kicad/pcbnew/exporters/gendrill_Excellon_writer.cpp

576 lines
18 KiB
C++
Raw Normal View History

/**
* @file gendrill_Excellon_writer.cpp
* @brief Functions to create EXCELLON drill files and report files.
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 1992-2012 Jean_Pierre Charras <jp.charras at wanadoo.fr>
* Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @see for EXCELLON format, see:
* http://www.excellon.com/manuals/program.htm
* and the CNC-7 manual.
*/
#include <fctsys.h>
2008-01-16 20:37:50 +00:00
#include <vector>
#include <plot_common.h>
#include <trigo.h>
#include <macros.h>
#include <kicad_string.h>
#include <wxPcbStruct.h>
#include <appl_wxstruct.h>
#include <build_version.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <pcbplot.h>
#include <pcbnew.h>
#include <gendrill_Excellon_writer.h>
#include <wildcards_and_files_ext.h>
#include <dialog_gendrill.h> // Dialog box for drill file generation
/*
2008-01-14 19:24:41 +00:00
* Creates the drill files in EXCELLON format
* Number format:
* - Floating point format
* - integer format
* - integer format: "Trailing Zero" ( TZ ) or "Leading Zero"
2008-01-14 19:24:41 +00:00
* Units
* - Decimal
* - Metric
2008-01-16 20:37:50 +00:00
*/
/*
* Create the drill file in EXCELLON format
* return hole count
*/
int EXCELLON_WRITER::CreateDrillFile( FILE * aFile )
{
m_file = aFile;
int diam, holes_count;
int x0, y0, xf, yf, xc, yc;
double xt, yt;
char line[1024];
SetLocaleTo_C_standard(); // Use the standard notation for double numbers
WriteEXCELLONHeader();
2008-01-16 20:37:50 +00:00
holes_count = 0;
/* Write the tool list */
for( unsigned ii = 0; ii < m_toolListBuffer.size(); ii++ )
{
DRILL_TOOL& tool_descr = m_toolListBuffer[ii];
fprintf( m_file, "T%dC%.3f\n", ii + 1,
tool_descr.m_Diameter * m_conversionUnits );
}
fputs( "%\n", m_file ); // End of header info
fputs( "G90\n", m_file ); // Absolute mode
fputs( "G05\n", m_file ); // Drill mode
/* Units : */
if( !m_minimalHeader )
{
if( m_unitsDecimal )
fputs( "M71\n", m_file ); /* M71 = metric mode */
else
fputs( "M72\n", m_file ); /* M72 = inch mode */
}
/* Read the hole file and generate lines for normal holes (oblong
* holes will be created later) */
int tool_reference = -2;
for( unsigned ii = 0; ii < m_holeListBuffer.size(); ii++ )
{
HOLE_INFO& hole_descr = m_holeListBuffer[ii];
if( hole_descr.m_Hole_Shape )
continue; // oblong holes will be created later
if( tool_reference != hole_descr.m_Tool_Reference )
{
tool_reference = hole_descr.m_Tool_Reference;
fprintf( m_file, "T%d\n", tool_reference );
}
x0 = hole_descr.m_Hole_Pos.x - m_offset.x;
y0 = hole_descr.m_Hole_Pos.y - m_offset.y;
if( !m_mirror )
y0 *= -1;
xt = x0 * m_conversionUnits;
yt = y0 * m_conversionUnits;
WriteCoordinates( line, xt, yt );
fputs( line, m_file );
holes_count++;
}
2008-01-16 20:37:50 +00:00
/* Read the hole file and generate lines for normal holes (oblong holes
* will be created later) */
tool_reference = -2; // set to a value not used for
// m_holeListBuffer[ii].m_Tool_Reference
for( unsigned ii = 0; ii < m_holeListBuffer.size(); ii++ )
{
HOLE_INFO& hole_descr = m_holeListBuffer[ii];
if( hole_descr.m_Hole_Shape == 0 )
