kicad/qa/tests/common/plugins/cadstar/test_cadstar_parts_parser.cpp

533 lines
23 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022-2023 Roberto Fernandez Bautista <roberto.fer.bau@gmail.com>
* Copyright (C) 2022-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <qa_utils/wx_utils/unit_test_utils.h>
#include <algorithm>
#include <optional>
#include <pegtl/contrib/analyze.hpp>
#include <pegtl/contrib/trace.hpp>
// Modules under test:
#include <common/plugins/cadstar/cadstar_parts_lib_grammar.h>
#include <common/plugins/cadstar/cadstar_parts_lib_parser.h>
BOOST_AUTO_TEST_SUITE( CadstarPartParser );
static std::string getCadstarTestFile( const std::string& aFile )
{
return KI_TEST::GetEeschemaTestDataDir() + "/plugins/cadstar/" + aFile;
}
BOOST_AUTO_TEST_CASE( AnalyzeGrammar )
{
// Verify the grammar has no loops without progress and other issues
// See: https://github.com/taocpp/PEGTL/blob/3.2.7/doc/Grammar-Analysis.md
const std::size_t grammarIssues = tao::pegtl::analyze<CADSTAR_PARTS_LIB::GRAMMAR>();
BOOST_CHECK_EQUAL( grammarIssues, 0 );
const std::size_t headerIssues = tao::pegtl::analyze<CADSTAR_PARTS_LIB::VALID_HEADER>();
BOOST_CHECK_EQUAL( headerIssues, 0 );
}
struct CHECK_HEADER_CASE
{
std::string m_CaseName;
std::string m_Content;
bool m_ExpectedResult;
};
static const std::vector<CHECK_HEADER_CASE> check_header_cases =
{
{ "1: Normal header", "# Format 32\r\n", true },
{ "2: Normal header, extra content", "# Format 32\r\nExtraUnrelatedContent", true },
{ "3: Normal header extra spaces (1)", "# Format 32\r\n", true },
{ "4: Normal header extra spaces (2)", "# FORMAT 32\r\n", true },
{ "5: Normal header on 2nd line", "\r\n# Format 32\r\n", false },
{ "6: Normal header prepended", "+# Format 32\r\n", false },
{ "7: Normal header prepended spaces", " # Format 32\r\n", false },
// There appear to be some files on the internet that just don't have a header and
// start straight away with the part definitions.
{ "8: No header", ".PART-NAME :1 ;Part Descr\r\n", true },
{ "9: No header, extra content", ".PART-NAME :1 ;Part Descr\r\nExtra", true },
{ "10: No header, on 2nd line", "\r\n.PART-NAME :1 ;Part Descr\r\n", true },
{ "11: No header, on 3rd line", "\r\n\r\n.PART-NAME :1 ;Part Descr\r\n", true },
{ "12: No header, on 4th line", "\r\n\r\n.PART-NAME :1 ;Part Descr\r\n", true },
{ "13: No header, on 4th line", "\r\n\r\n\r\n\r\n.PART-NAME :1 ;P Descr\r\n", true },
{ "14: No header, on 5th line", "\r\n\r\n\r\n\r\n\r\n.P-NAME :1 ;PDescr\r\n", true },
{ "15: No header, on 6th line", "\r\n\r\n\r\n\r\n\r\n\r\n.P-NAM :1 ;PDes\r\n", false },
{ "16: No header, space prepend", " .PART-NAME :1 ;Part Descr\r\n", false },
{ "17: No header, spaces & 2nd line", " \r\n.PART-NAME :1 ;Part Descr\r\n", true },
{ "18: No header, 2nd line & space", " \r\n .PART-NAME :1 ;Part Descr\r\n", false },
};
BOOST_AUTO_TEST_CASE( CheckHeader )
{
for( const auto& c : check_header_cases )
{
BOOST_TEST_INFO_SCOPE( c.m_CaseName );
CADSTAR_PARTS_LIB_PARSER p;
BOOST_CHECK_EQUAL( p.CheckContentHeader( c.m_Content ), c.m_ExpectedResult );
}
}
BOOST_AUTO_TEST_CASE( ReadFile )
{
CADSTAR_PARTS_LIB_PARSER p;
// Test a programatically generated file (see writeCadstarFile.py)
