kicad/pcbnew/microwave/microwave_inductor.cpp

464 lines
17 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <base_units.h>
#include <board_commit.h>
#include <board_design_settings.h>
#include <pad.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <confirm.h>
#include <dialogs/dialog_text_entry.h>
#include <geometry/geometry_utils.h>
#include <math/util.h> // for KiROUND
#include <microwave/microwave_tool.h>
#include <tool/tool_manager.h>
#include <tools/pcb_actions.h>
#include <pcb_edit_frame.h>
#include <validators.h>
/**
* Function gen_arc
* generates an arc using arc approximation by lines:
* Center aCenter
* Angle "angle" (in 0.1 deg)
* @param aBuffer = a buffer to store points.
* @param aStartPoint = starting point of arc.
* @param aCenter = arc centre.
* @param a_ArcAngle = arc length in 0.1 degrees.
*/
2022-01-05 02:23:11 +00:00
static void gen_arc( std::vector<VECTOR2I>& aBuffer, const VECTOR2I& aStartPoint,
2022-01-14 15:34:41 +00:00
const VECTOR2I& aCenter, const EDA_ANGLE& a_ArcAngle )
{
auto first_point = aStartPoint - aCenter;
auto radius = KiROUND( EuclideanNorm( first_point ) );
2022-01-14 15:34:41 +00:00
int seg_count = GetArcToSegmentCount( radius, ARC_HIGH_DEF, a_ArcAngle );
2022-01-14 15:34:41 +00:00
double increment_angle = a_ArcAngle.AsRadians() / seg_count;
// Creates nb_seg point to approximate arc by segments:
for( int ii = 1; ii <= seg_count; ii++ )
{
double rot_angle = increment_angle * ii;
double fcos = cos( rot_angle );
double fsin = sin( rot_angle );
2022-01-05 02:23:11 +00:00
VECTOR2I currpt;
// Rotate current point:
currpt.x = KiROUND( ( first_point.x * fcos + first_point.y * fsin ) );
currpt.y = KiROUND( ( first_point.y * fcos - first_point.x * fsin ) );
auto corner = aCenter + currpt;
aBuffer.push_back( corner );
}
}
enum class INDUCTOR_S_SHAPE_RESULT
{
OK, /// S-shape constructed
TOO_LONG, /// Requested length too long
TOO_SHORT, /// Requested length too short
NO_REPR, /// Requested length can't be represented
};
/**
* Function BuildCornersList_S_Shape
* Create a path like a S-shaped coil
* @param aBuffer = a buffer where to store points (ends of segments)
* @param aStartPoint = starting point of the path
* @param aEndPoint = ending point of the path
* @param aLength = full length of the path
* @param aWidth = segment width
*/
2022-01-05 02:23:11 +00:00
static INDUCTOR_S_SHAPE_RESULT BuildCornersList_S_Shape( std::vector<VECTOR2I>& aBuffer,
const VECTOR2I& aStartPoint,
const VECTOR2I& aEndPoint, int aLength,
int aWidth )
{
/* We must determine:
* segm_count = number of segments perpendicular to the direction
* segm_len = length of a strand
* radius = radius of rounded parts of the coil
* stubs_len = length of the 2 stubs( segments parallel to the direction)
* connecting the start point to the start point of the S shape
* and the ending point to the end point of the S shape
* The equations are (assuming the area size of the entire shape is Size:
* Size.x = 2 * radius + segm_len
* Size.y = (segm_count + 2 ) * 2 * radius + 2 * stubs_len
* aInductorPattern.m_length = 2 * delta // connections to the coil
* + (segm_count-2) * segm_len // length of the strands except 1st and last
* + (segm_count) * (PI * radius) // length of rounded
* segm_len + / 2 - radius * 2) // length of 1st and last bit
*
* The constraints are:
* segm_count >= 2
* radius < m_Size.x
* Size.y = (radius * 4) + (2 * stubs_len)
* segm_len > radius * 2
*
* The calculation is conducted in the following way:
* first:
* segm_count = 2
* radius = 4 * Size.x (arbitrarily fixed value)
* Then:
* Increasing the number of segments to the desired length
* (radius decreases if necessary)
*/
wxPoint size;
// This scale factor adjusts the arc length to handle
// the arc to segment approximation.
