kicad/thirdparty/pybind11/tests/test_eigen_matrix.cpp

429 lines
19 KiB
C++
Raw Normal View History

2021-03-08 14:54:22 +00:00
/*
tests/eigen.cpp -- automatic conversion of Eigen types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
2023-04-07 00:39:04 +00:00
#include <pybind11/eigen/matrix.h>
2021-03-08 14:54:22 +00:00
#include <pybind11/stl.h>
#include "constructor_stats.h"
#include "pybind11_tests.h"
2023-04-07 00:39:04 +00:00
PYBIND11_WARNING_DISABLE_MSVC(4996)
2021-03-08 14:54:22 +00:00
#include <Eigen/Cholesky>
using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the
// (1-based) row/column number.
template <typename M>
void reset_ref(M &x) {
for (int i = 0; i < x.rows(); i++) {
for (int j = 0; j < x.cols(); j++) {
x(i, j) = 11 + 10 * i + j;
}
}
2021-03-08 14:54:22 +00:00
}
// Returns a static, column-major matrix
Eigen::MatrixXd &get_cm() {
static Eigen::MatrixXd *x;
if (!x) {
x = new Eigen::MatrixXd(3, 3);
reset_ref(*x);
}
return *x;
}
// Likewise, but row-major
MatrixXdR &get_rm() {
static MatrixXdR *x;
if (!x) {
x = new MatrixXdR(3, 3);
reset_ref(*x);
}
return *x;
}
// Resets the values of the static matrices returned by get_cm()/get_rm()
void reset_refs() {
reset_ref(get_cm());
reset_ref(get_rm());
}
// Returns element 2,1 from a matrix (used to test copy/nocopy)
2021-08-30 22:58:05 +00:00
double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); };
2021-03-08 14:54:22 +00:00
// Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix
// reference is referencing rows/columns correctly).
template <typename MatrixArgType>
Eigen::MatrixXd adjust_matrix(MatrixArgType m) {
2021-03-08 14:54:22 +00:00
Eigen::MatrixXd ret(m);
for (int c = 0; c < m.cols(); c++) {
for (int r = 0; r < m.rows(); r++) {
ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign)
}
}
2021-03-08 14:54:22 +00:00
return ret;
}
struct CustomOperatorNew {
CustomOperatorNew() = default;
Eigen::Matrix4d a = Eigen::Matrix4d::Zero();
Eigen::Matrix4d b = Eigen::Matrix4d::Identity();
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
};
2023-04-07 00:39:04 +00:00
TEST_SUBMODULE(eigen_matrix, m) {
2021-03-08 14:54:22 +00:00
using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>;
using FixedMatrixC = Eigen::Matrix<float, 5, 6>;
using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>;
using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>;
using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>;
using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>;
using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>;
using SparseMatrixC = Eigen::SparseMatrix<float>;
// various tests
m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; });
m.def("double_row",
[](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; });
m.def("double_complex",
[](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; });
2021-03-08 14:54:22 +00:00
m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; });
m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; });
2021-08-30 22:58:05 +00:00
m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; });
m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; });
2021-03-08 14:54:22 +00:00
// test_eigen_ref_to_python
// Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended
2021-08-30 22:58:05 +00:00
m.def("cholesky1",
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
return x.llt().matrixL();
});
m.def("cholesky3",
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); });
2021-08-30 22:58:05 +00:00
m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd {
return x.llt().matrixL();
});
2021-03-08 14:54:22 +00:00
// test_eigen_ref_mutators
// Mutators: these add some value to the given element using Eigen, but Eigen should be mapping
// into the numpy array data and so the result should show up there. There are three versions:
// one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column
// matrix, and one for any matrix.
auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; };
auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; };
2021-03-08 14:54:22 +00:00
// Mutators (Eigen maps into numpy variables):
m.def("add_rm", add_rm); // Only takes row-contiguous
m.def("add_cm", add_cm); // Only takes column-contiguous
// Overloaded versions that will accept either row or column contiguous:
m.def("add1", add_rm);
m.def("add1", add_cm);
m.def("add2", add_cm);
m.def("add2", add_rm);
// This one accepts a matrix of any stride:
m.def("add_any",
[](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; });
2021-03-08 14:54:22 +00:00
// Return mutable references (numpy maps into eigen variables)
m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); });
m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); });
// The same references, but non-mutable (numpy maps into eigen variables, but is !writeable)
m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); });
m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); });
m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values
// Increments and returns ref to (same) matrix
m.def(
"incr_matrix",
[](Eigen::Ref<Eigen::MatrixXd> m, double v) {
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
return m;
},
py::return_value_policy::reference);
2021-03-08 14:54:22 +00:00
// Same, but accepts a matrix of any strides
m.def(
"incr_matrix_any",
[](py::EigenDRef<Eigen::MatrixXd> m, double v) {
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v);
return m;
},
py::return_value_policy::reference);
2021-03-08 14:54:22 +00:00
// Returns an eigen slice of even rows
m.def(
"even_rows",
[](py::EigenDRef<Eigen::MatrixXd> m) {
return py::EigenDMap<Eigen::MatrixXd>(
m.data(),
(m.rows() + 1) / 2,
m.cols(),
2021-03-08 14:54:22 +00:00
py::EigenDStride(m.outerStride(), 2 * m.innerStride()));
},
py::return_value_policy::reference);
2021-03-08 14:54:22 +00:00
// Returns an eigen slice of even columns
m.def(
"even_cols",
[](py::EigenDRef<Eigen::MatrixXd> m) {
return py::EigenDMap<Eigen::MatrixXd>(
m.data(),
m.rows(),
(m.cols() + 1) / 2,
2021-03-08 14:54:22 +00:00
py::EigenDStride(2 * m.outerStride(), m.innerStride()));
},
py::return_value_policy::reference);
2021-03-08 14:54:22 +00:00
// Returns diagonals: a vector-like object with an inner stride != 1
m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); });
m.def("diagonal_1",
[](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); });
m.def("diagonal_n",
[](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); });
2021-03-08 14:54:22 +00:00
// Return a block of a matrix (gives non-standard strides)
m.def("block",
2023-04-07 00:39:04 +00:00
[m](const py::object &x_obj,
int start_row,
int start_col,
int block_rows,
int block_cols) {
return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols);
});
m.def(
"_block",
[](const py::object &x_obj,
const Eigen::Ref<const Eigen::MatrixXd> &x,
int start_row,
int start_col,
int block_rows,
int block_cols) {
// See PR #4217 for background. This test is a bit over the top, but might be useful
// as a concrete example to point to when explaining the dangling reference trap.
auto i0 = py::make_tuple(0, 0);
auto x0_orig = x_obj[*i0].cast<double>();
if (x(0, 0) != x0_orig) {
throw std::runtime_error(
"Something in the type_caster for Eigen::Ref is terribly wrong.");
}
double x0_mod = x0_orig + 1;
x_obj[*i0] = x0_mod;
auto copy_detected = (x(0, 0) != x0_mod);
x_obj[*i0] = x0_orig;
if (copy_detected) {
throw std::runtime_error("type_caster for Eigen::Ref made a copy.");
}
return x.block(start_row, start_col, block_rows, block_cols);
},
py::keep_alive<0, 1>());
2021-03-08 14:54:22 +00:00
// test_eigen_return_references, test_eigen_keepalive
// return value referencing/copying tests:
class ReturnTester {
Eigen::MatrixXd mat = create();
2021-03-08 14:54:22 +00:00
public:
ReturnTester() { print_created(this); }
~ReturnTester() { print_destroyed(this); }
static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); }
// NOLINTNEXTLINE(readability-const-return-type)
2021-03-08 14:54:22 +00:00
static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); }
Eigen::MatrixXd &get() { return mat; }
Eigen::MatrixXd *getPtr() { return &mat; }
const Eigen::MatrixXd &view() { return mat; }
const Eigen::MatrixXd *viewPtr() { return &mat; }
Eigen::Ref<Eigen::MatrixXd> ref() { return mat; }
Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; }
Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) {
return mat.block(r, c, nrow, ncol);
}
Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const {
return mat.block(r, c, nrow, ncol);
}
py::EigenDMap<Eigen::Matrix2d> corners() {
return py::EigenDMap<Eigen::Matrix2d>(
mat.data(),
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
mat.innerStride() * (mat.innerSize() - 1)));
}
py::EigenDMap<const Eigen::Matrix2d> cornersConst() const {
return py::EigenDMap<const Eigen::Matrix2d>(
mat.data(),
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1),
mat.innerStride() * (mat.innerSize() - 1)));
}
2021-03-08 14:54:22 +00:00
};
using rvp = py::return_value_policy;
py::class_<ReturnTester>(m, "ReturnTester")
.def(py::init<>())
.def_static("create", &ReturnTester::create)
.def_static("create_const", &ReturnTester::createConst)
.def("get", &ReturnTester::get, rvp::reference_internal)
.def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal)
.def("view", &ReturnTester::view, rvp::reference_internal)
.def("view_ptr", &ReturnTester::view, rvp::reference_internal)
.def("copy_get", &ReturnTester::get) // Default rvp: copy
.def("copy_view", &ReturnTester::view) // "
.def("ref", &ReturnTester::ref) // Default for Ref is to reference
2021-03-08 14:54:22 +00:00
.def("ref_const", &ReturnTester::refConst) // Likewise, but const
.def("ref_safe", &ReturnTester::ref, rvp::reference_internal)
.def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal)
.def("copy_ref", &ReturnTester::ref, rvp::copy)
.def("copy_ref_const", &ReturnTester::refConst, rvp::copy)
.def("block", &ReturnTester::block)
.def("block_safe", &ReturnTester::block, rvp::reference_internal)
.def("block_const", &ReturnTester::blockConst, rvp::reference_internal)
.def("copy_block", &ReturnTester::block, rvp::copy)
.def("corners", &ReturnTester::corners, rvp::reference_internal)
.def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal);
2021-03-08 14:54:22 +00:00
// test_special_matrix_objects
// Returns a DiagonalMatrix with diagonal (1,2,3,...)