auto ret = p.ReadFile( getCadstarTestFile( "cadstarDummy.lib" ) );
KI_CHECK_OPT_EQUAL( ret.m_FormatNumber, 32 );
BOOST_CHECK_EQUAL( ret.m_PartEntries.size(), 100 );
int i = 0;
for( CADSTAR_PART_ENTRY& partEntry : ret.m_PartEntries )
{
// Part header KI_CHECK_OPT_EQUAL
BOOST_CHECK_EQUAL( partEntry.m_Name, "PartName" + std::to_string( i ) );
KI_CHECK_OPT_EQUAL( partEntry.m_Number, std::to_string( i * 5 ) );
KI_CHECK_OPT_EQUAL( partEntry.m_Version, std::to_string( 2 ) );
KI_CHECK_OPT_EQUAL( partEntry.m_Description,
"Part " + std::to_string( i ) + " Description" );
BOOST_CHECK_EQUAL( partEntry.m_Pcb_component, "FOOTPRINT" + std::to_string( i ) );
KI_CHECK_OPT_EQUAL( partEntry.m_Pcb_alternate, "variant" + std::to_string( i * 5 ) );
KI_CHECK_OPT_EQUAL( partEntry.m_Value, std::to_string( i ) + " uH" );
BOOST_CHECK_EQUAL( partEntry.m_ComponentStem, "L" );
KI_CHECK_OPT_EQUAL( partEntry.m_MaxPinCount, i + 10 );
BOOST_CHECK_EQUAL( partEntry.m_GateSwappingAllowed, i % 10 != 1 );
BOOST_CHECK_EQUAL( partEntry.m_PinsVisible, i % 5 != 1 );
KI_CHECK_OPT_EQUAL( partEntry.m_SpicePartName, "PartName" + std::to_string( i ) );
KI_CHECK_OPT_EQUAL( partEntry.m_SpiceModel, std::to_string( i ) + "uH" );
KI_CHECK_OPT_EQUAL( partEntry.m_AcceptancePartName, "PartName" + std::to_string( i ) );
KI_CHECK_OPT_EQUAL( partEntry.m_AcceptanceText, "Acceptance" + std::to_string( i ) );
// User part attributes (* lines)
BOOST_CHECK_EQUAL( partEntry.m_UserAttributes["UserFieldpartNo"],
std::to_string( i * 5 ) );
BOOST_CHECK_EQUAL( partEntry.m_UserAttributes["UserFieldpartNoCreated by"],
"Person" + std::to_string( i ) );
// SCH attributes ($ lines)
BOOST_CHECK_EQUAL( partEntry.m_SchAttributes["SCH val1"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( partEntry.m_SchAttributes["SCH val1"].m_Value,
"val" + std::to_string( i ) );
BOOST_CHECK_EQUAL( partEntry.m_SchAttributes["SCH val2"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( partEntry.m_SchAttributes["SCH val2"].m_Value,
"readOnly" + std::to_string( i ) );
// PCB attributes (% lines)
BOOST_CHECK_EQUAL( partEntry.m_PcbAttributes["PCB val1"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( partEntry.m_PcbAttributes["PCB val1"].m_Value,
"val" + std::to_string( i ) );
BOOST_CHECK_EQUAL( partEntry.m_PcbAttributes["PCB val2"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( partEntry.m_PcbAttributes["PCB val2"].m_Value,
"readOnly" + std::to_string( i ) );
// Parts attributes (~ lines)
BOOST_CHECK_EQUAL( partEntry.m_PartAttributes["Part val1"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( partEntry.m_PartAttributes["Part val1"].m_Value,
"val" + std::to_string( i ) );
BOOST_CHECK_EQUAL( partEntry.m_PartAttributes["Part val2"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( partEntry.m_PartAttributes["Part val2"].m_Value,
"readOnly" + std::to_string( i ) );
// PCB and SCH attributes (@ lines)
BOOST_CHECK_EQUAL( partEntry.m_SchAndPcbAttributes["SCH and PCB val1"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( partEntry.m_SchAndPcbAttributes["SCH and PCB val1"].m_Value,
"val" + std::to_string( i ) );
BOOST_CHECK_EQUAL( partEntry.m_SchAndPcbAttributes["SCH and PCB val2"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( partEntry.m_SchAndPcbAttributes["SCH and PCB val2"].m_Value,
