
|
|
|
// if (aP == 0) // Move vertex p1 closer to p2
|
|
|
|
if( abs(aP) <= eps ) // Move vertex p1 closer to p2
|
|
|
|
{
|
|
|
|
p1->setX(p1->X() + (1-PT) * (p2->X() - p1->X()));
|
|
|
|
p1->setY(p1->Y() + (1-PT) * (p2->Y() - p1->Y()));
|
|
|
|
}
|
|
|
|
// else if (aP == 1) // Move vertex p2 closer to p1
|
|
|
|
else if( abs(1-aP) <= eps ) // Move vertex p2 closer to p1
|
|
|
|
{
|
|
|
|
p2->setX(p1->X() + PT * (p2->X() - p1->X()));
|
|
|
|
p2->setY(p1->Y() + PT * (p2->Y() - p1->Y()));
|
|
|
|
}
|
|
|
|
//** else if (aQ == 0) // Move vertex q1 closer to q2
|
|
|
|
if( abs(aQ) <= eps ) // Move vertex q1 closer to q2
|
|
|
|
{
|
|
|
|
q1->setX(q1->X() + (1-PT) * (q2->X() - q1->X()));
|
|
|
|
q1->setY(q1->Y() + (1-PT) * (q2->Y() - q1->Y()));
|
|
|
|
}
|
|
|
|
//** else if (aQ == 1) // Move vertex q2 closer to q1
|
|
|
|
else if( abs(1-aQ) <= eps ) // Move vertex q2 closer to q1
|
|
|
|
{
|
|
|
|
q2->setX(q1->X() + PT * (q2->X() - q1->X()));
|
|
|
|
q2->setY(q1->Y() + PT * (q2->Y() - q1->Y()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Determine the intersection between two pairs of vertices p1/p2, q1/q2
|
|
|
|
**
|
|
|
|
** Either or both of the segments passed to this function could be arcs.
|
|
|
|
** Thus we must first determine if the intersection is line/line, arc/line
|
|
|
|
** or arc/arc. Then apply the correct math to calculate the intersection(s).
|
|
|
|
**
|
|
|
|
** Line/Line can have 0 (no intersection) or 1 intersection
|
|
|
|
** Line/Arc and Arc/Arc can have 0, 1 or 2 intersections
|
|
|
|
**
|
|
|
|
** The function returns TRUE is any intersections are found
|
|
|
|
** The number found is returned in n
|
|
|
|
** The arrays ix[], iy[], alphaP[] & alphaQ[] return the intersection points
|
|
|
|
** and their associated alpha values.
|
|
|
|
*/
|
|
|
|
BOOL polygon::ints( vertex * p1, vertex * p2, vertex * q1, vertex * q2,
|
|
|
|
int * n, double ix[], double iy[], double alphaP[], double alphaQ[] )
|
|
|
|
{
|
|
|
|
BOOL found = FALSE;
|
|
|
|
*n = 0; // No intersections found yet
|
|
|
|
int pt = p1->d();
|
|
|
|
int qt = q1->d(); // Do we have Arcs or Lines?
|
|
|
|
|
|
|
|
if (pt == 0 && qt == 0) // Is it line/Line ?
|
|
|
|
{
|
|
|
|
/* LINE/LINE
|
|
|
|
** Algorithm from: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
|
|
|
|
*/
|
|
|
|
double x1 = p1->X();
|
|
|
|
double y1 = p1->Y();
|
|
|
|
double x2 = p2->X();
|
|
|
|
double y2 = p2->Y();
|
|
|
|
double x3 = q1->X();
|
|
|
|
double y3 = q1->Y();
|
|
|
|
double x4 = q2->X();
|
|
|
|
double y4 = q2->Y();
|
|
|
|
double d = ((y4-y3)*(x2-x1)-(x4-x3)*(y2-y1));
|
|
|
|
if (d != 0)
|
|
|
|
{ // The lines intersect at a point somewhere
|
|
|
|
double ua = ((x4-x3)*(y1-y3)-(y4-y3)*(x1-x3))/d;
|
|
|
|
double ub = ((x2-x1)*(y1-y3)-(y2-y1)*(x1-x3))/d;
|
|
|
|
TRACE( " ints: ua = %.17f, ub = %.17f\n", ua, ub );
|
|
|
|
// The values of $ua and $ub tell us where the intersection occurred.
|
|
|
|
// A value between 0 and 1 means the intersection occurred within the
|
|
|
|
// line segment.
|
|
|
|
// A value less than 0 or greater than 1 means the intersection occurred
|
|
|
|
// outside the line segment
|
|
|
|
// A value of exactly 0 or 1 means the intersection occurred right at the
|
|
|
|
// start or end of the line segment. For our purposes we will consider this
|
|
|
|
// NOT to be an intersection and we will move the vertex a tiny distance
|
|
|
|
// away from the intersecting line.
