kicad/thirdparty/sentry-native/external/libunwindstack-ndk/Elf.cpp

464 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <inttypes.h>
#include <string.h>
#include <sys/mman.h>
#include <memory>
#include <mutex>
#include <string>
#include <utility>
#include <android-base/stringprintf.h>
#include <unwindstack/Elf.h>
#include <unwindstack/ElfInterface.h>
#include <unwindstack/Log.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include <unwindstack/SharedString.h>
#include "ElfInterfaceArm.h"
#include "Symbols.h"
namespace unwindstack {
bool Elf::cache_enabled_;
std::unordered_map<std::string, std::unordered_map<uint64_t, std::shared_ptr<Elf>>>* Elf::cache_;
std::mutex* Elf::cache_lock_;
bool Elf::Init() {
load_bias_ = 0;
if (!memory_) {
return false;
}
interface_.reset(CreateInterfaceFromMemory(memory_.get()));
if (!interface_) {
return false;
}
valid_ = interface_->Init(&load_bias_);
if (valid_) {
interface_->InitHeaders();
#ifdef WITH_DEBUG_FRAME
InitGnuDebugdata();
#endif
} else {
interface_.reset(nullptr);
}
return valid_;
}
#ifdef WITH_DEBUG_FRAME
// It is expensive to initialize the .gnu_debugdata section. Provide a method
// to initialize this data separately.
void Elf::InitGnuDebugdata() {
if (!valid_ || interface_->gnu_debugdata_offset() == 0) {
return;
}
gnu_debugdata_memory_ = interface_->CreateGnuDebugdataMemory();
gnu_debugdata_interface_.reset(CreateInterfaceFromMemory(gnu_debugdata_memory_.get()));
ElfInterface* gnu = gnu_debugdata_interface_.get();
if (gnu == nullptr) {
return;
}
// Ignore the load_bias from the compressed section, the correct load bias
// is in the uncompressed data.
int64_t load_bias;
if (gnu->Init(&load_bias)) {
gnu->InitHeaders();
interface_->SetGnuDebugdataInterface(gnu);
} else {
// Free all of the memory associated with the gnu_debugdata section.
gnu_debugdata_memory_.reset(nullptr);
gnu_debugdata_interface_.reset(nullptr);
}
}
#endif
void Elf::Invalidate() {
interface_.reset(nullptr);
valid_ = false;
}
std::string Elf::GetSoname() {
std::lock_guard<std::mutex> guard(lock_);
if (!valid_) {
return "";
}
return interface_->GetSoname();
}
uint64_t Elf::GetRelPc(uint64_t pc, MapInfo* map_info) {
return pc - map_info->start() + load_bias_ + map_info->elf_offset();
}
bool Elf::GetFunctionName(uint64_t addr, SharedString* name, uint64_t* func_offset) {
std::lock_guard<std::mutex> guard(lock_);
return valid_ && (interface_->GetFunctionName(addr, name, func_offset) ||
(gnu_debugdata_interface_ &&
gnu_debugdata_interface_->GetFunctionName(addr, name, func_offset)));
}
bool Elf::GetGlobalVariableOffset(const std::string& name, uint64_t* memory_offset) {
if (!valid_) {
return false;
}
uint64_t vaddr;
if (!interface_->GetGlobalVariable(name, &vaddr) &&
(gnu_debugdata_interface_ == nullptr ||
!gnu_debugdata_interface_->GetGlobalVariable(name, &vaddr))) {
return false;
}
if (arch() == ARCH_ARM64) {
// Tagged pointer after Android R would lead top byte to have random values
// https://source.android.com/devices/tech/debug/tagged-pointers
vaddr &= (1ULL << 56) - 1;
}
// Check the .data section.
uint64_t vaddr_start = interface_->data_vaddr_start();
if (vaddr >= vaddr_start && vaddr < interface_->data_vaddr_end()) {
*memory_offset = vaddr - vaddr_start + interface_->data_offset();
return true;
}
// Check the .dynamic section.