// because we use SEGM_COUNT_PER_360DEG segment to approximate a circle,
// the trace len must be corrected when calculated using arcs
// this factor adjust calculations and must be changed if SEGM_COUNT_PER_360DEG is modified
// because trace using segment is shorter the corresponding arc
// ADJUST_SIZE is the ratio between tline len and the arc len for an arc
// of 360/ADJUST_SIZE angle
#define ADJUST_SIZE 0.988
2022-01-14 15:34:41 +00:00
auto pt = aEndPoint - aStartPoint;
EDA_ANGLE angle( pt );
int min_len = KiROUND( EuclideanNorm( pt ) );
int segm_len = 0; // length of segments
int full_len; // full len of shape (sum of length of all segments + arcs)
2022-01-14 15:34:41 +00:00
angle = -angle;
/* Note: calculations are made for a vertical coil (more easy calculations)
* and after points are rotated to their actual position
* So the main direction is the Y axis.
* the 2 stubs are on the Y axis
* the others segments are parallel to the X axis.
*/
// Calculate the size of area (for a vertical shape)
size.x = min_len / 2;
size.y = min_len;
// Choose a reasonable starting value for the radius of the arcs.
int radius = std::min( aWidth * 5, size.x / 4 );
int segm_count; // number of full len segments
// the half size segments (first and last segment) are not counted here
int stubs_len = 0; // length of first or last segment (half size of others segments)
for( segm_count = 0; ; segm_count++ )
{
stubs_len = ( size.y - ( radius * 2 * (segm_count + 2 ) ) ) / 2;
if( stubs_len < size.y / 10 ) // Reduce radius.
{
stubs_len = size.y / 10;
radius = ( size.y - (2 * stubs_len) ) / ( 2 * (segm_count + 2) );
if( radius < aWidth ) // Radius too small.
{
// Unable to create line: Requested length value is too large for room
return INDUCTOR_S_SHAPE_RESULT::TOO_LONG;
}
}
segm_len = size.x - ( radius * 2 );
full_len = 2 * stubs_len; // Length of coil connections.
full_len += segm_len * segm_count; // Length of full length segments.
full_len += KiROUND( ( segm_count + 2 ) * M_PI * ADJUST_SIZE * radius ); // Ard arcs len
full_len += segm_len - (2 * radius); // Length of first and last segments
// (half size segments len = segm_len/2 - radius).
if( full_len >= aLength )
break;
}
// Adjust len by adjusting segm_len:
int delta_size = full_len - aLength;
// reduce len of the segm_count segments + 2 half size segments (= 1 full size segment)
segm_len -= delta_size / (segm_count + 1);
// at this point, it could still be that the requested length is too
// short (because 4 quarter-circles are too long)
// to fix this is a relatively complex numerical problem which probably
// needs a refactor in this area. For now, just reject these cases:
{
const int min_total_length = 2 * stubs_len + 2 * M_PI * ADJUST_SIZE * radius;
if( min_total_length > aLength )
{
// we can't express this inductor with 90-deg arcs of this radius
return INDUCTOR_S_SHAPE_RESULT::TOO_SHORT;
}
}
if( segm_len - 2 * radius < 0 )
{
// we can't represent this exact requested length with this number
// of segments (using the current algorithm). This stems from when
// you add a segment, you also add another half-circle, so there's a
// little bit of "dead" space.
// It's a bit ugly to just reject the input, as it might be possible
// to tweak the radius, but, again, that probably needs a refactor.
return INDUCTOR_S_SHAPE_RESULT::NO_REPR;
}
// Generate first line (the first stub) and first arc (90 deg arc)
pt = aStartPoint;
aBuffer.push_back( pt );
pt.y += stubs_len;
aBuffer.push_back( pt );
auto centre = pt;
centre.x -= radius;
2022-01-14 15:34:41 +00:00
gen_arc( aBuffer, pt, centre, -ANGLE_90 );
pt = aBuffer.back();
int half_size_seg_len = segm_len / 2 - radius;
if( half_size_seg_len )
{
pt.x -= half_size_seg_len;
aBuffer.push_back( pt );
}
// Create shape.
int ii;
int sign = 1;
segm_count += 1; // increase segm_count to create the last half_size segment
for( ii = 0; ii < segm_count; ii++ )
{
if( ii & 1 ) // odd order arcs are greater than 0
sign = -1;
else
sign = 1;
centre = pt;
centre.y += radius;
2022-01-14 15:34:41 +00:00
gen_arc( aBuffer, pt, centre, ANGLE_180 * sign );
pt = aBuffer.back();
pt.x += segm_len * sign;
aBuffer.push_back( pt );
}
// The last point is false:
// it is the end of a full size segment, but must be
// the end of the second half_size segment. Change it.