continue; // wait for oblong holes
if( tool_reference != hole_descr.m_Tool_Reference )
{
tool_reference = hole_descr.m_Tool_Reference;
fprintf( m_file, "T%d\n", tool_reference );
2008-01-16 20:37:50 +00:00
}
diam = std::min( hole_descr.m_Hole_Size.x,
hole_descr.m_Hole_Size.y );
if( diam == 0 )
continue;
/* Compute the hole coordinates: */
xc = x0 = xf = hole_descr.m_Hole_Pos.x - m_offset.x;
yc = y0 = yf = hole_descr.m_Hole_Pos.y - m_offset.y;
/* Compute the start and end coordinates for the shape */
if( hole_descr.m_Hole_Size.x < hole_descr.m_Hole_Size.y )
{
int delta = ( hole_descr.m_Hole_Size.y - hole_descr.m_Hole_Size.x ) / 2;
y0 -= delta; yf += delta;
}
else
{
int delta = ( hole_descr.m_Hole_Size.x - hole_descr.m_Hole_Size.y ) / 2;
x0 -= delta; xf += delta;
}
RotatePoint( &x0, &y0, xc, yc, hole_descr.m_Hole_Orient );
RotatePoint( &xf, &yf, xc, yc, hole_descr.m_Hole_Orient );
if( !m_mirror )
{
y0 *= -1; yf *= -1;
}
xt = x0 * m_conversionUnits;
yt = y0 * m_conversionUnits;
WriteCoordinates( line, xt, yt );
/* remove the '\n' from end of line, because we must add the "G85"
* command to the line: */
for( int kk = 0; line[kk] != 0; kk++ )
if( line[kk] == '\n' || line[kk] =='\r' )
line[kk] = 0;
2008-01-16 20:37:50 +00:00
fputs( line, m_file );
fputs( "G85", m_file ); // add the "G85" command
xt = xf * m_conversionUnits;
yt = yf * m_conversionUnits;
WriteCoordinates( line, xt, yt );
2008-01-16 20:37:50 +00:00
fputs( line, m_file );
fputs( "G05\n", m_file );
holes_count++;
}
WriteEXCELLONEndOfFile();
SetLocaleTo_Default(); // Revert to locale double notation
2008-01-16 20:37:50 +00:00
return holes_count;
}
/**
* SetFormat
* Initialize internal parameters to match the given format
* @param aMetric = true for metric coordinates, false for imperial units
* @param aZerosFmt = DECIMAL_FORMAT, SUPPRESS_LEADING, SUPPRESS_TRAILING, KEEP_ZEROS
* @param aLeftDigits = number of digits for integer part of coordinates
* @param aRightDigits = number of digits for mantissa part of coordinates
*/
void EXCELLON_WRITER::SetFormat( bool aMetric,
zeros_fmt aZerosFmt,
int aLeftDigits,
int aRightDigits )
{
m_unitsDecimal = aMetric;
m_zeroFormat = aZerosFmt;
/* Set conversion scale depending on drill file units */
if( m_unitsDecimal )
m_conversionUnits = 1.0 / IU_PER_MM; // EXCELLON units = mm
else
m_conversionUnits = 0.001 / IU_PER_MILS; // EXCELLON units = INCHES
m_precision.m_lhs = aLeftDigits;
m_precision.m_rhs = aRightDigits;
}
/* Created a line like:
* X48000Y19500
* According to the selected format
*/
void EXCELLON_WRITER::WriteCoordinates( char* aLine, double aCoordX, double aCoordY )
{
wxString xs, ys;
int xpad = m_precision.m_lhs + m_precision.m_rhs;
int ypad = xpad;
switch( m_zeroFormat )
{
default:
case DECIMAL_FORMAT:
/* In Excellon files, resolution is 1/1000 mm or 1/10000 inch (0.1 mil)
* Although in decimal format, Excellon specifications do not specify
* clearly the resolution. However it seems to be 1/1000mm or 0.1 mil
* like in non decimal formats, so we trunk coordinates to 3 or 4 digits in mantissa
* Decimal format just prohibit useless leading 0:
* 0.45 or .45 is right, but 00.54 is incorrect.