|
|
|
|
// if( ua == 0 || ua == 1 || ub == 0 || ub == 1 )
|
|
|
|
if( abs(ua)<=eps || abs(1.0-ua)<=eps || abs(ub)<=eps || abs(1.0-ub)<=eps )
|
|
|
|
{
|
|
|
|
// Degenerate case - vertex touches a line
|
|
|
|
perturb(p1, p2, q1, q2, ua, ub);
|
|
|
|
//** for testing, see if we have successfully resolved the degeneracy
|
|
|
|
{
|
|
|
|
double tx1 = p1->X();
|
|
|
|
double ty1 = p1->Y();
|
|
|
|
double tx2 = p2->X();
|
|
|
|
double ty2 = p2->Y();
|
|
|
|
double tx3 = q1->X();
|
|
|
|
double ty3 = q1->Y();
|
|
|
|
double tx4 = q2->X();
|
|
|
|
double ty4 = q2->Y();
|
|
|
|
double td = ((ty4-ty3)*(tx2-tx1)-(tx4-tx3)*(ty2-ty1));
|
|
|
|
if (td != 0)
|
|
|
|
{
|
|
|
|
// The lines intersect at a point somewhere
|
|
|
|
double tua = ((tx4-tx3)*(ty1-ty3)-(ty4-ty3)*(tx1-tx3))/td;
|
|
|
|
double tub = ((tx2-tx1)*(ty1-ty3)-(ty2-ty1)*(tx1-tx3))/td;
|
|
|
|
if( abs(tua)<=eps || abs(1.0-tua)<=eps || abs(tub)<=eps || abs(1.0-tub)<=eps )
|
|
|
|
ASSERT(0);
|
|
|
|
else if( (tua > 0 && tua < 1) && (tub > 0 && tub < 1) )
|
|
|
|
ASSERT(0);
|
|
|
|
TRACE( " perturb:\n new s = (%f,%f) to (%f,%f)\n new c = (%f,%f) to (%f,%f)\n new ua = %.17f, ub = %.17f\n",
|
|
|
|
tx1, ty1, tx2, ty2, tx3, ty3, tx4, ty4, tua, tub );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//** end test
|
|
|
|
found = FALSE;
|
|
|
|
}
|
|
|
|
else if ((ua > 0 && ua < 1) && (ub > 0 && ub < 1))
|
|
|
|
{
|
|
|
|
// Intersection occurs on both line segments
|
|
|
|
double x = x1 + ua*(x2-x1);
|
|
|
|
double y = y1 + ua*(y2-y1);
|
|
|
|
iy[0] = y;
|
|
|
|
ix[0] = x;
|
|
|
|
alphaP[0] = ua;
|
|
|
|
alphaQ[0] = ub;
|
|
|
|
*n = 1;
|
|
|
|
found = TRUE;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// The lines do not intersect
|
|
|
|
found = FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// The lines do not intersect (they are parallel)
|
|
|
|
found = FALSE;
|
|
|
|
}
|
|
|
|
} // End of find Line/Line intersection
|
|
|
|
else if (pt != 0 && qt != 0) // Is it Arc/Arc?
|
|
|
|
{
|
|
|
|
/* ARC/ARC
|
|
|
|
** Algorithm from: http://astronomy.swin.edu.au/~pbourke/geometry/2circle/
|
|
|
|
*/
|
|
|
|
double x0 = p1->Xc();
|
|
|
|
double y0 = p1->Yc(); // Center of first Arc
|
|
|
|
double r0 = dist(x0,y0,p1->X(),p1->Y()); // Calc the radius
|
|
|
|
double x1 = q1->Xc();
|
|
|
|
double y1 = q1->Yc(); // Center of second Arc
|
|
|
|
double r1 = dist(x1,y1,q1->X(),q1->Y()); // Calc the radius
|
|
|
|
|
|
|
|
double dx = x1 - x0; // dx and dy are the vertical and horizontal
|
|
|
|
double dy = y1 - y0; // distances between the circle centers.
|
|
|
|
double d = sqrt((dy*dy) + (dx*dx)); // Distance between the centers.
|
|
|
|
|
|
|
|
if(d > (r0 + r1)) // Check for solvability.
|
|
|
|
{ // no solution. circles do not intersect.
|
|
|
|
found = FALSE;
|
|
|
|
}
|
|
|
|
else if(d < abs(r0 - r1) )
|
|
|
|
{ // no solution. one circle inside the other
|
|
|
|
found = FALSE;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
** 'xy2' is the point where the line through the circle intersection
|
|
|
|
** points crosses the line between the circle centers.
|
|
|
|
*/
|
|
|
|
double a = ((r0*r0)-(r1*r1)+(d*d))/(2.0*d); // Calc the distance from xy0 to xy2.
|
|
|
|
double x2 = x0 + (dx * a/d); // Determine the coordinates of xy2.
