Thermal shapes modification for round and oblong pads.

This is a workaround for a bug (i believe) of kbool.
This commit is contained in:
charras 2008-11-09 15:01:35 +00:00
parent 1eb6220ae7
commit 134c07f94b
3 changed files with 182 additions and 118 deletions

View File

@ -5,6 +5,18 @@ Started 2007-June-11
Please add newer entries at the top, list the date and your name with
email address.
2008-Nov-8 UPDATE Jean-Pierre Charras <jean-pierre.charras@inpg.fr>
================================================================================
++pcbnew
Thermal shapes modification for round and oblong pads.
This is a workaround for a bug (i believe) of kbool.
New thermal shapes have NO angle < 90 degrees between 2 adjacent segments.
For shapes that have angle < 90 degrees between 2 adjacent segments,
under certains circumstances kbool drops some holes and creates a bad filled area.
(see zones_convert_brd_items_to_polygons.cpp)
2008-Nov-8 UPDATE Dick Hollenbeck <dick@softplc.com>
================================================================================
+gerview

View File

@ -1,3 +1,13 @@
/*******************************************/
/* zones_convert_brd_items_to_polygons.cpp */
/*******************************************/
/* Functions to convert some board items to polygons
(pads, tracks ..)
This is used to calculate filled areas in copper zones.
Filled areas are the full zone area sub all polygons calculated from these items and the clearance area
*/
using namespace std;
#include <math.h>
@ -40,6 +50,7 @@ double s_Correction; /* mult coeff used to enlarge rounded and oval pads (and
* because the segment approximation for arcs and circles
* create a smaller gap than a true circle
*/
/** function AddClearanceAreasPolygonsToPolysList
* Add non copper areas polygons (pads and tracks with clearence)
* to a filled copper area
@ -109,6 +120,7 @@ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb )
EDA_Rect item_boundingbox;
EDA_Rect zone_boundingbox = GetBoundingBox();
zone_boundingbox.Inflate( m_ZoneClearance, clearance );
/*
* First : Add pads
*/
@ -353,6 +365,24 @@ void AddPadWithClearancePolygon( Bool_Engine* aBooleng,
* each corner of a polygon if calculated for a pad at position 0, 0, orient 0,
* and then moved and rotated acroding to the pad position and orientation
*/
/* WARNING:
* When Kbool calculates the filled areas :
* i.e when substarcting holes (thermal shapes) to the full zone area
* under certains circumstances kboll drop some holes.
* These circumstances are:
* some identical holes (same thermal shape and size) are *exactly* on the same vertical line
* And
* nothing else between holes
* And
* angles less than 90 deg between 2 consecutive lines in hole outline
* And a hole above the identical holes
*
* In fact, it is easy to find these conditions in pad arrays.
* So to avoid this, the workaround is do not use holes outlines that include
* angles less than 90 deg between 2 consecutive lines
* this is made in round and oblong thermal reliefs
*/
void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
D_PAD& aPad,
int aThermalGap,
@ -388,44 +418,61 @@ void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
*/
// Build the hole pattern, for the hole in the X >0, Y > 0 plane:
std::vector <int> corners_buffer;
// The pattern roughtly is a 90 deg arc pie
std::vector <wxPoint> corners_buffer;
// Crosspoint of thermal spoke sides, the first point of polygon buffer
corners_buffer.push_back( wxPoint( copper_tickness.x / 2, copper_tickness.y / 2 ) );
// Add an intermediate point on spoke sides, to allow a > 90 deg angle between side and first seg of arc approx
corner.x = copper_tickness.x / 2;
int y = dx + aThermalGap - (aThermalGap / 3);
corner.y = (int) sqrt( ( ( (double) y * y ) - (double) corner.x * corner.x ) );
corners_buffer.push_back( corner );
// calculate the starting point of the outter arc
dx += aThermalGap; // The radius of the outter arc is dx = pad radius + aThermalGap