*/
if( m_unitsDecimal )
{
// resolution is 1/1000 mm
xs.Printf( wxT( "%.3f" ), aCoordX );
ys.Printf( wxT( "%.3f" ), aCoordY );
}
else
{
// resolution is 1/10000 inch
xs.Printf( wxT( "%.4f" ), aCoordX );
ys.Printf( wxT( "%.4f" ), aCoordY );
}
//Remove useless trailing 0
while( xs.Last() == '0' )
xs.RemoveLast();
while( ys.Last() == '0' )
ys.RemoveLast();
sprintf( aLine, "X%sY%s\n", TO_UTF8( xs ), TO_UTF8( ys ) );
break;
case SUPPRESS_LEADING:
for( int i = 0; i< m_precision.m_rhs; i++ )
{
aCoordX *= 10; aCoordY *= 10;
}
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
sprintf( aLine, "X%dY%d\n", KiROUND( aCoordX ), KiROUND( aCoordY ) );
break;
case SUPPRESS_TRAILING:
{
for( int i = 0; i < m_precision.m_rhs; i++ )
{
aCoordX *= 10;
aCoordY *= 10;
}
if( aCoordX < 0 )
xpad++;
if( aCoordY < 0 )
ypad++;
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
xs.Printf( wxT( "%0*d" ), xpad, KiROUND( aCoordX ) );
ys.Printf( wxT( "%0*d" ), ypad, KiROUND( aCoordY ) );
size_t j = xs.Len() - 1;
while( xs[j] == '0' && j )
xs.Truncate( j-- );
j = ys.Len() - 1;
while( ys[j] == '0' && j )
ys.Truncate( j-- );
sprintf( aLine, "X%sY%s\n", TO_UTF8( xs ), TO_UTF8( ys ) );
break;
}
case KEEP_ZEROS:
for( int i = 0; i< m_precision.m_rhs; i++ )
{
aCoordX *= 10; aCoordY *= 10;
}
if( aCoordX < 0 )
xpad++;
if( aCoordY < 0 )
ypad++;
// Dick Hollenbeck's KiROUND R&D // This provides better project control over rounding to int from double // than wxRound() did. This scheme provides better logging in Debug builds // and it provides for compile time calculation of constants. #include <stdio.h> #include <assert.h> #include <limits.h> //-----<KiROUND KIT>------------------------------------------------------------ /** * KiROUND * rounds a floating point number to an int using * "round halfway cases away from zero". * In Debug build an assert fires if will not fit into an int. */ #if defined( DEBUG ) // DEBUG: a macro to capture line and file, then calls this inline static inline int KiRound( double v, int line, const char* filename ) { v = v < 0 ? v - 0.5 : v + 0.5; if( v > INT_MAX + 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v ); } else if( v < INT_MIN - 0.5 ) { printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v ); } return int( v ); } #define KiROUND( v ) KiRound( v, __LINE__, __FILE__ ) #else // RELEASE: a macro so compile can pre-compute constants. #define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 ) #endif //-----</KiROUND KIT>----------------------------------------------------------- // Only a macro is compile time calculated, an inline function causes a static constructor // in a situation like this. // Therefore the Release build is best done with a MACRO not an inline function. int Computed = KiROUND( 14.3 * 8 ); int main( int argc, char** argv ) { for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 ) { int i = KiROUND( d ); printf( "t: %d %.16g\n", i, d ); } return 0; }
2012-04-19 06:55:45 +00:00
xs.Printf( wxT( "%0*d" ), xpad, KiROUND( aCoordX ) );
ys.Printf( wxT( "%0*d" ), ypad, KiROUND( aCoordY ) );
sprintf( aLine, "X%sY%s\n", TO_UTF8( xs ), TO_UTF8( ys ) );
break;
}
}
/* Print the DRILL file header. The full header is:
* M48
* ;DRILL file {PCBNEW (2007-11-29-b)} date 17/1/2008-21:02:35
* ;FORMAT={ <precision> / absolute / <units> / <numbers format>}
* FMAT,2
* INCH,TZ
*/
void EXCELLON_WRITER::WriteEXCELLONHeader()
{
fputs( "M48\n", m_file ); // The beginning of a header
if( !m_minimalHeader )
{
// The next 2 lines in EXCELLON files are comments:
wxString msg = wxGetApp().GetTitle() + wxT( " " ) + GetBuildVersion();
fprintf( m_file, ";DRILL file {%s} date %s\n", TO_UTF8( msg ),
TO_UTF8( DateAndTime() ) );
2008-08-25 13:26:48 +00:00
msg = wxT( ";FORMAT={" );
// Print precision:
if( m_zeroFormat != DECIMAL_FORMAT )
msg << m_precision.GetPrecisionString();
else
msg << wxT( "-:-" ); // in decimal format the precision is irrelevant
msg << wxT( "/ absolute / " );
msg << ( m_unitsDecimal ? wxT( "metric" ) : wxT( "inch" ) );
/* Adding numbers notation format.
