kicad/common/import_gfx/svg_import_plugin.cpp

429 lines
15 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2016 CERN
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
* @author Janito V. Ferreira Filho
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "svg_import_plugin.h"
#include <nanosvg.h>
#include <algorithm>
#include <cmath>
#include <locale_io.h>
#include <eda_item.h>
#include "graphics_importer.h"
static const int SVG_DPI = 96;
static VECTOR2D calculateBezierBoundingBoxExtremity( const float* aCurvePoints,
std::function< const float&( const float&, const float& ) > comparator );
static float calculateBezierSegmentationThreshold( const float* aCurvePoints );
static void segmentBezierCurve( const VECTOR2D& aStart, const VECTOR2D& aEnd, float aOffset,
float aStep, const float* aCurvePoints, float aSegmentationThreshold,
std::vector< VECTOR2D >& aGeneratedPoints );
static void createNewBezierCurveSegments( const VECTOR2D& aStart, const VECTOR2D& aMiddle,
const VECTOR2D& aEnd, float aOffset, float aStep, const float* aCurvePoints,
float aSegmentationThreshold, std::vector< VECTOR2D >& aGeneratedPoints );
static VECTOR2D getBezierPoint( const float* aCurvePoints, float aStep );
static VECTOR2D getPoint( const float* aPointCoordinates );
static VECTOR2D getPointInLine( const VECTOR2D& aLineStart, const VECTOR2D& aLineEnd,
float aDistance );
static float distanceFromPointToLine( const VECTOR2D& aPoint, const VECTOR2D& aLineStart,
const VECTOR2D& aLineEnd );
bool SVG_IMPORT_PLUGIN::Load( const wxString& aFileName )
{
wxCHECK( m_importer, false );
LOCALE_IO toggle; // switch on/off the locale "C" notation
// 1- wxFopen takes care of unicode filenames across platforms
// 2 - nanosvg (exactly nsvgParseFromFile) expects a binary file (exactly the CRLF eof must
// not be replaced by LF and changes the byte count) in one validity test,
// so open it in binary mode.
FILE* fp = wxFopen( aFileName, wxT( "rb" ) );
if( fp == nullptr )
return false;
// nsvgParseFromFile will close the file after reading
m_parsedImage = nsvgParseFromFile( fp, "mm", SVG_DPI );
wxCHECK( m_parsedImage, false );
return true;
}
bool SVG_IMPORT_PLUGIN::LoadFromMemory( const wxMemoryBuffer& aMemBuffer )
{
wxCHECK( m_importer, false );
LOCALE_IO toggle; // switch on/off the locale "C" notation
std::string str( reinterpret_cast<char*>( aMemBuffer.GetData() ), aMemBuffer.GetDataLen() );
wxCHECK( str.data()[aMemBuffer.GetDataLen()] == '\0', false );
// nsvgParse will modify the string data
m_parsedImage = nsvgParse( str.data(), "mm", SVG_DPI );
wxCHECK( m_parsedImage, false );
return true;
}
bool SVG_IMPORT_PLUGIN::Import()
{
auto alpha =
[]( unsigned int color )
{
return color >> 24;
};
2021-07-19 23:56:05 +00:00
for( NSVGshape* shape = m_parsedImage->shapes; shape != nullptr; shape = shape->next )
{
2023-09-07 00:50:00 +00:00
if( !( shape->flags & NSVG_FLAGS_VISIBLE ) )
continue;
if( shape->stroke.type == NSVG_PAINT_NONE && shape->fill.type == NSVG_PAINT_NONE )
continue;
double lineWidth = shape->stroke.type != NSVG_PAINT_NONE ? shape->strokeWidth : -1;
bool filled = shape->fill.type != NSVG_PAINT_NONE && alpha( shape->fill.color ) > 0;