"readOnly" + std::to_string( i ) );
// Check symbol name and pins
BOOST_REQUIRE_EQUAL( partEntry.m_Symbols.size(), 1 );
BOOST_CHECK_EQUAL( partEntry.m_Symbols[0].m_SymbolName, "Symbol" + std::to_string( i ) );
KI_CHECK_OPT_EQUAL( partEntry.m_Symbols[0].m_SymbolAlternateName,
std::optional<std::string>() );
BOOST_REQUIRE_EQUAL( partEntry.m_Symbols[0].m_Pins.size(), 2 );
BOOST_CHECK_EQUAL( partEntry.m_Symbols[0].m_Pins[0].m_Identifier, 1 );
BOOST_CHECK_EQUAL( partEntry.m_Symbols[0].m_Pins[1].m_Identifier, 2 );
// Check hidden pins
BOOST_REQUIRE_EQUAL( partEntry.m_HiddenPins.size(), 1 );
BOOST_CHECK_EQUAL( partEntry.m_HiddenPins.count( "GND" ), 1 );
i++;
}
}
BOOST_AUTO_TEST_CASE( ReadContent )
{
std::string test =
"# Format 32\r\n"
"\r\n"
"\r\n"
"+N0 'root' &\r\n"
"'part1' &\r\n"
"'part2'\r\n"
"+N1 N0 'subnode1' &\r\n"
"'part3' &\r\n"
"'part4'\r\n"
"\r\n"
" \r\n"
"\r\n"
".<Part name> (<Part number>):<Part version>;<Description>\r\n"
"<PCB Component Refname> (<PCB Alternate Refname>)\r\n"
"*VALUE <Value>\r\n"
"*PNM 1=A1 2=A2 3=B1 4=B2 5=C1 6=C2\r\n" // <PinId>=<Pinname> <PinId>=<Pinname> etc
"*PLB 1=\"VCC\" 2=\"GND\" 3=\"'EN\" 4=\"OUT\" 5=\"OUT\" 6=\"IN\"\r\n" // <id>=<label>
"*EQU 4=5, 6=7=8, 9=10=11\r\n" // <PinId>=<PinId>=<PinId> <PinId>=<PinId> etc ...
"*SYM Group1\r\n"
"*INT 4 5\r\n"
"*INT 6 7\r\n"
"*SYM Group2\r\n"
"*EXT 1 2\r\n"
"*EXT 4 7\r\n"
"*DFN <Definition name>\r\n"
"*NGS\r\n"
"*NPV\r\n"
"*STM <Component name stem>\r\n"
"*MXP 32\r\n" //<Maximum number of connector pins>
"*SPI (<Part name>) <Model> <Value>\r\n"
"*PAC (<Part name>) <Acceptance Text>\r\n"
"*userAttribute userAttributeVal\r\n"
"*\"User spaced name\" userSpacedAttributeVal\r\n"
"$<SCM Attribute name1>(<Attribute value for name1>)\r\n"
"$!<SCM Attribute name2>(\"<Attribute value for name2>\")\r\n"
"%<PCB Attribute name1>(\"<Attribute value1>\")\r\n"
"%!\"<PCB Attribute name2>\"(<Attribute value2>)\r\n"
"~<Parts Attribute name1>(<Attribute value1>)\r\n"
"~!<Parts Attribute name2>(<Attribute value2>)\r\n"
"@<SCM/PCB Attribute name1>(<Attribute value1>)\r\n"
"@!<SCM/PCB Attribute name2>(<Attribute value2>)\r\n"
"<SCM Symbol Refname1> (<SCM Alternate Refname>)\r\n"
"1.0!TD:2000 2.1!TI 3.2!T\r\n"
"<SCM Symbol Refname2>\r\n"
"4.2!U:1000 5.1!I 6.3!Q\r\n"
"/GND 7.0!G:2000\r\n"
"/VCC 8.0!P:2000 9.1 10.0\r\n";
//"etc ...\r\n"
//"/<Signame> <PinIdentifier>.<Position>!<Pintype>:<Loading>\r\n"
//"/<Signame> <PinIdentifier>.<Position>!<Pintype>:<Loading>\r\n";
CADSTAR_PARTS_LIB_PARSER csParser;
CADSTAR_PARTS_LIB_MODEL result = csParser.ReadContent( test );
KI_CHECK_OPT_EQUAL( result.m_FormatNumber, 32 );
BOOST_REQUIRE_EQUAL( result.m_HierarchyNodes.size(), 2 ); // root and subnode
BOOST_REQUIRE_EQUAL( result.m_PartEntries.size(), 1 );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Name, "<Part name>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Number.value(), "<Part number>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Version.value(), "<Part version>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Description.value(), "<Description>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Pcb_component, "<PCB Component Refname>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Pcb_alternate.value(), "<PCB Alternate Refname>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_Value.value(), "<Value>" );