* this is same as m_Choice_Zeros_Format strings, but NOT translated
* because some EXCELLON parsers do not like non ascii values
* so we use ONLY english (ascii) strings.
* if new options are added in m_Choice_Zeros_Format, they must also
* be added here
*/
msg << wxT( " / " );
const wxString zero_fmt[4] =
{
wxT( "decimal" ),
wxT( "suppress leading zeros" ),
wxT( "suppress trailing zeros" ),
wxT( "keep zeros" )
};
msg << zero_fmt[m_zeroFormat];
msg << wxT( "}\n" );
fputs( TO_UTF8( msg ), m_file );
fputs( "FMAT,2\n", m_file ); // Use Format 2 commands (version used since 1979)
}
fputs( m_unitsDecimal ? "METRIC" : "INCH", m_file );
switch( m_zeroFormat )
{
case SUPPRESS_LEADING:
case DECIMAL_FORMAT:
fputs( ",TZ\n", m_file );
break;
case SUPPRESS_TRAILING:
fputs( ",LZ\n", m_file );
break;
case KEEP_ZEROS:
fputs( ",TZ\n", m_file ); // TZ is acceptable when all zeros are kept
break;
}
}
void EXCELLON_WRITER::WriteEXCELLONEndOfFile()
{
//add if minimal here
fputs( "T0\nM30\n", m_file );
fclose( m_file );
}
/* Helper function for sorting hole list.
* Compare function used for sorting holes by increasing diameter value
* and X value
*/
static bool CmpHoleDiameterValue( const HOLE_INFO& a, const HOLE_INFO& b )
{
if( a.m_Hole_Diameter != b.m_Hole_Diameter )
return a.m_Hole_Diameter < b.m_Hole_Diameter;
if( a.m_Hole_Pos.x != b.m_Hole_Pos.x )
return a.m_Hole_Pos.x < b.m_Hole_Pos.x;
return a.m_Hole_Pos.y < b.m_Hole_Pos.y;
}
/*
* Create the list of holes and tools for a given board
* The list is sorted by increasing drill values
* Only holes from aFirstLayer to aLastLayer copper layers are listed (for vias, because pad holes are always through holes)
* param aFirstLayer = first layer to consider. if < 0 aFirstLayer is ignored (used to creates report file)
* param aLastLayer = last layer to consider. if < 0 aLastLayer is ignored
* param aExcludeThroughHoles : if true, exclude through holes ( pads and vias through )
* param aGenerateNPTH_list :
* true to create NPTH only list (with no plated holes)
* false to created plated holes list (with no NPTH )
* param aMergePTHNPTH : if true, merge PTH and NPTH holes into one file by treating all holes as PTH
*/
void EXCELLON_WRITER::BuildHolesList( int aFirstLayer,
int aLastLayer,
bool aExcludeThroughHoles,
bool aGenerateNPTH_list,
bool aMergePTHNPTH )
{
HOLE_INFO new_hole;
int hole_value;
m_holeListBuffer.clear();
m_toolListBuffer.clear();
if( (aFirstLayer >= 0) && (aLastLayer >= 0) )
{
if( aFirstLayer > aLastLayer )
EXCHG( aFirstLayer, aLastLayer );
}
if ( aGenerateNPTH_list && aMergePTHNPTH )
{
return;
}
/* build hole list for vias
*/
if( ! aGenerateNPTH_list ) // vias are always plated !