vaddr_start = interface_->dynamic_vaddr_start();
if (vaddr >= vaddr_start && vaddr < interface_->dynamic_vaddr_end()) {
*memory_offset = vaddr - vaddr_start + interface_->dynamic_offset();
return true;
}
return false;
}
std::string Elf::GetBuildID() {
if (!valid_) {
return "";
}
return interface_->GetBuildID();
}
void Elf::GetLastError(ErrorData* data) {
if (valid_) {
*data = interface_->last_error();
} else {
data->code = ERROR_INVALID_ELF;
data->address = 0;
}
}
ErrorCode Elf::GetLastErrorCode() {
if (valid_) {
return interface_->LastErrorCode();
}
return ERROR_INVALID_ELF;
}
uint64_t Elf::GetLastErrorAddress() {
if (valid_) {
return interface_->LastErrorAddress();
}
return 0;
}
// The relative pc expectd by this function is relative to the start of the elf.
bool Elf::StepIfSignalHandler(uint64_t rel_pc, Regs* regs, Memory* process_memory) {
if (!valid_) {
return false;
}
// Convert the rel_pc to an elf_offset.
if (rel_pc < static_cast<uint64_t>(load_bias_)) {
return false;
}
return regs->StepIfSignalHandler(rel_pc - load_bias_, this, process_memory);
}
// The relative pc is always relative to the start of the map from which it comes.
bool Elf::Step(uint64_t rel_pc, Regs* regs, Memory* process_memory, bool* finished,
bool* is_signal_frame) {
if (!valid_) {
return false;
}
// Lock during the step which can update information in the object.
std::lock_guard<std::mutex> guard(lock_);
return interface_->Step(rel_pc, regs, process_memory, finished, is_signal_frame);
}
bool Elf::IsValidElf(Memory* memory) {
if (memory == nullptr) {
return false;
}
// Verify that this is a valid elf file.
uint8_t e_ident[SELFMAG + 1];
if (!memory->ReadFully(0, e_ident, SELFMAG)) {
return false;
}
if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
return false;
}
return true;
}
bool Elf::GetInfo(Memory* memory, uint64_t* size) {
if (!IsValidElf(memory)) {
return false;
}
*size = 0;
uint8_t class_type;
if (!memory->ReadFully(EI_CLASS, &class_type, 1)) {
return false;
}
// Get the maximum size of the elf data from the header.
if (class_type == ELFCLASS32) {
ElfInterface32::GetMaxSize(memory, size);
} else if (class_type == ELFCLASS64) {
ElfInterface64::GetMaxSize(memory, size);
} else {
return false;
}
return true;
}
bool Elf::IsValidPc(uint64_t pc) {
if (!valid_ || (load_bias_ > 0 && pc < static_cast<uint64_t>(load_bias_))) {
return false;
}
if (interface_->IsValidPc(pc)) {
return true;
}
if (gnu_debugdata_interface_ != nullptr && gnu_debugdata_interface_->IsValidPc(pc)) {
return true;
}
return false;
}
bool Elf::GetTextRange(uint64_t* addr, uint64_t* size) {
if (!valid_) {
return false;
}
if (interface_->GetTextRange(addr, size)) {
*addr += load_bias_;
return true;
}
if (gnu_debugdata_interface_ != nullptr && gnu_debugdata_interface_->GetTextRange(addr, size)) {
*addr += load_bias_;
return true;
}
return false;
}
ElfInterface* Elf::CreateInterfaceFromMemory(Memory* memory) {
if (!IsValidElf(memory)) {
return nullptr;
}
std::unique_ptr<ElfInterface> interface;
if (!memory->ReadFully(EI_CLASS, &class_type_, 1)) {
return nullptr;
}
if (class_type_ == ELFCLASS32) {
Elf32_Half e_machine;
if (!memory->ReadFully(EI_NIDENT + sizeof(Elf32_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
machine_type_ = e_machine;
if (e_machine == EM_ARM) {
arch_ = ARCH_ARM;
interface.reset(new ElfInterfaceArm(memory));
} else if (e_machine == EM_386) {
arch_ = ARCH_X86;
interface.reset(new ElfInterface32(memory));
#ifdef SENTRY_REMOVED
} else if (e_machine == EM_MIPS) {
arch_ = ARCH_MIPS;
interface.reset(new ElfInterface32(memory));
#endif // SENTRY_REMOVED
} else {
// Unsupported.