// Check pin names (*PNM)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_PinNamesMap.size(), 6 );
std::map<long, std::string>& pinNames = result.m_PartEntries[0].m_PinNamesMap;
BOOST_CHECK_EQUAL( pinNames[1], "A1" );
BOOST_CHECK_EQUAL( pinNames[2], "A2" );
BOOST_CHECK_EQUAL( pinNames[3], "B1" );
BOOST_CHECK_EQUAL( pinNames[4], "B2" );
BOOST_CHECK_EQUAL( pinNames[5], "C1" );
BOOST_CHECK_EQUAL( pinNames[6], "C2" );
// Check pin labels (*PLB)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_PinLabelsMap.size(), 6 );
std::map<long, std::string>& pinlabels = result.m_PartEntries[0].m_PinLabelsMap;
BOOST_CHECK_EQUAL( pinlabels[1], "VCC" );
BOOST_CHECK_EQUAL( pinlabels[2], "GND" );
BOOST_CHECK_EQUAL( pinlabels[3], "'EN" );
BOOST_CHECK_EQUAL( pinlabels[4], "OUT" );
BOOST_CHECK_EQUAL( pinlabels[5], "OUT" );
BOOST_CHECK_EQUAL( pinlabels[6], "IN" );
// Check pin equivalences (*EQU)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_PinEquivalences.size(), 3 );
std::vector<std::vector<long>>& pinEqus = result.m_PartEntries[0].m_PinEquivalences;
BOOST_REQUIRE_EQUAL( pinEqus[0].size(), 2 );
BOOST_REQUIRE_EQUAL( pinEqus[1].size(), 3 );
BOOST_REQUIRE_EQUAL( pinEqus[2].size(), 3 );
BOOST_CHECK_EQUAL( pinEqus[0][0], 4 );
BOOST_CHECK_EQUAL( pinEqus[0][1], 5 );
BOOST_CHECK_EQUAL( pinEqus[1][0], 6 );
BOOST_CHECK_EQUAL( pinEqus[1][1], 7 );
BOOST_CHECK_EQUAL( pinEqus[1][2], 8 );
BOOST_CHECK_EQUAL( pinEqus[2][0], 9 );
BOOST_CHECK_EQUAL( pinEqus[2][1], 10 );
BOOST_CHECK_EQUAL( pinEqus[2][2], 11 );
// Check internal swap groups equivalences (*INT)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_InternalSwapGroup.size(), 1 );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_InternalSwapGroup[0].m_Name.value(), "Group1" );
std::vector<std::vector<long>>& intgates =
result.m_PartEntries[0].m_InternalSwapGroup[0].m_Gates;
BOOST_REQUIRE_EQUAL( intgates[0].size(), 2 );
BOOST_REQUIRE_EQUAL( intgates[1].size(), 2 );
BOOST_CHECK_EQUAL( intgates[0][0], 4 );
BOOST_CHECK_EQUAL( intgates[0][1], 5 );
BOOST_CHECK_EQUAL( intgates[1][0], 6 );
BOOST_CHECK_EQUAL( intgates[1][1], 7 );
// Check external swap groups equivalences (*EXT)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_ExternalSwapGroup.size(), 1 );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_ExternalSwapGroup[0].m_Name.value(), "Group2" );
std::vector<std::vector<long>>& extgates =
result.m_PartEntries[0].m_ExternalSwapGroup[0].m_Gates;
BOOST_REQUIRE_EQUAL( extgates[0].size(), 2 );
BOOST_REQUIRE_EQUAL( extgates[1].size(), 2 );
BOOST_CHECK_EQUAL( extgates[0][0], 1 );
BOOST_CHECK_EQUAL( extgates[0][1], 2 );
BOOST_CHECK_EQUAL( extgates[1][0], 4 );
BOOST_CHECK_EQUAL( extgates[1][1], 7 );
// Check part Definition
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_PartDefinitionName.value(), "<Definition name>" );
// Check *NGS
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_GateSwappingAllowed, false );
// Check *NPV
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_PinsVisible, false );
// Check *STM
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_ComponentStem, "<Component name stem>" );
