2011-08-05 19:53:42 +00:00
|
|
|
|
/*
|
|
|
|
|
* coplanar.cpp - coplanar class implementation
|
|
|
|
|
*
|
|
|
|
|
* Copyright (C) 2008 Michael Margraf <michael.margraf@alumni.tu-berlin.de>
|
|
|
|
|
* Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
|
|
|
|
|
* Modified for Kicad: 2011 jean-pierre.charras
|
|
|
|
|
*
|
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
|
|
|
* your option) any later version.
|
|
|
|
|
*
|
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
|
* General Public License for more details.
|
|
|
|
|
*
|
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
|
* along with this package; see the file COPYING. If not, write to
|
|
|
|
|
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
|
|
|
|
|
* Boston, MA 02110-1301, USA.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <string.h>
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
2012-01-23 04:33:36 +00:00
|
|
|
|
#include <units.h>
|
|
|
|
|
#include <transline.h>
|
|
|
|
|
#include <coplanar.h>
|
2011-08-05 19:53:42 +00:00
|
|
|
|
|
|
|
|
|
COPLANAR::COPLANAR() : TRANSLINE()
|
|
|
|
|
{
|
|
|
|
|
m_name = "CoPlanar";
|
|
|
|
|
backMetal = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GROUNDEDCOPLANAR::GROUNDEDCOPLANAR() : COPLANAR()
|
|
|
|
|
{
|
|
|
|
|
m_name = "GrCoPlanar";
|
|
|
|
|
backMetal = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
|
void COPLANAR::getProperties()
|
|
|
|
|
{
|
|
|
|
|
f = getProperty( FREQUENCY_PRM );
|
|
|
|
|
w = getProperty( PHYS_WIDTH_PRM );
|
|
|
|
|
s = getProperty( PHYS_S_PRM );
|
|
|
|
|
len = getProperty( PHYS_LEN_PRM );
|
|
|
|
|
h = getProperty( H_PRM );
|
|
|
|
|
t = getProperty( T_PRM );
|
|
|
|
|
|
|
|
|
|
er = getProperty( EPSILONR_PRM );
|
|
|
|
|
murC = getProperty( MURC_PRM );
|
|
|
|
|
tand = getProperty( TAND_PRM );
|
|
|
|
|
sigma = 1.0 / getProperty( RHO_PRM );
|
|
|
|
|
Z0 = getProperty( Z0_PRM );
|
|
|
|
|
ang_l = getProperty( ANG_L_PRM );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
|
void COPLANAR::calc()
|
|
|
|
|
{
|
|
|
|
|
skindepth = skin_depth();
|
|
|
|
|
|
|
|
|
|
// other local variables (quasi-static constants)
|
|
|
|
|
double k1, kk1, kpk1, k2, k3, q1, q2, q3 = 0, qz, er0 = 0;
|
|
|
|
|
double zl_factor;
|
|
|
|
|
|
|
|
|
|
// compute the necessary quasi-static approx. (K1, K3, er(0) and Z(0))
|
|
|
|
|
k1 = w / (w + s + s);
|
|
|
|
|
kk1 = ellipk( k1 );
|
|
|
|
|
kpk1 = ellipk( sqrt( 1 - k1 * k1 ) );
|
|
|
|
|
q1 = kk1 / kpk1;
|
|
|
|
|
|
|
|
|
|
// backside is metal
|
|
|
|
|
if( backMetal )
|
|
|
|
|
{
|
|
|
|
|