COLOR4D fillColor = COLOR4D::UNSPECIFIED;
if( shape->fill.type == NSVG_PAINT_COLOR )
{
unsigned int icolor = shape->fill.color;
fillColor.r = std::clamp( ( icolor >> 0 ) & 0xFF, 0u, 255u ) / 255.0;
fillColor.g = std::clamp( ( icolor >> 8 ) & 0xFF, 0u, 255u ) / 255.0;
fillColor.b = std::clamp( ( icolor >> 16 ) & 0xFF, 0u, 255u ) / 255.0;
fillColor.a = std::clamp( ( icolor >> 24 ) & 0xFF, 0u, 255u ) / 255.0;
// nanosvg probably didn't read it properly, use default
if( fillColor == COLOR4D::BLACK )
fillColor = COLOR4D::UNSPECIFIED;
}
COLOR4D strokeColor = COLOR4D::UNSPECIFIED;
if( shape->stroke.type == NSVG_PAINT_COLOR )
{
unsigned int icolor = shape->stroke.color;
strokeColor.r = std::clamp( ( icolor >> 0 ) & 0xFF, 0u, 255u ) / 255.0;
strokeColor.g = std::clamp( ( icolor >> 8 ) & 0xFF, 0u, 255u ) / 255.0;
strokeColor.b = std::clamp( ( icolor >> 16 ) & 0xFF, 0u, 255u ) / 255.0;
strokeColor.a = std::clamp( ( icolor >> 24 ) & 0xFF, 0u, 255u ) / 255.0;
// nanosvg probably didn't read it properly, use default
if( strokeColor == COLOR4D::BLACK )
strokeColor = COLOR4D::UNSPECIFIED;
}
LINE_STYLE dashType = LINE_STYLE::SOLID;
if( shape->strokeDashCount > 0 )
{
float* dashArray = shape->strokeDashArray;
int dotCount = 0;
int dashCount = 0;
const float dashThreshold = shape->strokeWidth * 1.9f;
for( int i = 0; i < shape->strokeDashCount; i += 2 )
{
if( dashArray[i] < dashThreshold )
dotCount++;
else
dashCount++;
}
if( dotCount > 0 && dashCount == 0 )
dashType = LINE_STYLE::DOT;
else if( dotCount == 0 && dashCount > 0 )
dashType = LINE_STYLE::DASH;
else if( dotCount == 1 && dashCount == 1 )
dashType = LINE_STYLE::DASHDOT;
else if( dotCount == 2 && dashCount == 1 )
dashType = LINE_STYLE::DASHDOTDOT;
}
IMPORTED_STROKE stroke( lineWidth, dashType, strokeColor );
GRAPHICS_IMPORTER::POLY_FILL_RULE rule = GRAPHICS_IMPORTER::PF_NONZERO;
switch( shape->fillRule )
{
case NSVG_FILLRULE_NONZERO: rule = GRAPHICS_IMPORTER::PF_NONZERO; break;
case NSVG_FILLRULE_EVENODD: rule = GRAPHICS_IMPORTER::PF_EVEN_ODD; break;
default: break;
}
m_internalImporter.NewShape( rule );
2021-07-19 23:56:05 +00:00
for( NSVGpath* path = shape->paths; path != nullptr; path = path->next )
{
bool closed = path->closed || filled || rule == GRAPHICS_IMPORTER::PF_EVEN_ODD;
DrawPath( path->pts, path->npts, closed, stroke, filled, fillColor );
}
}
m_internalImporter.PostprocessNestedPolygons();
wxCHECK( m_importer, false );
m_internalImporter.ImportTo( *m_importer );
return true;
}
double SVG_IMPORT_PLUGIN::GetImageHeight() const
{
if( !m_parsedImage )
{
2022-02-05 13:25:43 +00:00
wxASSERT_MSG( false, wxT( "Image must have been loaded before checking height" ) );
return 0.0;
}
return m_parsedImage->height / SVG_DPI * inches2mm;
}
double SVG_IMPORT_PLUGIN::GetImageWidth() const
{
if( !m_parsedImage )
{
2022-02-05 13:25:43 +00:00
wxASSERT_MSG( false, wxT( "Image must have been loaded before checking width" ) );
return 0.0;
}
return m_parsedImage->width / SVG_DPI * inches2mm;
}
BOX2D SVG_IMPORT_PLUGIN::GetImageBBox() const
{
BOX2D bbox;
if( !m_parsedImage || !m_parsedImage->shapes )
{
