kicad/include/ttl/ttl_util.h

144 lines
4.7 KiB
C
Raw Normal View History

2013-11-25 15:50:03 +00:00
/*
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
* Applied Mathematics, Norway.
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of TTL.
*
* TTL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* TTL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
* License along with TTL. If not, see
* <http://www.gnu.org/licenses/>.
*
* In accordance with Section 7(b) of the GNU Affero General Public
* License, a covered work must retain the producer line in every data
* file that is created or manipulated using TTL.
*
* Other Usage
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial activities involving the TTL library without
* disclosing the source code of your own applications.
*
* This file may be used in accordance with the terms contained in a
* written agreement between you and SINTEF ICT.
*/
#ifndef _TTL_UTIL_H_
#define _TTL_UTIL_H_
#include <vector>
#include <algorithm>
#ifdef _MSC_VER
# if _MSC_VER < 1300
# include <minmax.h>
# endif
#endif
//using namespace std;
/** \brief Utilities
2013-12-06 14:01:36 +00:00
*
2013-11-25 15:50:03 +00:00
* This name space contains utility functions for TTL.\n
*
* Point and vector algebra such as scalar product and cross product
* between vectors are implemented here.
* These functions are required by functions in the \ref ttl namespace,
* where they are assumed to be present in the \ref hed::TTLtraits "TTLtraits" class.
* Thus, the user can call these functions from the traits class.
* For efficiency reasons, the user may consider implementing these
* functions in the the API directly on the actual data structure;
* see \ref api.
*
* \note
* - Cross product between vectors in the xy-plane delivers a scalar,
* which is the z-component of the actual cross product
* (the x and y components are both zero).
*
2013-12-06 14:01:36 +00:00
* \see
2013-11-25 15:50:03 +00:00
* ttl and \ref api
*
2013-12-06 14:01:36 +00:00
* \author
2013-11-25 15:50:03 +00:00
* <EFBFBD>yvind Hjelle, oyvindhj@ifi.uio.no
*/
namespace ttl_util {
//------------------------------------------------------------------------------------------------
// ------------------------------ Computational Geometry Group ----------------------------------
//------------------------------------------------------------------------------------------------
/** @name Computational geometry */
//@{
//------------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors.
*
* \par Returns:
* \code
* dx1*dx2 + dy1*dy2
* \endcode
*/
template <class real_type>
real_type scalarProduct2d(real_type dx1, real_type dy1, real_type dx2, real_type dy2) {
return dx1*dx2 + dy1*dy2;
}
//------------------------------------------------------------------------------------------------
/** Cross product between two 2D vectors. (The z-component of the actual cross product.)
*
* \par Returns:
* \code
* dx1*dy2 - dy1*dx2
* \endcode
*/
template <class real_type>
real_type crossProduct2d(real_type dx1, real_type dy1, real_type dx2, real_type dy2) {
return dx1*dy2 - dy1*dx2;
}
2013-12-06 14:01:36 +00:00
2013-11-25 15:50:03 +00:00
//------------------------------------------------------------------------------------------------
/** Returns a positive value if the 2D nodes/points \e pa, \e pb, and
* \e pc occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*
* \note
* - This is a finite arithmetic fast version. It can be made more robust using
* exact arithmetic schemes by Jonathan Richard Shewchuk. See
* http://www-2.cs.cmu.edu/~quake/robust.html
*/
template <class real_type>
real_type orient2dfast(real_type pa[2], real_type pb[2], real_type pc[2]) {
real_type acx = pa[0] - pc[0];
real_type bcx = pb[0] - pc[0];
real_type acy = pa[1] - pc[1];
real_type bcy = pb[1] - pc[1];
return acx * bcy - acy * bcx;
}
}; // End of ttl_util namespace scope
#endif // _TTL_UTIL_H_