corner.x = copper_tickness.x / 2;
double dtmp = ( (double) dx * dx ) - ( (double) corner.x * corner.x );
corner.y = (int) sqrt( dtmp );
double dtmp = sqrt( ( (double) dx * dx ) - ( (double) corner.x * corner.x ) );
corner.y = (int) dtmp;
// calculates the position of the first point of the arc section
RotatePoint( &corner, delta );
// calculate the ending point of the outter arc
corner_end.x = corner.y;
corner_end.y = copper_tickness.y / 2;
corner_end.y = corner.x;
// calculate intermediate points (y coordinate from corner.y to corner_end.y
while( (corner.y > corner_end.y) && (corner.x < corner_end.x) )
{
corners_buffer.push_back( corner.x );
corners_buffer.push_back( corner.y );
corners_buffer.push_back( corner );
RotatePoint( &corner, delta );
}
corners_buffer.push_back( corner_end.x );
corners_buffer.push_back( corner_end.y );
/* add the radius lines */
corners_buffer.push_back( copper_tickness.x / 2 );
corners_buffer.push_back( copper_tickness.y / 2 );
corners_buffer.push_back( corner_end );
/* add an intermediate point, to avoid angles < 90 deg between last arc approx line and radius line
*/
corner.x = corners_buffer[1].y;
corner.y = corners_buffer[1].x;
corners_buffer.push_back( corner );
// Now, add the 4 holes ( each is the pattern, rotated by 0, 90, 180 and 270 deg
angle = 450; // TODO: problems with kbool if angle = 0 (bad filled polygon on some pads, but not alls)
// WARNING: problems with kbool if angle = 0 (in fact when angle < 200):
// bad filled polygon on some cases, when pads are on a same vertical line
// this seems a bug in kbool polygon
// angle = 450 (45.0 degrees orientation) seems work fine.
// angle = 0 with thermal shapes without angle < 90 deg seems works fine also
angle = 450;
int angle_pad = aPad.m_Orient; // Pad orientation
for( unsigned ihole = 0; ihole < 4; ihole++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ii = 0; ii < corners_buffer.size(); ii += 2 )
for( unsigned ii = 0; ii < corners_buffer.size(); ii++ )
{
corner = wxPoint( corners_buffer[ii], corners_buffer[ii + 1] );
corner = corners_buffer[ii];
RotatePoint( &corner, angle + angle_pad ); // Rotate by segment angle and pad orientation
corner += PadShapePos;
aBooleng->AddPoint( corner.x, corner.y );
@ -442,7 +489,6 @@ void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
case PAD_OVAL:
{
// Oval pad support along the lines of round and rectangular pads
std::vector <wxPoint> corners_buffer; // Polygon buffer as vector
int dx = (aPad.m_Size.x / 2) + aThermalGap; // Cutout radius x
@ -450,85 +496,72 @@ void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
wxPoint shape_offset;
if( dx > dy ) // Some coordinate fiddling, depending on the shape offset direction
// We want to calculate an oval shape with dx > dy.
// if this is not the case, exchange dx and dy, and rotate the shape 90 deg.
int supp_angle = 0;
if( dx < dy )
{
shape_offset = wxPoint( (dx - dy), 0 );
EXCHG( dx, dy );
supp_angle = 900;
EXCHG( copper_tickness.x, copper_tickness.y);
}
int deltasize = dx - dy;
// here we have dx > dy
// Some coordinate fiddling, depending on the shape offset direction
shape_offset = wxPoint( deltasize, 0 );
// Crosspoint of thermal spoke sides, the first point of polygon buffer
corners_buffer.push_back( wxPoint( copper_tickness.x / 2, copper_tickness.y / 2 ) );
// Arc start point calculation, the intersecting point of cutout arc and thermal spoke edge
if( copper_tickness.x > dx - dy ) // If copper thickness is more than shape offset, we need to calculate arc intercept point.
if( copper_tickness.x > deltasize ) // If copper thickness is more than shape offset, we need to calculate arc intercept point.
{
corner.x = copper_tickness.x / 2;
corner.y =
(int) sqrt( (double) ( dy * dy ) -
( ( corner.x - (dx - dy) ) * ( corner.x - (dx - dy) ) ) );
corner.x -= (dx - dy);
( ( corner.x - delta ) * ( corner.x - deltasize ) ) );
corner.x -= deltasize;