sign *= -1;
aBuffer.back().x = aStartPoint.x + radius * sign;
// create last arc
pt = aBuffer.back();
centre = pt;
centre.y += radius;
2022-01-14 15:34:41 +00:00
gen_arc( aBuffer, pt, centre, ANGLE_90 * sign );
// Rotate point
2022-01-14 15:34:41 +00:00
angle += ANGLE_90;
for( unsigned jj = 0; jj < aBuffer.size(); jj++ )
2022-01-05 02:23:11 +00:00
RotatePoint( aBuffer[jj], aStartPoint, angle );
// push last point (end point)
aBuffer.push_back( aEndPoint );
return INDUCTOR_S_SHAPE_RESULT::OK;
}
void MICROWAVE_TOOL::createInductorBetween( const VECTOR2I& aStart, const VECTOR2I& aEnd )
{
PCB_EDIT_FRAME& editFrame = *getEditFrame<PCB_EDIT_FRAME>();
MICROWAVE_INDUCTOR_PATTERN pattern;
pattern.m_Width = board()->GetDesignSettings().GetCurrentTrackWidth();
pattern.m_Start = { aStart.x, aStart.y };
pattern.m_End = { aEnd.x, aEnd.y };
wxString errorMessage;
2020-11-13 15:15:52 +00:00
auto inductorFP = std::unique_ptr<FOOTPRINT>( createMicrowaveInductor( pattern, errorMessage ) );
// on any error, report if we can
2020-11-13 00:43:45 +00:00
if ( !inductorFP || !errorMessage.IsEmpty() )
{
if ( !errorMessage.IsEmpty() )
editFrame.ShowInfoBarError( errorMessage );
}
else
{
// at this point, we can save the footprint
m_toolMgr->RunAction<EDA_ITEM*>( PCB_ACTIONS::selectItem, inductorFP.get() );
BOARD_COMMIT commit( this );
2020-11-13 00:43:45 +00:00
commit.Add( inductorFP.release() );
commit.Push( _("Add microwave inductor" ) );
}
}
2020-11-13 15:15:52 +00:00
FOOTPRINT* MICROWAVE_TOOL::createMicrowaveInductor( MICROWAVE_INDUCTOR_PATTERN& aInductorPattern,
wxString& aErrorMessage )
{
/* Build a microwave inductor footprint.
* - Length Mself.lng
* - Extremities Mself.m_Start and Mself.m_End
* We must determine:
* Mself.nbrin = number of segments perpendicular to the direction
* (The coil nbrin will demicercles + 1 + 2 1 / 4 circle)
* Mself.lbrin = length of a strand
* Mself.radius = radius of rounded parts of the coil
* Mself.delta = segments extremities connection between him and the coil even
*
* The equations are
* Mself.m_Size.x = 2 * Mself.radius + Mself.lbrin
* Mself.m_Size.y * Mself.delta = 2 + 2 * Mself.nbrin * Mself.radius
* Mself.lng = 2 * Mself.delta / / connections to the coil
+ (Mself.nbrin-2) * Mself.lbrin / / length of the strands except 1st and last
+ (Mself.nbrin 1) * (PI * Mself.radius) / / length of rounded
* Mself.lbrin + / 2 - Melf.radius * 2) / / length of 1st and last bit
*
* The constraints are:
* Nbrin >= 2
* Mself.radius < Mself.m_Size.x
* Mself.m_Size.y = Mself.radius * 4 + 2 * Mself.raccord
* Mself.lbrin> Mself.radius * 2
*
* The calculation is conducted in the following way:
* Initially:
* Nbrin = 2
* Radius = 4 * m_Size.x (arbitrarily fixed value)
* Then:
* Increasing the number of segments to the desired length
* (Radius decreases if necessary)
*/
2022-09-19 09:25:20 +00:00
PAD* pad;
PCB_EDIT_FRAME* editFrame = getEditFrame<PCB_EDIT_FRAME>();
VECTOR2I pt = aInductorPattern.m_End - aInductorPattern.m_Start;
2022-09-19 09:25:20 +00:00
int min_len = KiROUND( EuclideanNorm( pt ) );
2020-11-16 00:04:55 +00:00
aInductorPattern.m_Length = min_len;
// Enter the desired length.
2022-09-19 09:25:20 +00:00
wxString msg = editFrame->StringFromValue( aInductorPattern.m_Length );
WX_TEXT_ENTRY_DIALOG dlg( editFrame, _( "Length of Trace:" ), wxEmptyString, msg );
if( dlg.ShowQuasiModal() != wxID_OK )
return nullptr; // canceled by user
2022-09-19 09:25:20 +00:00
aInductorPattern.m_Length = editFrame->ValueFromString( dlg.GetValue() );
// Control values (ii = minimum length)
2020-11-16 00:04:55 +00:00
if( aInductorPattern.m_Length < min_len )
{
aErrorMessage = _( "Requested length < minimum length" );
return nullptr;
}
// Calculate the elements.