|
|
|
|
double y2 = y0 + (dy * a/d);
|
|
|
|
if (d == (r0 + r1)) // Arcs touch at xy2 exactly (unlikely)
|
|
|
|
{
|
|
|
|
alphaP[0] = aAlpha(p1->X(), p1->Y(), p2->X(), p2->Y(), x0, y0, x2, y2, pt);
|
|
|
|
alphaQ[0] = aAlpha(q1->X(), q1->Y(), q2->X(), q2->Y(), x1, y1, x2, y2, qt);
|
|
|
|
if ((alphaP[0] >0 && alphaP[0] < 1) && (alphaQ[0] >0 && alphaQ[0] < 1))
|
|
|
|
{
|
|
|
|
ix[0] = x2;
|
|
|
|
iy[0] = y2;
|
|
|
|
*n = 1; found = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // Arcs intersect at two points
|
|
|
|
{
|
|
|
|
double alP[2], alQ[2];
|
|
|
|
double h = sqrt((r0*r0) - (a*a)); // Calc the distance from xy2 to either
|
|
|
|
// of the intersection points.
|
|
|
|
double rx = -dy * (h/d); // Now determine the offsets of the
|
|
|
|
double ry = dx * (h/d);
|
|
|
|
// intersection points from xy2
|
|
|
|
double x[2], y[2];
|
|
|
|
x[0] = x2 + rx; x[1] = x2 - rx; // Calc the absolute intersection points.
|
|
|
|
y[0] = y2 + ry; y[1] = y2 - ry;
|
|
|
|
alP[0] = aAlpha(p1->X(), p1->Y(), p2->X(), p2->Y(), x0, y0, x[0], y[0], pt);
|
|
|
|
alQ[0] = aAlpha(q1->X(), q1->Y(), q2->X(), q2->Y(), x1, y1, x[0], y[0], qt);
|
|
|
|
alP[1] = aAlpha(p1->X(), p1->Y(), p2->X(), p2->Y(), x0, y0, x[1], y[1], pt);
|
|
|
|
alQ[1] = aAlpha(q1->X(), q1->Y(), q2->X(), q2->Y(), x1, y1, x[1], y[1], qt);
|
|
|
|
for (int i=0; i<=1; i++)
|
|
|
|
if ((alP[i] >0 && alP[i] < 1) && (alQ[i] >0 && alQ[i] < 1))
|
|
|
|
{
|
|
|
|
ix[*n] = x[i];
|
|
|
|
iy[*n] = y[i];
|
|
|
|
alphaP[*n] = alP[i];
|
|
|
|
alphaQ[*n] = alQ[i];
|
|
|
|
*n++;
|
|
|
|
found = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // End of find Arc/Arc intersection
|
|
|
|
else // It must be Arc/Line
|
|
|
|
{
|
|
|
|
/* ARC/LINE
|
|
|
|
** Algorithm from: http://astronomy.swin.edu.au/~pbourke/geometry/sphereline/
|
|
|
|
*/
|
|
|
|
double d, x1, x2, xc, xs, xe;
|
|
|
|
double y1, y2, yc, ys, ye;
|
|
|
|
if (pt == 0) // Segment p1,p2 is the line
|
|
|
|
{ // Segment q1,q2 is the arc
|
|
|
|
x1 = p1->X();
|
|
|
|
y1 = p1->Y();
|
|
|
|
x2 = p2->X();
|
|
|
|
y2 = p2->Y();
|
|
|
|
xc = q1->Xc();
|
|
|
|
yc = q1->Yc();
|
|
|
|
xs = q1->X();
|
|
|
|
ys = q1->Y();
|
|
|
|
xe = q2->X();
|
|
|
|
ye = q2->Y();
|
|
|
|
d = qt;
|
|
|
|
}
|
|
|
|
else // Segment q1,q2 is the line
|
|
|
|
{ // Segment p1,p2 is the arc
|
|
|
|
x1 = q1->X(); y1 = q1->Y();
|
|
|
|
x2 = q2->X(); y2 = q2->Y();
|
|
|
|
xc = p1->Xc(); yc = p1->Yc();
|
|
|
|
xs = p1->X(); ys = p1->Y();
|
|
|
|
xe = p2->X(); ye = p2->Y();
|
|
|
|
d = pt;
|
|
|
|
}
|
|
|
|
double r = dist(xc,yc,xs,ys);
|
|
|
|
double a = pow((x2 - x1),2)+pow((y2 - y1),2);
|
|
|
|
double b = 2* ( (x2 - x1)*(x1 - xc)
|
|
|
|
+ (y2 - y1)*(y1 - yc) );
|
|
|
|
double c = pow(xc,2) + pow(yc,2) +
|
|
|
|
pow(x1,2) + pow(y1,2) -
|
|
|
|
2* ( xc*x1 + yc*y1) - pow(r,2);
|
|
|
|
double i = b * b - 4 * a * c;
|
|
|
|
if ( i < 0.0 ) // no intersection
|
|
|
|
{
|
|
|
|
found = FALSE;
|
|
|
|
}
|
|
|
|
else if ( i == 0.0 ) // one intersection
|
|
|
|
{
|
|
|
|
double mu = -b/(2*a);
|
|
|
|
double x = x1 + mu*(x2-x1);
|
|
|
|
double y = y1 + mu*(y2-y1);
|
|
|
|
double al = mu; // Line Alpha
|
|
|
|
double aa = this->aAlpha(xs, ys, xe, ye, xc, yc, x, y, d); // Arc Alpha
|
|
|
|
if ((al >0 && al <1)&&(aa >0 && aa <1))
|
|
|
|
{
|
|
|
|
ix[0] = x; iy[0] = y;
|
|
|
|
*n = 1;
|
|
|
|
found = TRUE;
|
|
|
|
if (pt == 0)
|
|
|
|
{
|
|
|
|
alphaP[0] = al; alphaQ[0] = aa;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
alphaP[0] = aa; alphaQ[0] = al;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ( i > 0.0 ) // two intersections
|
|
|
|
{
|
|
|
|
double mu[2], x[2], y[2], al[2], aa[2];
|
|
|
|
