kicad/libs/kimath/include/math/vector3.h

209 lines
4.9 KiB
C
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2020-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef VECTOR3_H_
#define VECTOR3_H_
#include <limits>
2022-07-16 17:27:52 +00:00
#include <wx/debug.h>
/**
* Traits class for VECTOR2.
*/
template <class T>
struct VECTOR3_TRAITS
{
///< extended range/precision types used by operations involving multiple
///< multiplications to prevent overflow.
typedef T extended_type;
};
template <>
struct VECTOR3_TRAITS<int>
{
typedef int64_t extended_type;
};
/**
* Define a general 3D-vector.
*
* This class uses templates to be universal. Several operators are provided to help
* easy implementing of linear algebra equations.
*
*/
template <class T = int>
class VECTOR3
{
public:
typedef typename VECTOR3_TRAITS<T>::extended_type extended_type;
typedef T coord_type;
static constexpr extended_type ECOORD_MAX = std::numeric_limits<extended_type>::max();
static constexpr extended_type ECOORD_MIN = std::numeric_limits<extended_type>::min();
T x{};
T y{};
T z{};
/// Construct a 3D-vector with x, y, z = 0
VECTOR3() = default;
/// Construct a vector with given components x, y, z
VECTOR3( T x, T y, T z );
/// Initializes a vector from another specialization. Beware of rounding
/// issues.
template <typename CastingType>
VECTOR3( const VECTOR3<CastingType>& aVec );
/**
* Compute cross product of self with \a aVector
*/
VECTOR3<T> Cross( const VECTOR3<T>& aVector ) const;
/**
* Compute the dot product of self with \a aVector
*/
VECTOR3<T>::extended_type Dot( const VECTOR3<T>& aVector ) const;
/**
* Compute the Euclidean norm of the vector, which is defined as sqrt(x ** 2 + y ** 2).
*
* It is used to calculate the length of the vector.
*
* @return Scalar, the euclidean norm
*/
T EuclideanNorm() const;
/**
* Compute the normalized vector.
*/
VECTOR3<T> Normalize();
///< Equality operator
bool operator==( const VECTOR3<T>& aVector ) const;
///< Not equality operator
bool operator!=( const VECTOR3<T>& aVector ) const;
VECTOR3<T>& operator*=( T val );
VECTOR3<T>& operator/=( T val );
};
template <class T>
VECTOR3<T>::VECTOR3( T aX, T aY, T aZ ) :
x( aX ), y( aY ), z( aZ )
{
}
template <class T>
template <typename CastingType>
VECTOR3<T>::VECTOR3( const VECTOR3<CastingType>& aVec ) :
x( aVec.x ), y( aVec.y ), z( aVec.z )
{
}
template <class T>
VECTOR3<T> VECTOR3<T>::Cross( const VECTOR3<T>& aVector ) const
{
return VECTOR3<T>( ( y * aVector.z ) - ( z * aVector.y ),
( z * aVector.x ) - ( x * aVector.z ),
( x * aVector.y ) - ( y * aVector.x )
);
}
template <class T>
typename VECTOR3<T>::extended_type VECTOR3<T>::Dot( const VECTOR3<T>& aVector ) const
{
return extended_type{x} * extended_type{aVector.x}
+ extended_type{y} * extended_type{aVector.y}
+ extended_type{z} * extended_type{aVector.z};
}
template <class T>
T VECTOR3<T>::EuclideanNorm() const
{
return sqrt( (extended_type) x * x + (extended_type) y * y + (extended_type) z * z );
}
template <class T>
VECTOR3<T> VECTOR3<T>::Normalize()
{
T norm = EuclideanNorm();
2022-07-16 17:27:52 +00:00
wxCHECK_MSG( norm > T( 0 ), *this, wxT( "Invalid element length 0" ) );
x /= norm;
y /= norm;
z /= norm;
return *this;
}
template <class T>
bool VECTOR3<T>::operator==( VECTOR3<T> const& aVector ) const
{
return ( aVector.x == x ) && ( aVector.y == y ) && ( aVector.z == z );
}
template <class T>
bool VECTOR3<T>::operator!=( VECTOR3<T> const& aVector ) const
{
return ( aVector.x != x ) || ( aVector.y != y ) || ( aVector.z != z );
}
template <class T>
VECTOR3<T>& VECTOR3<T>::operator*=( T aScalar )
{
x = x * aScalar;
y = y * aScalar;
z = z * aScalar;
return *this;
}
template <class T>
VECTOR3<T>& VECTOR3<T>::operator/=( T aScalar )
{
x = x / aScalar;
y = y / aScalar;
z = z / aScalar;
return *this;
}
/* Default specializations */
typedef VECTOR3<double> VECTOR3D;
typedef VECTOR3<int> VECTOR3I;
typedef VECTOR3<unsigned int> VECTOR3U;
#endif // VECTOR3_H_