kicad/include/ttl/halfedge/hetriang.h

335 lines
10 KiB
C
Raw Normal View History

2013-11-25 15:50:03 +00:00
/*
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
* Applied Mathematics, Norway.
* Copyright (C) 2013 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of TTL.
*
* TTL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* TTL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
* License along with TTL. If not, see
* <http://www.gnu.org/licenses/>.
*
* In accordance with Section 7(b) of the GNU Affero General Public
* License, a covered work must retain the producer line in every data
* file that is created or manipulated using TTL.
*
* Other Usage
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial activities involving the TTL library without
* disclosing the source code of your own applications.
*
* This file may be used in accordance with the terms contained in a
* written agreement between you and SINTEF ICT.
*/
#ifndef _HE_TRIANG_H_
#define _HE_TRIANG_H_
#define TTL_USE_NODE_ID // Each node gets it's own unique id
#define TTL_USE_NODE_FLAG // Each node gets a flag (can be set to true or false)
#include <list>
#include <vector>
#include <iostream>
#include <fstream>
#include <ttl/ttl.h>
#include <ttl/ttl_util.h>
#include <boost/shared_ptr.hpp>
//--------------------------------------------------------------------------------------------------
// The half-edge data structure
//--------------------------------------------------------------------------------------------------
namespace hed {
// Helper typedefs
class Node;
class Edge;
typedef boost::shared_ptr<Node> NodePtr;
typedef boost::shared_ptr<Edge> EdgePtr;
typedef std::vector<NodePtr> NodesContainer;
//------------------------------------------------------------------------------------------------
// Node class for data structures
//------------------------------------------------------------------------------------------------
/** \class Node
* \brief \b Node class for data structures (Inherits from HandleId)
*
* \note
* - To enable node IDs, TTL_USE_NODE_ID must be defined.
* - To enable node flags, TTL_USE_NODE_FLAG must be defined.
* - TTL_USE_NODE_ID and TTL_USE_NODE_FLAG should only be enabled if this functionality is
* required by the application, because they increase the memory usage for each Node object.
*/
class Node {
protected:
#ifdef TTL_USE_NODE_FLAG
/// TTL_USE_NODE_FLAG must be defined
bool flag_;
#endif
#ifdef TTL_USE_NODE_ID
/// TTL_USE_NODE_ID must be defined
static int id_count;
/// A unique id for each node (TTL_USE_NODE_ID must be defined)
int id_;
#endif
int x_, y_;
unsigned int refCount_;
public:
/// Constructor
Node( int x = 0, int y = 0 ) :
#ifdef TTL_USE_NODE_FLAG
flag_( false ),
#endif
#ifdef TTL_USE_NODE_ID
id_( id_count++ ),
#endif
x_( x ), y_( y ), refCount_( 0 ) {}
/// Destructor
~Node() {}
/// Returns the x-coordinate
int GetX() const { return x_; }
/// Returns the y-coordinate
int GetY() const { return y_; }
#ifdef TTL_USE_NODE_ID
/// Returns the id (TTL_USE_NODE_ID must be defined)
int Id() const { return id_; }
#endif
#ifdef TTL_USE_NODE_FLAG
/// Sets the flag (TTL_USE_NODE_FLAG must be defined)
void SetFlag(bool aFlag) { flag_ = aFlag; }
/// Returns the flag (TTL_USE_NODE_FLAG must be defined)
const bool& GetFlag() const { return flag_; }
#endif
void IncRefCount() { refCount_++; }
void DecRefCount() { refCount_--; }
unsigned int GetRefCount() const { return refCount_; }
}; // End of class Node
//------------------------------------------------------------------------------------------------
// Edge class in the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \class Edge
* \brief \b %Edge class in the in the half-edge data structure.