k3 = tanh( (M_PI / 4) * (w / h) ) / tanh( (M_PI / 4) * (w + s + s) / h );
|
|
|
|
|
q3 = ellipk( k3 ) / ellipk( sqrt( 1 - k3 * k3 ) );
|
|
|
|
|
qz = 1 / (q1 + q3);
|
|
|
|
|
er0 = 1 + q3 * qz * (er - 1);
|
|
|
|
|
zl_factor = ZF0 / 2 * qz;
|
|
|
|
|
}
|
|
|
|
|
// backside is air
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
k2 = sinh( (M_PI / 4) * (w / h) ) / sinh( (M_PI / 4) * (w + s + s) / h );
|
|
|
|
|
q2 = ellipk( k2 ) / ellipk( sqrt( 1 - k2 * k2 ) );
|
|
|
|
|
er0 = 1 + (er - 1) / 2 * q2 / q1;
|
|
|
|
|
zl_factor = ZF0 / 4 / q1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// adds effect of strip thickness
|
|
|
|
|
if( t > 0 )
|
|
|
|
|
{
|
|
|
|
|
double d, se, We, ke, qe;
|
|
|
|
|
d = (t * 1.25 / M_PI) * ( 1 + log( 4 * M_PI * w / t ) );
|
|
|
|
|
se = s - d;
|
|
|
|
|
We = w + d;
|
|
|
|
|
|
|
|
|
|
// modifies k1 accordingly (k1 = ke)
|
|
|
|
|
ke = We / (We + se + se); // ke = k1 + (1 - k1 * k1) * d / 2 / s;
|
|
|
|
|
qe = ellipk( ke ) / ellipk( sqrt( 1 - ke * ke ) );
|
|
|
|
|
|
|
|
|
|
// backside is metal
|
|
|
|
|
if( backMetal )
|
|
|
|
|
{
|
|
|
|
|
qz = 1 / (qe + q3);
|
|
|
|
|
er0 = 1 + q3 * qz * (er - 1);
|
|
|
|
|
zl_factor = ZF0 / 2 * qz;
|
|
|
|
|
}
|
|
|
|
|
// backside is air
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
zl_factor = ZF0 / 4 / qe;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// modifies er0 as well
|
|
|
|
|
er0 = er0 - (0.7 * (er0 - 1) * t / s) / ( q1 + (0.7 * t / s) );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// pre-compute square roots
|
|
|
|
|
double sr_er = sqrt( er );
|
|
|
|
|
double sr_er0 = sqrt( er0 );
|
|
|
|
|
|
|
|
|
|
// cut-off frequency of the TE0 mode
|
|
|
|
|
double fte = (C0 / 4) / ( h * sqrt( er - 1 ) );
|
|
|
|
|
|
|
|
|
|
// dispersion factor G
|
|
|
|
|
double p = log( w / h );
|
|
|
|
|
double u = 0.54 - (0.64 - 0.015 * p) * p;
|
|
|
|
|
double v = 0.43 - (0.86 - 0.54 * p) * p;
|
|
|
|
|
double G = exp( u * log( w / s ) + v );
|
|
|
|
|
|
|
|
|
|
// loss constant factors (computed only once for efficency sake)
|
|
|
|
|
double ac = 0;
|
|
|
|
|
if( t > 0 )
|
|
|
|
|
{
|
|
|
|
|
// equations by GHIONE
|
|
|
|
|
double n = (1 - k1) * 8 * M_PI / ( t * (1 + k1) );
|
|
|
|
|
double a = w / 2;
|
|
|
|
|
double b = a + s;
|
|
|
|
|
ac = ( M_PI + log( n * a ) ) / a + ( M_PI + log( n * b ) ) / b;
|
|
|
|
|
}
|
|
|
|
|
double ac_factor = ac / ( 4 * ZF0 * kk1 * kpk1 * (1 - k1 * k1) );
|
|
|
|
|
double ad_factor = ( er / (er - 1) ) * tand * M_PI / C0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ....................................................