m.def("incr_diag", [](int k) {
Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k);
for (int i = 0; i < k; i++) {
m.diagonal()[i] = i + 1;
}
2021-03-08 14:54:22 +00:00
return m;
});
// Returns a SelfAdjointView referencing the lower triangle of m
m.def("symmetric_lower",
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); });
2021-03-08 14:54:22 +00:00
// Returns a SelfAdjointView referencing the lower triangle of m
m.def("symmetric_upper",
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); });
2021-03-08 14:54:22 +00:00
// Test matrix for various functions below.
Eigen::MatrixXf mat(5, 6);
mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14,
0, 8, 11;
2021-03-08 14:54:22 +00:00
// test_fixed, and various other tests
m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); });
// Our Eigen does a hack which respects constness through the numpy writeable flag.
// Therefore, the const return actually affects this type despite being an rvalue.
// NOLINTNEXTLINE(readability-const-return-type)
2021-03-08 14:54:22 +00:00
m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); });
m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); });
m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; });
m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; });
// test_mutator_descriptors
2021-08-30 22:58:05 +00:00
m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {});
m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {});
m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {});
2021-03-08 14:54:22 +00:00
// test_dense
m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); });
m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); });
m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; });
m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; });
// test_sparse, test_sparse_signature
2021-08-30 22:58:05 +00:00
m.def("sparse_r", [mat]() -> SparseMatrixR {
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
return Eigen::SparseView<Eigen::MatrixXf>(mat);
});
m.def("sparse_c",
[mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); });
2021-03-08 14:54:22 +00:00
m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; });
m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; });
// test_partially_fixed
m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; });
m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; });
m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; });
m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; });
// test_cpp_casting
// Test that we can cast a numpy object to a Eigen::MatrixXd explicitly
m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); });
m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); });
m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); });
m.def("cpp_ref_any",
[](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); });
2021-03-08 14:54:22 +00:00
// [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works.
// test_nocopy_wrapper
// Test that we can prevent copying into an argument that would normally copy: First a version
// that would allow copying (if types or strides don't match) for comparison:
m.def("get_elem", &get_elem);
// Now this alternative that calls the tells pybind to fail rather than copy:
2021-08-30 22:58:05 +00:00
m.def(
"get_elem_nocopy",
[](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); },
py::arg{}.noconvert());
2021-03-08 14:54:22 +00:00
// Also test a row-major-only no-copy const ref:
m.def(
"get_elem_rm_nocopy",
[](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long {
return m(2, 1);
},
py::arg{}.noconvert());
2021-03-08 14:54:22 +00:00
2023-04-07 00:39:04 +00:00
// test_issue738, test_zero_length
// Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an
2021-03-08 14:54:22 +00:00
// incompatible stride value on the length-1 dimension--but that should be allowed (without
// requiring a copy!) because the stride value can be safely ignored on a size-1 dimension.
2023-04-07 00:39:04 +00:00
// Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since
// they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to
// 0 if any dimension size is 0.
m.def("iss738_f1",
&adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>,
py::arg{}.noconvert());
m.def("iss738_f2",
&adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>,
py::arg{}.noconvert());
2021-03-08 14:54:22 +00:00
// test_issue1105
// Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense
2021-08-30 22:58:05 +00:00
// eigen Vector or RowVector, the argument would fail to load because the numpy copy would
// fail: numpy won't broadcast a Nx1 into a 1-dimensional vector.
m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; });
m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; });
2021-03-08 14:54:22 +00:00
// test_named_arguments
// Make sure named arguments are working properly:
2021-08-30 22:58:05 +00:00
m.def(
"matrix_multiply",
[](const py::EigenDRef<const Eigen::MatrixXd> &A,
const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd {
if (A.cols() != B.rows()) {
2021-08-30 22:58:05 +00:00
throw std::domain_error("Nonconformable matrices!");
}
2021-08-30 22:58:05 +00:00
return A * B;
},
py::arg("A"),
py::arg("B"));
2021-03-08 14:54:22 +00:00
// test_custom_operator_new
py::class_<CustomOperatorNew>(m, "CustomOperatorNew")
.def(py::init<>())
.def_readonly("a", &CustomOperatorNew::a)
.def_readonly("b", &CustomOperatorNew::b);
// test_eigen_ref_life_support
// In case of a failure (the caster's temp array does not live long enough), creating
// a new array (np.ones(10)) increases the chances that the temp array will be garbage
// collected and/or that its memory will be overridden with different values.
2021-08-30 22:58:05 +00:00
m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) {
2021-03-08 14:54:22 +00:00
py::module_::import("numpy").attr("ones")(10);
return v(5);
});
m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) {
py::module_::import("numpy").attr("ones")(10);
return v[0](5);
});
}