// Check *MXP
KI_CHECK_OPT_EQUAL( result.m_PartEntries[0].m_MaxPinCount, 32 );
// Check *SPI
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_SpicePartName.value(), "<Part name>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_SpiceModel.value(), "<Model> <Value>" );
// Check *PAC
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_AcceptancePartName.value(), "<Part name>" );
BOOST_CHECK_EQUAL( result.m_PartEntries[0].m_AcceptanceText.value(), "<Acceptance Text>" );
// Check user attributes (* lines)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_UserAttributes.size(), 2 );
std::map<std::string, std::string>& userAtts = result.m_PartEntries[0].m_UserAttributes;
BOOST_CHECK_EQUAL( userAtts["userAttribute"], "userAttributeVal" );
BOOST_CHECK_EQUAL( userAtts["User spaced name"], "userSpacedAttributeVal" );
// Check SCH attributes ($ lines)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_SchAttributes.size(), 2 );
std::map<std::string, CADSTAR_ATTRIBUTE_VALUE>& schAtts =
result.m_PartEntries[0].m_SchAttributes;
BOOST_CHECK_EQUAL( schAtts["<SCM Attribute name1>"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( schAtts["<SCM Attribute name1>"].m_Value, "<Attribute value for name1>" );
BOOST_CHECK_EQUAL( schAtts["<SCM Attribute name2>"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( schAtts["<SCM Attribute name2>"].m_Value, "<Attribute value for name2>" );
// Check PCB attributes (% lines)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_PcbAttributes.size(), 2 );
std::map<std::string, CADSTAR_ATTRIBUTE_VALUE>& pcbAtts =
result.m_PartEntries[0].m_PcbAttributes;
BOOST_CHECK_EQUAL( pcbAtts["<PCB Attribute name1>"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( pcbAtts["<PCB Attribute name1>"].m_Value, "<Attribute value1>" );
BOOST_CHECK_EQUAL( pcbAtts["<PCB Attribute name2>"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( pcbAtts["<PCB Attribute name2>"].m_Value, "<Attribute value2>" );
// Check Part attributes (~ lines)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_PartAttributes.size(), 2 );
std::map<std::string, CADSTAR_ATTRIBUTE_VALUE>& partAtts =
result.m_PartEntries[0].m_PartAttributes;
BOOST_CHECK_EQUAL( partAtts["<Parts Attribute name1>"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( partAtts["<Parts Attribute name1>"].m_Value, "<Attribute value1>" );
BOOST_CHECK_EQUAL( partAtts["<Parts Attribute name2>"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( partAtts["<Parts Attribute name2>"].m_Value, "<Attribute value2>" );
// Check Combined Sch/PCB attributes (@ lines)
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_SchAndPcbAttributes.size(), 2 );
std::map<std::string, CADSTAR_ATTRIBUTE_VALUE>schAndPcbAtts =
result.m_PartEntries[0].m_SchAndPcbAttributes;
BOOST_CHECK_EQUAL( schAndPcbAtts["<SCM/PCB Attribute name1>"].m_ReadOnly, false );
BOOST_CHECK_EQUAL( schAndPcbAtts["<SCM/PCB Attribute name1>"].m_Value, "<Attribute value1>" );
BOOST_CHECK_EQUAL( schAndPcbAtts["<SCM/PCB Attribute name2>"].m_ReadOnly, true );
BOOST_CHECK_EQUAL( schAndPcbAtts["<SCM/PCB Attribute name2>"].m_Value, "<Attribute value2>" );
// Check symbols