*/
class Edge {
public:
/// Constructor
Edge() : weight_(0)
{ flags_.isLeadingEdge_ = false; flags_.isConstrained_ = false; }
/// Destructor
virtual ~Edge() {}
/// Sets the source node
void setSourceNode(const NodePtr& node) { sourceNode_ = node; }
/// Sets the next edge in face
void setNextEdgeInFace(const EdgePtr& edge) { nextEdgeInFace_ = edge; }
/// Sets the twin edge
void setTwinEdge(const EdgePtr& edge) { twinEdge_ = edge; }
/// Sets the edge as a leading edge
void setAsLeadingEdge(bool val=true) { flags_.isLeadingEdge_ = val; }
/// Checks if an edge is a leading edge
bool isLeadingEdge() const { return flags_.isLeadingEdge_; }
/// Sets the edge as a constrained edge
void setConstrained(bool val=true) { flags_.isConstrained_ = val;
if (twinEdge_) twinEdge_->flags_.isConstrained_ = val; }
/// Checks if an edge is constrained
bool isConstrained() const { return flags_.isConstrained_; }
/// Returns the twin edge
const EdgePtr& getTwinEdge() const { return twinEdge_; };
/// Returns the next edge in face
const EdgePtr& getNextEdgeInFace() const { return nextEdgeInFace_; }
/// Retuns the source node
virtual const NodePtr& getSourceNode() const { return sourceNode_; }
/// Returns the target node
virtual const NodePtr& getTargetNode() const { return getNextEdgeInFace()->getSourceNode(); }
void setWeight( unsigned int weight ) { weight_ = weight; }
unsigned int getWeight() const { return weight_; }
protected:
NodePtr sourceNode_;
EdgePtr twinEdge_;
EdgePtr nextEdgeInFace_;
unsigned int weight_;
struct {
bool isLeadingEdge_;
bool isConstrained_;
} flags_;
}; // End of class Edge
/** \class EdgeMST
* \brief \b %Specialization of Edge class to be used for Minimum Spanning Tree algorithm.
*/
class EdgeMST : public Edge
{
private:
NodePtr target_;
public:
EdgeMST( const NodePtr& source, const NodePtr& target, unsigned int weight = 0 ) :
target_(target)
{ sourceNode_ = source; weight_ = weight; }
~EdgeMST() {};
/// @copydoc Edge::setSourceNode()
const NodePtr& getTargetNode() const { return target_; }
};
//------------------------------------------------------------------------------------------------
class Dart; // Forward declaration (class in this namespace)
//------------------------------------------------------------------------------------------------
// Triangulation class in the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \class Triangulation
* \brief \b %Triangulation class for the half-edge data structure with adaption to TTL.
*/
class Triangulation {
protected:
list<EdgePtr> leadingEdges_; // one half-edge for each arc
void addLeadingEdge(EdgePtr& edge) {
edge->setAsLeadingEdge();
leadingEdges_.push_front( edge );
}
bool removeLeadingEdgeFromList(EdgePtr& leadingEdge);
void cleanAll();
public:
/// Default constructor
Triangulation() {}
/// Copy constructor
Triangulation(const Triangulation& tr) {
std::cout << "Triangulation: Copy constructor not present - EXIT.";
exit(-1);
}
/// Destructor
~Triangulation() { cleanAll(); }
/// Creates a Delaunay triangulation from a set of points
void createDelaunay(NodesContainer::iterator first,
NodesContainer::iterator last);
/// Creates an initial Delaunay triangulation from two enclosing triangles
// When using rectangular boundary - loop through all points and expand.
// (Called from createDelaunay(...) when starting)
EdgePtr initTwoEnclosingTriangles(NodesContainer::iterator first,
NodesContainer::iterator last);
// These two functions are required by TTL for Delaunay triangulation
/// Swaps the edge associated with diagonal
void swapEdge(EdgePtr& diagonal);
/// Splits the triangle associated with edge into three new triangles joining at point
EdgePtr splitTriangle(EdgePtr& edge, NodePtr& point);
// Functions required by TTL for removing nodes in a Delaunay triangulation
/// Removes the boundary triangle associated with edge
void removeTriangle(EdgePtr& edge); // boundary triangle required
/// The reverse operation of removeTriangle
void reverse_splitTriangle(EdgePtr& edge);
/// Creates an arbitrary CCW dart
Dart createDart();
/// Returns a list of "triangles" (one leading half-edge for each triangle)
const list<EdgePtr>& getLeadingEdges() const { return leadingEdges_; }
/// Returns the number of triangles
int noTriangles() const { return (int)leadingEdges_.size(); }
/// Returns a list of half-edges (one half-edge for each arc)
list<EdgePtr>* getEdges(bool skip_boundary_edges = false) const;
#ifdef TTL_USE_NODE_FLAG
/// Sets flag in all the nodes
void flagNodes(bool flag) const;
/// Returns a list of nodes. This function requires TTL_USE_NODE_FLAG to be defined. \see Node.
list<NodePtr>* getNodes() const;
#endif
/// Swaps edges until the triangulation is Delaunay (constrained edges are not swapped)
void optimizeDelaunay();
/// Checks if the triangulation is Delaunay
bool checkDelaunay() const;
/// Returns an arbitrary interior node (as the source node of the returned edge)
EdgePtr getInteriorNode() const;
/// Returns an arbitrary boundary edge
EdgePtr getBoundaryEdge() const;
/// Print edges for plotting with, e.g., gnuplot
void printEdges(std::ofstream& os) const;
}; // End of class Triangulation
}; // End of hed namespace
#endif