{
for( TRACK* track = m_pcb->m_Track; track; track = track->Next() )
{
if( track->Type() != PCB_VIA_T )
continue;
SEGVIA* via = (SEGVIA*) track;
hole_value = via->GetDrillValue();
if( hole_value == 0 )
continue;
new_hole.m_Tool_Reference = -1; // Flag value for Not initialized
new_hole.m_Hole_Orient = 0;
new_hole.m_Hole_Diameter = hole_value;
new_hole.m_Hole_Size.x = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;
new_hole.m_Hole_Shape = 0; // hole shape: round
new_hole.m_Hole_Pos = via->GetStart();
via->ReturnLayerPair( &new_hole.m_Hole_Top_Layer, &new_hole.m_Hole_Bottom_Layer );
// ReturnLayerPair return params with m_Hole_Bottom_Layer < m_Hole_Top_Layer
if( (new_hole.m_Hole_Bottom_Layer > aFirstLayer) && (aFirstLayer >= 0) )
continue;
if( (new_hole.m_Hole_Top_Layer < aLastLayer) && (aLastLayer >= 0) )
continue;
if( aExcludeThroughHoles && (new_hole.m_Hole_Bottom_Layer == LAYER_N_BACK)
&& (new_hole.m_Hole_Top_Layer == LAYER_N_FRONT) )
continue;
m_holeListBuffer.push_back( new_hole );
}
}
// build hole list for pads (assumed always through holes)
if( !aExcludeThroughHoles || aGenerateNPTH_list )
{
for( MODULE* module = m_pcb->m_Modules; module; module = module->Next() )
{
// Read and analyse pads
for( D_PAD* pad = module->Pads(); pad; pad = pad->Next() )
{
if( ! aGenerateNPTH_list && pad->GetAttribute() == PAD_HOLE_NOT_PLATED && ! aMergePTHNPTH )
continue;
if( aGenerateNPTH_list && pad->GetAttribute() != PAD_HOLE_NOT_PLATED )
continue;
if( pad->GetDrillSize().x == 0 )
continue;
new_hole.m_Hole_NotPlated = (pad->GetAttribute() == PAD_HOLE_NOT_PLATED);
new_hole.m_Tool_Reference = -1; // Flag is: Not initialized
new_hole.m_Hole_Orient = pad->GetOrientation();
new_hole.m_Hole_Shape = 0; // hole shape: round
new_hole.m_Hole_Diameter = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
new_hole.m_Hole_Size.x = new_hole.m_Hole_Size.y = new_hole.m_Hole_Diameter;
if( pad->GetDrillShape() != PAD_DRILL_CIRCLE )
new_hole.m_Hole_Shape = 1; // oval flag set
new_hole.m_Hole_Size = pad->GetDrillSize();
new_hole.m_Hole_Pos = pad->GetPosition(); // hole position
new_hole.m_Hole_Bottom_Layer = LAYER_N_BACK;
new_hole.m_Hole_Top_Layer = LAYER_N_FRONT;// pad holes are through holes
m_holeListBuffer.push_back( new_hole );
}
}
}
// Sort holes per increasing diameter value
sort( m_holeListBuffer.begin(), m_holeListBuffer.end(), CmpHoleDiameterValue );
// build the tool list
int LastHole = -1; /* Set to not initialised (this is a value not used
* for m_holeListBuffer[ii].m_Hole_Diameter) */
DRILL_TOOL new_tool( 0 );
unsigned jj;
for( unsigned ii = 0; ii < m_holeListBuffer.size(); ii++ )
{
if( m_holeListBuffer[ii].m_Hole_Diameter != LastHole )
{
new_tool.m_Diameter = ( m_holeListBuffer[ii].m_Hole_Diameter );
m_toolListBuffer.push_back( new_tool );
LastHole = new_tool.m_Diameter;
}
jj = m_toolListBuffer.size();
if( jj == 0 )
continue; // Should not occurs
m_holeListBuffer[ii].m_Tool_Reference = jj; // Tool value Initialized (value >= 1)
m_toolListBuffer.back().m_TotalCount++;
if( m_holeListBuffer[ii].m_Hole_Shape )
m_toolListBuffer.back().m_OvalCount++;
}
}