wxASSERT_MSG( false, wxT( "Image must have been loaded before getting bbox" ) );
return bbox;
}
for( NSVGshape* shape = m_parsedImage->shapes; shape != nullptr; shape = shape->next )
{
BOX2D shapeBbox;
float( &bounds )[4] = shape->bounds;
shapeBbox.SetOrigin( bounds[0], bounds[1] );
shapeBbox.SetEnd( bounds[2], bounds[3] );
bbox.Merge( shapeBbox );
}
return bbox;
}
void SVG_IMPORT_PLUGIN::DrawPath( const float* aPoints, int aNumPoints, bool aClosedPath,
const IMPORTED_STROKE& aStroke, bool aFilled,
const COLOR4D& aFillColor )
{
std::vector<VECTOR2D> collectedPathPoints;
if( aNumPoints > 0 )
DrawCubicBezierPath( aPoints, aNumPoints, collectedPathPoints );
if( aClosedPath && collectedPathPoints.size() > 2 )
DrawPolygon( collectedPathPoints, aStroke, aFilled, aFillColor );
else
DrawLineSegments( collectedPathPoints, aStroke );
}
void SVG_IMPORT_PLUGIN::DrawCubicBezierPath( const float* aPoints, int aNumPoints,
std::vector<VECTOR2D>& aGeneratedPoints )
{
const int pointsPerSegment = 4;
const int curveSpecificPointsPerSegment = 3;
const int curveSpecificCoordinatesPerSegment = 2 * curveSpecificPointsPerSegment;
const float* currentPoints = aPoints;
int remainingPoints = aNumPoints;
while( remainingPoints >= pointsPerSegment )
{
DrawCubicBezierCurve( currentPoints, aGeneratedPoints );
currentPoints += curveSpecificCoordinatesPerSegment;
remainingPoints -= curveSpecificPointsPerSegment;
}
}
void SVG_IMPORT_PLUGIN::DrawCubicBezierCurve( const float* aPoints,
std::vector<VECTOR2D>& aGeneratedPoints )
{
auto start = getBezierPoint( aPoints, 0.0f );
auto end = getBezierPoint( aPoints, 1.0f );
auto segmentationThreshold = calculateBezierSegmentationThreshold( aPoints );
aGeneratedPoints.push_back( start );
segmentBezierCurve( start, end, 0.0f, 0.5f, aPoints, segmentationThreshold, aGeneratedPoints );
aGeneratedPoints.push_back( end );
}
void SVG_IMPORT_PLUGIN::DrawPolygon( const std::vector<VECTOR2D>& aPoints,
const IMPORTED_STROKE& aStroke, bool aFilled,
const COLOR4D& aFillColor )
{
m_internalImporter.AddPolygon( aPoints, aStroke, aFilled, aFillColor );
}
void SVG_IMPORT_PLUGIN::DrawLineSegments( const std::vector<VECTOR2D>& aPoints,
const IMPORTED_STROKE& aStroke )
{
unsigned int numLineStartPoints = aPoints.size() - 1;
for( unsigned int pointIndex = 0; pointIndex < numLineStartPoints; ++pointIndex )
m_internalImporter.AddLine( aPoints[pointIndex], aPoints[pointIndex + 1], aStroke );
}
static VECTOR2D getPoint( const float* aPointCoordinates )
{
return VECTOR2D( aPointCoordinates[0], aPointCoordinates[1] );
}
static VECTOR2D getBezierPoint( const float* aPoints, float aStep )
{
const int coordinatesPerPoint = 2;
auto firstCubicPoint = getPoint( aPoints );
auto secondCubicPoint = getPoint( aPoints + 1 * coordinatesPerPoint );
auto thirdCubicPoint = getPoint( aPoints + 2 * coordinatesPerPoint );
auto fourthCubicPoint = getPoint( aPoints + 3 * coordinatesPerPoint );
auto firstQuadraticPoint = getPointInLine( firstCubicPoint, secondCubicPoint, aStep );
auto secondQuadraticPoint = getPointInLine( secondCubicPoint, thirdCubicPoint, aStep );
auto thirdQuadraticPoint = getPointInLine( thirdCubicPoint, fourthCubicPoint, aStep );