mu[0] = (-b + sqrt( pow(b,2) - 4*a*c )) / (2*a); // first intersection
|
|
|
|
x[0] = x1 + mu[0]*(x2-x1);
|
|
|
|
y[0] = y1 + mu[0]*(y2-y1);
|
|
|
|
mu[1] = (-b - sqrt(pow(b,2) - 4*a*c )) / (2*a); // second intersection
|
|
|
|
x[1] = x1 + mu[1]*(x2-x1);
|
|
|
|
y[1] = y1 + mu[1]*(y2-y1);
|
|
|
|
al[0] = mu[0];
|
|
|
|
aa[0] = aAlpha(xs, ys, xe, ye, xc, yc, x[0], y[0], d);
|
|
|
|
al[1] = mu[1];
|
|
|
|
aa[1] = aAlpha(xs, ys, xe, ye, xc, yc, x[1], y[1], d);
|
|
|
|
for (int i=0; i<=1; i++)
|
|
|
|
if ((al[i] >0 && al[i] < 1) && (aa[i] >0 && aa[i] < 1))
|
|
|
|
{
|
|
|
|
ix[*n] = x[i];
|
|
|
|
iy[*n] = y[i];
|
|
|
|
if (pt == 0)
|
|
|
|
{
|
|
|
|
alphaP[*n] = al[i];
|
|
|
|
alphaQ[*n] = aa[i];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
alphaP[*n] = aa[i];
|
|
|
|
alphaQ[*n] = al[i];
|
|
|
|
}
|
|
|
|
*n++;
|
|
|
|
found = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // End of find Arc/Line intersection
|
|
|
|
return found;
|
|
|
|
} // end of intersect function
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Test if a vertex lies inside the polygon
|
|
|
|
**
|
|
|
|
** This function calculates the "winding" number for the point. This number
|
|
|
|
** represents the number of times a ray emitted from the point to infinity
|
|
|
|
** intersects any edge of the polygon. An even winding number means the point
|
|
|
|
** lies OUTSIDE the polygon, an odd number means it lies INSIDE it.
|
|
|
|
**
|
|
|
|
** Right now infinity is set to -10000000, some people might argue that infinity
|
|
|
|
** actually is a bit bigger. Those people have no lives.
|
|
|
|
**
|
|
|
|
** Allan Wright 4/16/2006: I guess I have no life: I had to increase it to -1000000000
|
|
|
|
*/
|
|
|
|
BOOL polygon::isInside( vertex * v )
|
|
|
|
{
|
|
|
|
//** modified for testing
|
|
|
|
if( v->isIntersect() )
|
|
|
|
ASSERT(0);
|
|
|
|
int winding_number = 0;
|
|
|
|
int winding_number2 = 0;
|
|
|
|
int winding_number3 = 0;
|
|
|
|
int winding_number4 = 0;
|
|
|
|
//** vertex * point_at_infinity = new vertex(-10000000,v->Y()); // Create point at infinity
|
|
|
|
vertex * point_at_infinity = new vertex(-1000000000,-50000000); // Create point at infinity
|
|
|
|
vertex * point_at_infinity2 = new vertex(1000000000,+50000000); // Create point at infinity
|
|
|
|
vertex * point_at_infinity3 = new vertex(500000000,1000000000); // Create point at infinity
|
|
|
|
vertex * point_at_infinity4 = new vertex(-500000000,1000000000); // Create point at infinity
|
|
|
|
vertex * q = m_first; // End vertex of a line segment in polygon
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (!q->isIntersect())
|
|
|
|
{
|
|
|
|
int n;
|
|
|
|
double x[2], y[2], aP[2], aQ[2];
|
|
|
|
if( ints( point_at_infinity, v, q, nxt(q->Next()), &n, x, y, aP, aQ ) )
|
|
|
|
winding_number += n; // Add number of intersections found
|
|
|
|
if( ints( point_at_infinity2, v, q, nxt(q->Next()), &n, x, y, aP, aQ ) )
|
|
|
|
winding_number2 += n; // Add number of intersections found
|
|
|
|
if( ints( point_at_infinity3, v, q, nxt(q->Next()), &n, x, y, aP, aQ ) )
|
|
|
|
winding_number3 += n; // Add number of intersections found
|
|
|
|
if( ints( point_at_infinity4, v, q, nxt(q->Next()), &n, x, y, aP, aQ ) )
|
|
|
|
winding_number4 += n; // Add number of intersections found
|
|
|
|
}
|
|
|
|
q = q->Next();
|
|
|
|
}
|
|
|
|
while( q->id() != m_first->id() );
|
|
|
|
delete point_at_infinity;
|
|
|
|
delete point_at_infinity2;
|
|
|
|
if( winding_number%2 != winding_number2%2
|
|
|
|
|| winding_number3%2 != winding_number4%2
|
|
|
|
|| winding_number%2 != winding_number3%2 )
|
|
|
|
ASSERT(0);
|
|
|
|
if( winding_number%2 == 0 ) // Check even or odd