|
|
|
|
|
double sr_er_f = sr_er0;
|
|
|
|
|
|
|
|
|
|
// add the dispersive effects to er0
|
|
|
|
|
sr_er_f += (sr_er - sr_er0) / ( 1 + G * pow( f / fte, -1.8 ) );
|
|
|
|
|
|
|
|
|
|
// for now, the loss are limited to strip losses (no radiation
|
|
|
|
|
// losses yet) losses in neper/length
|
|
|
|
|
atten_cond = 20.0 / log( 10.0 ) * len
|
|
|
|
|
* ac_factor * sr_er0 * sqrt( M_PI * MU0 * f / sigma );
|
|
|
|
|
atten_dielectric = 20.0 / log( 10.0 ) * len
|
|
|
|
|
* ad_factor * f * (sr_er_f * sr_er_f - 1) / sr_er_f;
|
|
|
|
|
|
|
|
|
|
ang_l = 2.0 * M_PI * len * sr_er_f * f / C0; /* in radians */
|
|
|
|
|
|
|
|
|
|
er_eff = sr_er_f * sr_er_f;
|
|
|
|
|
Z0 = zl_factor / sr_er_f;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
|
void COPLANAR::show_results()
|
|
|
|
|
{
|
|
|
|
|
setProperty( Z0_PRM, Z0 );
|
|
|
|
|
setProperty( ANG_L_PRM, ang_l );
|
|
|
|
|
|
|
|
|
|
setResult( 0, er_eff, "" );
|
|
|
|
|
setResult( 1, atten_cond, "dB" );
|
|
|
|
|
setResult( 2, atten_dielectric, "dB" );
|
|
|
|
|
|
|
|
|
|
setResult( 3, skindepth / UNIT_MICRON, "<EFBFBD>m" );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
|
void COPLANAR::analyze()
|
|
|
|
|
{
|
|
|
|
|
getProperties();
|
|
|
|
|
|
|
|
|
|
/* compute coplanar parameters */
|
|
|
|
|
calc();
|
|
|
|
|
|
|
|
|
|
/* print results in the subwindow */
|
|
|
|
|
show_results();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define MAX_ERROR 0.000001
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
|
void COPLANAR::synthesize()
|
|
|
|
|
{
|
|
|
|
|
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
|
|
|
|
|
int iteration;
|
|
|
|
|
|
|
|
|
|
getProperties();
|
|
|
|
|
|
|
|
|
|
/* required value of Z0 */
|
|
|
|
|
Z0_dest = Z0;
|
|
|
|
|
|
|
|
|
|
/* Newton's method */
|
|
|
|
|
iteration = 0;
|
|
|
|
|
|
|
|
|
|
/* compute coplanar parameters */
|
|
|
|
|
calc();
|
|
|
|
|
Z0_current = Z0;
|
|
|
|
|
|
|
|
|
|
error = fabs( Z0_dest - Z0_current );
|
|
|
|
|
|
|
|
|
|
while( error > MAX_ERROR )
|
|
|
|
|
{
|
|
|
|
|
iteration++;
|
|
|
|
|
if( isSelected( PHYS_WIDTH_PRM ) )
|
|
|
|
|
{
|
|
|
|
|
increment = w / 100.0;
|
|
|
|
|
w += increment;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
increment = s / 100.0;
|
|
|
|
|
s += increment;
|
|
|
|
|
}
|
|
|
|
|
/* compute coplanar parameters */
|
|
|
|
|
calc();
|
|
|
|
|
Z0_result = Z0;
|
|
|
|
|
/* f(w(n)) = Z0 - Z0(w(n)) */
|
|
|
|
|
/* f'(w(n)) = -f'(Z0(w(n))) */
|
|
|
|
|
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
|
|
|
|
|
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
|
|
|
|
|
slope = (Z0_result - Z0_current) / increment;
|
|
|
|
|
slope = (Z0_dest - Z0_current) / slope - increment;
|
|
|
|
|
if( isSelected( PHYS_WIDTH_PRM ) )
|
|
|
|
|
w += slope;
|
|
|
|
|
else
|
|
|
|
|
s += slope;
|
|
|
|
|
if( w <= 0.0 )
|
|
|
|
|
w = increment;
|
|
|
|
|
if( s <= 0.0 )
|
|
|
|
|
s = increment;
|
|
|
|
|
/* find new error */
|
|
|
|
|
/* compute coplanar parameters */
|
|
|
|
|
calc();
|
|
|
|
|
Z0_current = Z0;
|
|
|
|
|
error = fabs( Z0_dest - Z0_current );
|
|
|
|
|
if( iteration > 100 )
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
setProperty( PHYS_WIDTH_PRM, w );
|
|
|
|
|
setProperty( PHYS_S_PRM, s );
|
|
|
|
|
/* calculate physical length */
|
|
|
|
|
ang_l = getProperty( ANG_L_PRM );
|
|
|
|
|
len = C0 / f / sqrt( er_eff ) * ang_l / 2.0 / M_PI; /* in m */
|
|
|
|
|
setProperty( PHYS_LEN_PRM, len );
|
|
|
|
|
|
|
|
|
|
/* compute coplanar parameters */
|
|
|
|
|
calc();
|
|
|
|
|
|
|
|
|
|
/* print results in the subwindow */
|
|
|
|
|
show_results();
|
|
|
|
|
}
|