auto firstLinearPoint = getPointInLine( firstQuadraticPoint, secondQuadraticPoint, aStep );
auto secondLinearPoint = getPointInLine( secondQuadraticPoint, thirdQuadraticPoint, aStep );
return getPointInLine( firstLinearPoint, secondLinearPoint, aStep );
}
static VECTOR2D getPointInLine( const VECTOR2D& aLineStart, const VECTOR2D& aLineEnd,
2021-07-19 23:56:05 +00:00
float aDistance )
{
return aLineStart + ( aLineEnd - aLineStart ) * aDistance;
}
static float calculateBezierSegmentationThreshold( const float* aCurvePoints )
{
using comparatorFunction = const float&(*)( const float&, const float& );
auto minimumComparator = static_cast< comparatorFunction >( &std::min );
auto maximumComparator = static_cast< comparatorFunction >( &std::max );
VECTOR2D minimum = calculateBezierBoundingBoxExtremity( aCurvePoints, minimumComparator );
VECTOR2D maximum = calculateBezierBoundingBoxExtremity( aCurvePoints, maximumComparator );
VECTOR2D boundingBoxDimensions = maximum - minimum;
return 0.001 * std::max( boundingBoxDimensions.x, boundingBoxDimensions.y );
}
static VECTOR2D calculateBezierBoundingBoxExtremity( const float* aCurvePoints,
std::function< const float&( const float&, const float& ) > comparator )
{
float x = aCurvePoints[0];
float y = aCurvePoints[1];
for( int pointIndex = 1; pointIndex < 3; ++pointIndex )
{
x = comparator( x, aCurvePoints[ 2 * pointIndex ] );
y = comparator( y, aCurvePoints[ 2 * pointIndex + 1 ] );
}
return VECTOR2D( x, y );
}
static void segmentBezierCurve( const VECTOR2D& aStart, const VECTOR2D& aEnd, float aOffset,
2021-07-19 23:56:05 +00:00
float aStep, const float* aCurvePoints,
float aSegmentationThreshold,
std::vector< VECTOR2D >& aGeneratedPoints )
{
VECTOR2D middle = getBezierPoint( aCurvePoints, aOffset + aStep );
float distanceToPreviousSegment = distanceFromPointToLine( middle, aStart, aEnd );
if( distanceToPreviousSegment > aSegmentationThreshold )
{
createNewBezierCurveSegments( aStart, middle, aEnd, aOffset, aStep, aCurvePoints,
2021-07-19 23:56:05 +00:00
aSegmentationThreshold, aGeneratedPoints );
}
}
static void createNewBezierCurveSegments( const VECTOR2D& aStart, const VECTOR2D& aMiddle,
2021-07-19 23:56:05 +00:00
const VECTOR2D& aEnd, float aOffset, float aStep,
const float* aCurvePoints, float aSegmentationThreshold,
std::vector< VECTOR2D >& aGeneratedPoints )
{
float newStep = aStep / 2.f;
float offsetAfterMiddle = aOffset + aStep;
segmentBezierCurve( aStart, aMiddle, aOffset, newStep, aCurvePoints, aSegmentationThreshold,
2021-07-19 23:56:05 +00:00
aGeneratedPoints );
aGeneratedPoints.push_back( aMiddle );
segmentBezierCurve( aMiddle, aEnd, offsetAfterMiddle, newStep, aCurvePoints,
2021-07-19 23:56:05 +00:00
aSegmentationThreshold, aGeneratedPoints );
}
static float distanceFromPointToLine( const VECTOR2D& aPoint, const VECTOR2D& aLineStart,
2021-07-19 23:56:05 +00:00
const VECTOR2D& aLineEnd )
{
auto lineDirection = aLineEnd - aLineStart;
auto lineNormal = lineDirection.Perpendicular().Resize( 1.f );
auto lineStartToPoint = aPoint - aLineStart;
auto distance = lineNormal.Dot( lineStartToPoint );
return fabs( distance );
}