|
|
|
|
return FALSE; // even == outside
|
|
|
|
else
|
|
|
|
return TRUE; // odd == inside
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Execute a Boolean operation on a polygon
|
|
|
|
**
|
|
|
|
** This is the key method. It allows you to AND/OR this polygon with another one
|
|
|
|
** (equvalent to a UNION or INTERSECT operation. You may also subtract one from
|
|
|
|
** the other (same as DIFFERENCE). Given two polygons A, B the following operations
|
|
|
|
** may be performed:
|
|
|
|
**
|
|
|
|
** A|B ... A OR B (Union of A and B)
|
|
|
|
** A&B ... A AND B (Intersection of A and B)
|
|
|
|
** A\B ... A - B
|
|
|
|
** B\A ... B - A
|
|
|
|
**
|
|
|
|
** A is the object and B is the polygon passed to the method.
|
|
|
|
*/
|
|
|
|
polygon * polygon::boolean( polygon * polyB, int oper )
|
|
|
|
{
|
|
|
|
polygon * last = NULL;
|
|
|
|
|
|
|
|
vertex * s = m_first; // First vertex of the subject polygon
|
|
|
|
vertex * c = polyB->getFirst(); // First vertex of the "clip" polygon
|
|
|
|
/*
|
|
|
|
** Phase 1 of the algoritm is to find all intersection points between the two
|
|
|
|
** polygons. A new vertex is created for each intersection and it is added to
|
|
|
|
** the linked lists for both polygons. The "neighbor" reference in each vertex
|
|
|
|
** stores the link between the same intersection point in each polygon.
|
|
|
|
*/
|
|
|
|
TRACE( "boolean...phase 1\n" );
|
|
|
|
do
|
|
|
|
{
|
|
|
|
TRACE( "s=(%f,%f) to (%f,%f) I=%d\n",
|
|
|
|
s->m_x, s->m_y, s->m_nextV->m_x, s->m_nextV->m_y, s->m_intersect );
|
|
|
|
if (!s->isIntersect())
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
TRACE( " c=(%f,%f) to (%f,%f) I=%d\n",
|
|
|
|
c->m_x, c->m_y, c->m_nextV->m_x, c->m_nextV->m_y, c->m_intersect );
|
|
|
|
if (!c->isIntersect())
|
|
|
|
{
|
|
|
|
int n;
|
|
|
|
double ix[2], iy[2], alphaS[2], alphaC[2];
|
|
|
|
BOOL bInt = ints(s, nxt(s->Next()),c, polyB->nxt(c->Next()), &n, ix, iy, alphaS, alphaC);
|
|
|
|
if( bInt )
|
|
|
|
{
|
|
|
|
TRACE( " int at (%f,%f) aS = %.17f, aC = %.17f\n", ix[0], iy[0], alphaS[0], alphaC[0] );
|
|
|
|
for (int i=0; i<n; i++)
|
|
|
|
{
|
|
|
|
vertex * is = new vertex(ix[i], iy[i], s->Xc(), s->Yc(), s->d(), NULL, NULL, NULL, TRUE, NULL, alphaS[i], FALSE, FALSE);
|
|
|
|
vertex * ic = new vertex(ix[i], iy[i], c->Xc(), c->Yc(), c->d(), NULL, NULL, NULL, TRUE, NULL, alphaC[i], FALSE, FALSE);
|
|
|
|
is->setNeighbor(ic);
|
|
|
|
ic->setNeighbor(is);
|
|
|
|
insertSort(is, s, this->nxt(s->Next()));
|
|
|
|
polyB->insertSort(ic, c, polyB->nxt(c->Next()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // end if c is not an intersect point
|
|
|
|
c = c->Next();
|
|
|
|
}
|
|
|
|
while (c->id() != polyB->m_first->id());
|
|
|
|
} // end if s not an intersect point
|
|
|
|
s = s->Next();
|
|
|
|
}
|
|
|
|
while(s->id() != m_first->id());
|
|
|
|
|
|
|
|
//** for testing...check number of intersections in each poly
|
|
|
|
TRACE( "boolean...phase 1 testing\n" );
|
|
|
|
int n_ints = 0;
|
|
|
|
s = m_first;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if( s->isIntersect() )
|
|
|
|
n_ints++;
|
|
|
|
s = s->Next();
|
|
|
|
} while( s->id() != m_first->id() );
|
|
|
|
int n_polyB_ints = 0;
|
|
|
|
s = polyB->m_first;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if( s->isIntersect() )
|
|
|
|
n_polyB_ints++;
|
|
|
|
s = s->Next();
|
|
|
|
} while( s->id() != polyB->m_first->id() );
|
|
|
|
if( n_ints != n_polyB_ints )
|
|
|
|
ASSERT(0);
|
|
|
|
if( n_ints%2 != 0 )
|
|
|
|
ASSERT(0);
|
|
|
|
//** end test
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Phase 2 of the algorithm is to identify every intersection point as an