2022-01-05 02:23:11 +00:00
std::vector<VECTOR2I> buffer;
const INDUCTOR_S_SHAPE_RESULT res = BuildCornersList_S_Shape( buffer, aInductorPattern.m_Start,
aInductorPattern.m_End,
aInductorPattern.m_Length,
aInductorPattern.m_Width );
switch( res )
{
case INDUCTOR_S_SHAPE_RESULT::TOO_LONG:
aErrorMessage = _( "Requested length too large" );
return nullptr;
case INDUCTOR_S_SHAPE_RESULT::TOO_SHORT:
aErrorMessage = _( "Requested length too small" );
return nullptr;
case INDUCTOR_S_SHAPE_RESULT::NO_REPR:
aErrorMessage = _( "Requested length can't be represented" );
return nullptr;
case INDUCTOR_S_SHAPE_RESULT::OK:
break;
}
// Generate footprint. the value is also used as footprint name.
2022-02-05 13:25:43 +00:00
msg = wxT( "L" );
2022-09-19 09:25:20 +00:00
WX_TEXT_ENTRY_DIALOG cmpdlg( editFrame, _( "Component Value:" ), wxEmptyString, msg );
2020-11-10 21:20:03 +00:00
cmpdlg.SetTextValidator( FOOTPRINT_NAME_VALIDATOR( &msg ) );
if( ( cmpdlg.ShowQuasiModal() != wxID_OK ) || msg.IsEmpty() )
return nullptr; // Aborted by user
FOOTPRINT* footprint = editFrame->CreateNewFootprint( msg, wxEmptyString, true );
2020-11-08 21:29:04 +00:00
footprint->SetFPID( LIB_ID( wxEmptyString, wxT( "mw_inductor" ) ) );
footprint->SetAttributes( FP_EXCLUDE_FROM_POS_FILES | FP_EXCLUDE_FROM_BOM );
2020-11-08 21:29:04 +00:00
footprint->ClearFlags();
footprint->SetPosition( aInductorPattern.m_End );
// Generate segments
for( unsigned jj = 1; jj < buffer.size(); jj++ )
{
PCB_SHAPE* seg = new PCB_SHAPE( footprint, SHAPE_T::SEGMENT );
seg->SetStart( buffer[jj - 1] );
seg->SetEnd( buffer[jj] );
seg->SetStroke( STROKE_PARAMS( aInductorPattern.m_Width, PLOT_DASH_TYPE::SOLID ) );
2020-11-08 21:29:04 +00:00
seg->SetLayer( footprint->GetLayer() );
footprint->Add( seg );
}
// Place a pad on each end of coil.
2020-11-12 22:30:02 +00:00
pad = new PAD( footprint );
2020-11-08 21:29:04 +00:00
footprint->Add( pad );
2022-02-05 13:25:43 +00:00
pad->SetNumber( wxT( "1" ) );
pad->SetPosition( aInductorPattern.m_End );
2022-01-05 02:23:11 +00:00
pad->SetSize( VECTOR2I( aInductorPattern.m_Width, aInductorPattern.m_Width ) );
2020-11-08 21:29:04 +00:00
pad->SetLayerSet( LSET( footprint->GetLayer() ) );
pad->SetAttribute( PAD_ATTRIB::SMD );
2021-05-01 12:22:35 +00:00
pad->SetShape( PAD_SHAPE::CIRCLE );
2020-11-12 22:30:02 +00:00
PAD* newpad = new PAD( *pad );
const_cast<KIID&>( newpad->m_Uuid ) = KIID();
2020-11-08 21:29:04 +00:00
footprint->Add( newpad );
pad = newpad;
2022-02-05 13:25:43 +00:00
pad->SetNumber( wxT( "2" ) );
pad->SetPosition( aInductorPattern.m_Start );
// Modify text positions.
2022-01-05 02:23:11 +00:00
VECTOR2I refPos( ( aInductorPattern.m_Start.x + aInductorPattern.m_End.x ) / 2,
( aInductorPattern.m_Start.y + aInductorPattern.m_End.y ) / 2 );
2022-01-05 02:23:11 +00:00
VECTOR2I valPos = refPos;
2020-11-08 21:29:04 +00:00
refPos.y -= footprint->Reference().GetTextSize().y;
footprint->Reference().SetPosition( refPos );
valPos.y += footprint->Value().GetTextSize().y;
footprint->Value().SetPosition( valPos );
2020-11-08 21:29:04 +00:00
return footprint;
}