std::vector<CADSTAR_PART_SYMBOL_ENTRY> symbols = result.m_PartEntries[0].m_Symbols;
std::vector<CADSTAR_PART_SYMBOL_ENTRY> expectedSymbols =
{
{
"<SCM Symbol Refname1>",
"<SCM Alternate Refname>",
{
{ 1, CADSTAR_PIN_POSITION::TOP_RIGHT, CADSTAR_PIN_TYPE::TRISTATE_DRIVER,
2000 },
{ 2, CADSTAR_PIN_POSITION::TOP_LEFT, CADSTAR_PIN_TYPE::TRISTATE_INPUT,
std::nullopt },
{ 3, CADSTAR_PIN_POSITION::BOTTOM_LEFT, CADSTAR_PIN_TYPE::TRISTATE_BIDIR,
std::nullopt }
}
},
{
"<SCM Symbol Refname2>",
std::nullopt,
{
{ 4, CADSTAR_PIN_POSITION::BOTTOM_LEFT, CADSTAR_PIN_TYPE::UNCOMMITTED,
1000 },
{ 5, CADSTAR_PIN_POSITION::TOP_LEFT, CADSTAR_PIN_TYPE::INPUT,
std::nullopt },
{ 6, CADSTAR_PIN_POSITION::BOTTOM_RIGHT, CADSTAR_PIN_TYPE::OUTPUT_NOT_NORM_OR,
std::nullopt }
}
}
};
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_Symbols.size(), expectedSymbols.size() );
auto itA = symbols.begin();
auto itB = expectedSymbols.begin();
while( itA != symbols.end() || itB != expectedSymbols.end() )
{
BOOST_TEST_CONTEXT( "With symbol = " << itB->m_SymbolName
<< " Alternate = "
<< itB->m_SymbolAlternateName.value_or( "[nullopt]" ) )
{
BOOST_CHECK_EQUAL( itA->m_SymbolName, itB->m_SymbolName );
KI_CHECK_OPT_EQUAL( itA->m_SymbolAlternateName, itB->m_SymbolAlternateName );
BOOST_REQUIRE_EQUAL( itA->m_Pins.size(), itB->m_Pins.size() );
auto itPinsA = itA->m_Pins.begin();
auto itPinsB = itB->m_Pins.begin();
while( itPinsA != itA->m_Pins.end() || itPinsB != itB->m_Pins.end() )
{
BOOST_TEST_CONTEXT( "Pin Identifier = " << itPinsA->m_Identifier )
{
BOOST_CHECK_EQUAL( itPinsA->m_Identifier, itPinsB->m_Identifier );
BOOST_CHECK( itPinsA->m_Position == itPinsB->m_Position );
BOOST_CHECK( itPinsA->m_Type == itPinsB->m_Type );
KI_CHECK_OPT_EQUAL( itPinsA->m_Loading, itPinsB->m_Loading );
}
++itPinsA;
++itPinsB;
}
++itA;
++itB;
}
}
// Compare hidden pins
std::map<std::string,std::vector<CADSTAR_PART_PIN>> expectedHiddenPins =
{
{
"GND",
{
{ 7, CADSTAR_PIN_POSITION::TOP_RIGHT, CADSTAR_PIN_TYPE::GROUND, 2000 }
}
},
{
"VCC",
{
{ 8, CADSTAR_PIN_POSITION::TOP_RIGHT, CADSTAR_PIN_TYPE::POWER, 2000 },
{ 9, CADSTAR_PIN_POSITION::TOP_LEFT, CADSTAR_PIN_TYPE::UNCOMMITTED, std::nullopt },
{ 10, CADSTAR_PIN_POSITION::TOP_RIGHT, CADSTAR_PIN_TYPE::UNCOMMITTED, std::nullopt }
}
}
};
BOOST_REQUIRE_EQUAL( result.m_PartEntries[0].m_HiddenPins.size(), expectedHiddenPins.size() );
auto itEntryA = result.m_PartEntries[0].m_HiddenPins.begin();
auto itEntryB = expectedHiddenPins.begin();
while( itEntryA != result.m_PartEntries[0].m_HiddenPins.end()
|| itEntryB != expectedHiddenPins.end() )
{
BOOST_TEST_CONTEXT( "Check Hidden pins - Signal = " << itEntryB->first )
{
BOOST_CHECK_EQUAL( itEntryA->first, itEntryB->first );
BOOST_REQUIRE_EQUAL( itEntryA->second.size(), itEntryB->second.size() );
auto itPinsA = itEntryA->second.begin();
auto itPinsB = itEntryB->second.begin();
while( itPinsA != itEntryA->second.end() || itPinsB != itEntryB->second.end() )
{
BOOST_CHECK_EQUAL( itPinsA->m_Identifier, itPinsB->m_Identifier );
BOOST_CHECK( itPinsA->m_Position == itPinsB->m_Position );
BOOST_CHECK( itPinsA->m_Type == itPinsB->m_Type );
KI_CHECK_OPT_EQUAL( itPinsA->m_Loading, itPinsB->m_Loading );
++itPinsA;
++itPinsB;
}
}
++itEntryA;
++itEntryB;
}
}
BOOST_AUTO_TEST_SUITE_END()