|
|
|
|
** entry or exit point to the other polygon. This will set the entry bits
|
|
|
|
** in each vertex object.
|
|
|
|
**
|
|
|
|
** What is really stored in the entry record for each intersection is the
|
|
|
|
** direction the algorithm should take when it arrives at that entry point.
|
|
|
|
** Depending in the operation requested (A&B, A|B, A/B, B/A) the direction is
|
|
|
|
** set as follows for entry points (f=foreward, b=Back), exit points are always set
|
|
|
|
** to the opposite:
|
|
|
|
** Enter Exit
|
|
|
|
** A B A B
|
|
|
|
** A|B b b f f
|
|
|
|
** A&B f f b b
|
|
|
|
** A\B b f f b
|
|
|
|
** B\A f b b f
|
|
|
|
**
|
|
|
|
** f = TRUE, b = FALSE when stored in the entry record
|
|
|
|
*/
|
|
|
|
BOOL A, B;
|
|
|
|
|
|
|
|
switch (oper)
|
|
|
|
{
|
|
|
|
case A_OR_B: A = FALSE; B = FALSE; break;
|
|
|
|
case A_AND_B: A = TRUE; B = TRUE; break;
|
|
|
|
case A_MINUS_B: A = FALSE; B = TRUE; break;
|
|
|
|
case B_MINUS_A: A = TRUE; B = FALSE; break;
|
|
|
|
default: A = TRUE; B = TRUE; break;
|
|
|
|
}
|
|
|
|
s = m_first;
|
|
|
|
//** testing
|
|
|
|
if( s->isIntersect() )
|
|
|
|
ASSERT(0);
|
|
|
|
//** end test
|
|
|
|
BOOL entry;
|
|
|
|
if (polyB->isInside(s)) // if we are already inside
|
|
|
|
entry = !A; // next intersection must be an exit
|
|
|
|
else // otherwise
|
|
|
|
entry = A; // next intersection must be an entry
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (s->isIntersect())
|
|
|
|
{
|
|
|
|
s->setEntry(entry);
|
|
|
|
entry = !entry;
|
|
|
|
}
|
|
|
|
s = s->Next();
|
|
|
|
}
|
|
|
|
while (s->id() != m_first->id());
|
|
|
|
/*
|
|
|
|
** Repeat for other polygon
|
|
|
|
*/
|
|
|
|
c = polyB->m_first;
|
|
|
|
if (this->isInside(c)) // if we are already inside
|
|
|
|
entry = !B; // next intersection must be an exit
|
|
|
|
else // otherwise
|
|
|
|
entry = B; // next intersection must be an entry
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (c->isIntersect())
|
|
|
|
{
|
|
|
|
c->setEntry(entry);
|
|
|
|
entry = !entry;
|
|
|
|
}
|
|
|
|
c = c->Next();
|
|
|
|
}
|
|
|
|
while (c->id() != polyB->m_first->id());