return nullptr;
}
} else if (class_type_ == ELFCLASS64) {
Elf64_Half e_machine;
if (!memory->ReadFully(EI_NIDENT + sizeof(Elf64_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
machine_type_ = e_machine;
if (e_machine == EM_AARCH64) {
arch_ = ARCH_ARM64;
} else if (e_machine == EM_X86_64) {
arch_ = ARCH_X86_64;
#ifdef SENTRY_REMOVED
} else if (e_machine == EM_MIPS) {
arch_ = ARCH_MIPS64;
} else if (e_machine == EM_RISCV) {
arch_ = ARCH_RISCV64;
#endif // SENTRY_REMOVED
} else {
// Unsupported.
return nullptr;
}
interface.reset(new ElfInterface64(memory));
}
return interface.release();
}
int64_t Elf::GetLoadBias(Memory* memory) {
if (!IsValidElf(memory)) {
return 0;
}
uint8_t class_type;
if (!memory->Read(EI_CLASS, &class_type, 1)) {
return 0;
}
if (class_type == ELFCLASS32) {
return ElfInterface::GetLoadBias<Elf32_Ehdr, Elf32_Phdr>(memory);
} else if (class_type == ELFCLASS64) {
return ElfInterface::GetLoadBias<Elf64_Ehdr, Elf64_Phdr>(memory);
}
return 0;
}
void Elf::SetCachingEnabled(bool enable) {
if (!cache_enabled_ && enable) {
cache_enabled_ = true;
cache_ =
new std::unordered_map<std::string, std::unordered_map<uint64_t, std::shared_ptr<Elf>>>;
cache_lock_ = new std::mutex;
} else if (cache_enabled_ && !enable) {
cache_enabled_ = false;
delete cache_;
delete cache_lock_;
}
}
void Elf::CacheLock() {
cache_lock_->lock();
}
void Elf::CacheUnlock() {
cache_lock_->unlock();
}
void Elf::CacheAdd(MapInfo* info) {
if (!info->elf()->valid()) {
return;
}
(*cache_)[std::string(info->name())].emplace(info->elf_start_offset(), info->elf());
}
bool Elf::CacheGet(MapInfo* info) {
auto name_entry = cache_->find(std::string(info->name()));
if (name_entry == cache_->end()) {
return false;
}
// First look to see if there is a zero offset entry, this indicates
// the whole elf is the file.
auto& offset_cache = name_entry->second;
uint64_t elf_start_offset = 0;
auto entry = offset_cache.find(elf_start_offset);
if (entry == offset_cache.end()) {
// Try and find using the current offset.
elf_start_offset = info->offset();
entry = offset_cache.find(elf_start_offset);
if (entry == offset_cache.end()) {
// If this is an execute map, then see if the previous read-only
// map is the start of the elf.
if (!(info->flags() & PROT_EXEC)) {
return false;
}
auto prev_map = info->GetPrevRealMap();
if (prev_map == nullptr || info->offset() <= prev_map->offset() ||
(prev_map->flags() != PROT_READ)) {
return false;
}
elf_start_offset = prev_map->offset();
entry = offset_cache.find(elf_start_offset);
if (entry == offset_cache.end()) {
return false;
}
}
}
info->set_elf(entry->second);
info->set_elf_start_offset(elf_start_offset);
info->set_elf_offset(info->offset() - elf_start_offset);
return true;
}
std::string Elf::GetBuildID(Memory* memory) {
if (!IsValidElf(memory)) {
return "";
}
uint8_t class_type;
if (!memory->Read(EI_CLASS, &class_type, 1)) {
return "";
}
if (class_type == ELFCLASS32) {
return ElfInterface::ReadBuildIDFromMemory<Elf32_Ehdr, Elf32_Shdr, Elf32_Nhdr>(memory);
} else if (class_type == ELFCLASS64) {
return ElfInterface::ReadBuildIDFromMemory<Elf64_Ehdr, Elf64_Shdr, Elf64_Nhdr>(memory);
}
return "";
}
std::string Elf::GetPrintableBuildID(std::string& build_id) {
if (build_id.empty()) {
return "";
}
std::string printable_build_id;
for (const char& c : build_id) {
// Use %hhx to avoid sign extension on abis that have signed chars.
printable_build_id += android::base::StringPrintf("%02hhx", c);
}
return printable_build_id;
}
std::string Elf::GetPrintableBuildID() {
std::string build_id = GetBuildID();
return Elf::GetPrintableBuildID(build_id);
}
} // namespace unwindstack