|
|
|
|
/*
|
|
|
|
** Phase 3 of the algorithm is to scan the linked lists of the
|
|
|
|
** two input polygons an construct a linked list of result
|
|
|
|
** polygons. We start at the first intersection then depending
|
|
|
|
** on whether it is an entry or exit point we continue building
|
|
|
|
** our result polygon by following the source or clip polygon
|
|
|
|
** either forwards or backwards.
|
|
|
|
*/
|
|
|
|
while (this->unckd_remain()) // Loop while unchecked intersections remain
|
|
|
|
{
|
|
|
|
vertex * v = first_unckd_intersect(); // Get the first unchecked intersect point
|
|
|
|
polygon * r = new polygon; // Create a new instance of that class
|
|
|
|
do
|
|
|
|
{
|
|
|
|
v->setChecked(); // Set checked flag true for this intersection
|
|
|
|
if (v->isEntry())
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
v = v->Next();
|
|
|
|
vertex * nv = new vertex(v->X(),v->Y(),v->Xc(),v->Yc(),v->d());
|
|
|
|
r->add(nv);
|
|
|
|
}
|
|
|
|
while (!v->isIntersect());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
v = v->Prev();
|
|
|
|
vertex * nv = new vertex(v->X(),v->Y(),v->Xc(FALSE),v->Yc(FALSE),v->d(FALSE));
|
|
|
|
r->add(nv);
|
|
|
|
}
|
|
|
|
while (!v->isIntersect());
|
|
|
|
}
|
|
|
|
v = v->Neighbor();
|
|
|
|
}
|
|
|
|
while (!v->isChecked()); // until polygon closed
|
|
|
|
if (last) // Check in case first time thru the loop
|
|
|
|
r->m_first->setNextPoly(last); // Save ref to the last poly in the first vertex
|
|
|
|
// of this poly
|
|
|
|
last = r; // Save this polygon
|
|
|
|
} // end of while there is another intersection to check
|
|
|
|
/*
|
|
|
|
** Clean up the input polygons by deleting the intersection points
|
|
|
|
*/
|
|
|
|
res();
|
|
|
|
polyB->res();
|
|
|
|
/*
|
|
|
|
** It is possible that no intersection between the polygons was found and
|
|
|
|
** there is no result to return. In this case we make function fail
|
|
|
|
** gracefully as follows (depending on the requested operation):
|
|
|
|
**
|
|
|
|
** A|B : Return this with polyB in m_first->nextPoly
|
|
|
|
** A&B : Return this
|
|
|
|
** A\B : Return this
|
|
|
|
** B\A : return polyB
|
|
|
|
*/
|
|
|
|
polygon * p;
|
|
|
|
if (!last)
|
|
|
|
{
|
|
|
|
switch (oper)
|
|
|
|
{
|
|
|
|
case A_OR_B:
|
|
|
|
last = copy_poly();
|
|
|
|
p = polyB->copy_poly();
|
|
|
|
last->m_first->setNextPoly(p);
|
|
|
|
break;
|
|
|
|
case A_AND_B:
|
|
|
|
last = copy_poly();
|
|
|
|
break;
|
|
|
|
case A_MINUS_B:
|
|
|
|
last = copy_poly();
|
|
|
|
break;
|
|
|
|
case B_MINUS_A:
|
|
|
|
last = polyB->copy_poly();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
last = copy_poly();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (m_first->m_nextPoly)
|
|
|
|
{
|
|
|
|
last->m_first->m_nextPoly = m_first->NextPoly();
|
|
|
|
}
|
|
|
|
return last;
|
|
|
|
} // end of boolean function
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Test if a polygon lies entirly inside this polygon
|
|
|
|
**
|
|
|
|
** First every point in the polygon is tested to determine if it is
|
|
|
|
** inside this polygon. If all points are inside, then the second
|
|
|
|
** test is performed that looks for any intersections between the
|
|
|
|
** two polygons. If no intersections are found then the polygon
|
|
|
|
** must be completely enclosed by this polygon.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
function polygon::isPolyInside (p)
|
|
|
|
{
|
|
|
|
inside = TRUE;
|
|
|
|
c = p->getFirst(); // Get the first vertex in polygon p
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (!this->isInside(c)) // If vertex is NOT inside this polygon
|
|
|
|
inside = FALSE; // then set flag to false
|
|
|
|
c = c->Next(); // Get the next vertex in polygon p
|
|
|
|
}
|
|
|
|
while (c->id() != p->first->id());
|
|
|
|
if (inside)
|
|
|
|
{
|
|
|
|
c = p->getFirst(); // Get the first vertex in polygon p
|
|
|
|
s = getFirst(); // Get the first vertex in this polygon
|
|
|
|
do
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (this->ints(s, s->Next(),c, c->Next(), n, x, y, aS, aC))
|
|
|
|
inside = FALSE;
|
|
|
|
c = c->Next();
|
|
|
|
}
|
|
|
|
while (c->id() != p->first->id());
|
|
|
|
s = s->Next();
|
|
|
|
}
|
|
|
|
while (s->id() != m_first->id());
|
|
|
|
}
|
|
|
|
return inside;
|
|
|
|
} // end of isPolyInside
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Move Polygon
|
|
|
|
**
|
|
|
|
** Translates polygon by delta X and delta Y
|
|
|
|
*/
|
|
|
|
function polygon::move (dx, dy)
|
|
|
|
{
|
|
|
|
v = getFirst();
|
|
|
|
do
|
|
|
|
{
|
|
|
|
v->setX(v->X() + dx);
|
|
|
|
v->setY(v->Y() + dy);
|
|
|
|
if (v->d() != 0)
|
|
|
|
{
|
|
|
|
v->setXc(v->Xc() + dx);
|
|
|
|
v->setYc(v->Yc() + dy);
|
|
|
|
}
|
|
|
|
v = v->Next();
|
|
|
|
}
|
|
|
|
while(v->id() != m_first->id());
|
|
|
|
} // end of move polygon
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Rotate Polygon
|
|
|
|
**
|
|
|
|
** Rotates a polgon about point xr/yr by a radians
|
|
|
|
*/
|
|
|
|
function polygon::rotate (xr, yr, a)
|
|
|
|
{
|
|
|
|
this->move(-xr,-yr); // Move the polygon so that the point of
|
|
|
|
// rotation is at the origin (0,0)
|
|
|
|
if (a < 0) // We might be passed a negitive angle
|
|
|
|
a += 2*pi(); // make it positive
|
|
|
|
v = m_first;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
x=v->X(); y=v->Y();
|
|
|
|
v->setX(x*cos(a) - y*sin(a)); // x' = xCos(a)-ySin(a)
|
|
|
|
v->setY(x*sin(a) + y*cos(a)); // y' = xSin(a)+yCos(a)
|
|
|
|
if (v->d() != 0)
|
|
|
|
{
|
|
|
|
x=v->Xc(); y=v->Yc();
|
|
|
|
v->setXc(x*cos(a) - y*sin(a));
|
|
|
|
v->setYc(x*sin(a) + y*cos(a));
|
|
|
|
}
|
|
|
|
v = v->Next();
|
|
|
|
}
|
|
|
|
while(v->id() != m_first->id());
|
|
|
|
this->move(xr,yr); // Move the rotated polygon back
|
|
|
|
} // end of rotate polygon
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return Bounding Rectangle for a Polygon
|
|
|
|
**
|
|
|
|
** returns a polygon object that represents the bounding rectangle
|
|
|
|
** for this polygon. Arc segments are correctly handled.
|
|
|
|
*/
|
|
|
|
function polygon::&bRect ()
|
|
|
|
{
|
|
|
|
minX = INF; minY = INF; maxX = -INF; maxY = -INF;
|
|
|
|
v = m_first;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (v->d() != 0) // Is it an arc segment
|
|
|
|
{
|
|
|
|
vn = v->Next(); // end vertex of the arc segment
|
|
|
|
v1 = new vertex(v->Xc(), -infinity); // bottom point of vertical line thru arc center
|
|
|
|
v2 = new vertex(v->Xc(), +infinity); // top point of vertical line thru arc center
|
|
|
|
if (this->ints(v, vn, v1, v2, n, x, y, aS, aC)) // Does line intersect the arc ?
|
|
|
|
{
|
|
|
|
for (i=0; i<n; i++) // check y portion of all intersections
|
|
|
|
{
|
|
|
|
minY = min(minY, y[i], v->Y());
|
|
|
|
maxY = max(maxY, y[i], v->Y());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // There was no intersection so bounding rect is determined
|
|
|
|
{ // by the start point only, not teh edge of the arc
|
|
|
|
minY = min(minY, v->Y());
|
|
|
|
maxY = max(maxY, v->Y());
|
|
|
|
}
|
|
|
|
v1 = NULL; v2 = NULL; // Free the memory used
|
|
|
|
h1 = new vertex(-infinity, v->Yc()); // left point of horozontal line thru arc center
|
|
|
|
h2 = new vertex(+infinity, v->Yc()); // right point of horozontal line thru arc center
|
|
|
|
if (this->ints(v, vn, h1, h2, n, x, y, aS, aC)) // Does line intersect the arc ?
|
|
|
|
{
|
|
|
|
for (i=0; i<n; i++) // check x portion of all intersections
|
|
|
|
{
|
|
|
|
minX = min(minX, x[i], v->X());
|
|
|
|
maxX = max(maxX, x[i], v->X());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
minX = min(minX, v->X());
|
|
|
|
maxX = max(maxX, v->X());
|
|
|
|
}
|
|
|
|
h1 = NULL; h2 = NULL;
|
|
|
|
}
|
|
|
|
else // Straight segment so just check the vertex
|
|
|
|
{
|
|
|
|
minX = min(minX, v->X());
|
|
|
|
minY = min(minY, v->Y());
|
|
|
|
maxX = max(maxX, v->X());
|
|
|
|
maxY = max(maxY, v->Y());
|
|
|
|
}
|
|
|
|
v = v->Next();
|
|
|
|
}
|
|
|
|
while(v->id() != m_first->id());
|
|
|
|
//
|
|
|
|
// Now create an return a polygon with the bounding rectangle
|
|
|
|
//
|
|
|
|
this_class = get_class(this); // Findout the class I'm in (might be an extension of polygon)
|
|
|
|
p = new this_class; // Create a new instance of that class
|
|
|
|
p->addv(minX,minY);
|
|
|
|
p->addv(minX,maxY);
|
|
|
|
p->addv(maxX,maxY);
|
|
|
|
p->addv(maxX,minY);
|
|
|
|
return p;
|
|
|
|
} // end of bounding rectangle
|
|
|
|
#endif
|