/* creates an intermediate point, to have a > 90 deg angle
* between the side and the first segment of arc approximation
*/
wxPoint intpoint = corner;
intpoint.y -= aThermalGap/3;
corners_buffer.push_back( intpoint + shape_offset );
RotatePoint( &corner, delta );
}
else
{
corner.x = copper_tickness.x / 2;
corner.y = dy;
corners_buffer.push_back( corner );
corner.x = ( (dx - dy) - copper_tickness.x ) / 2;
corner.x = ( deltasize - copper_tickness.x ) / 2;
}
// Arc stop point calculation, the intersecting point of cutout arc and thermal spoke edge
corner_end.y = copper_tickness.y / 2;
corner_end.x = (int) sqrt( (double) ( ( dx * dx ) - ( corner_end.y * corner_end.y ) ) );
}
else
{
shape_offset = wxPoint( 0, (dx - dy) );
corners_buffer.push_back( wxPoint( copper_tickness.x / 2, -copper_tickness.y / 2 ) );
if( copper_tickness.y > dy - dx )
{
corner.y = copper_tickness.y / 2;
corner.x =
(int) sqrt( (double) ( dx *
dx ) -
( ( corner.y - (dy - dx) ) * ( corner.y - (dy - dx) ) ) );
corner.y = ( -copper_tickness.y / 2 ) + (dy - dx);
}
else
{
corner.y = -copper_tickness.y / 2;
corner.x = dx;
corners_buffer.push_back( corner );
corner.y = ( (dy - dx) - copper_tickness.y ) / 2;
}
corner_end.x = copper_tickness.x / 2;
corner_end.y = -(int) sqrt( (double) ( ( dy * dy ) - ( corner_end.x * corner_end.x ) ) );
}
// calculate intermediate points till limit is reached
if( dx > dy )
{
while( (corner.y > corner_end.y) && (corner.x < corner_end.x) )
{
corners_buffer.push_back( corner + shape_offset );
RotatePoint( &corner, delta );
}
}
else
{
while( (corner.y > corner_end.y) && (corner.x > corner_end.x) )
{
corners_buffer.push_back( corner + shape_offset );
RotatePoint( &corner, delta );
}
}
//corners_buffer.push_back(corner + shape_offset); // TODO: about one mil geometry error forms somewhere.
/* Moves the last point, to have a > 90 deg angle
* between the side and the last segment of arc approximation
*/
// TODO: calculate a better point, in order to have to have
// a best shape.
corner_end.x -= aThermalGap/3;
corners_buffer.pop_back();
corners_buffer.push_back( corner_end ); // Enabling the line above shows intersection point.
/* Create 2 holes, rotated by pad rotation.
*/
angle = aPad.m_Orient;
angle = aPad.m_Orient + supp_angle;
for( int irect = 0; irect < 2; irect++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
@ -552,12 +585,12 @@ void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint swap = corners_buffer[ic];
swap = wxPoint( -swap.x, swap.y );
swap.x = -swap.x;
corners_buffer[ic] = swap;
}
// Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
angle = aPad.m_Orient;
angle = aPad.m_Orient + supp_angle;
for( int irect = 0; irect < 2; irect++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )

View File

@ -522,11 +522,29 @@ int CPolyLine::MakeKboolPoly( int aStart_contour, int aEnd_contour, std::vector<
void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
{
// set some global vals to arm the boolean engine
double DGRID = 1000; // round coordinate X or Y value in calculations to this
double MARGE = 0.001; // snap with in this range points to lines in the intersection routines
// should always be > DGRID a MARGE >= 10*DGRID is oke
// input points are scaled up with GetDGrid() * GetGrid()
// DGRID is only meant to make fractional parts of input data which
/*
The input data scaled up with DGrid is related to the accuracy the user has in his input data.
User data with a minimum accuracy of 0.001, means set the DGrid to 1000.
The input data may contain data with a minimum accuracy much smaller, but by setting the DGrid
everything smaller than 1/DGrid is rounded.
DGRID is only meant to make fractional parts of input data which can be
doubles, part of the integers used in vertexes within the boolean algorithm.
And therefore DGRID bigger than 1 is not usefull, you would only loose accuracy.
Within the algorithm all input data is multiplied with DGRID, and the result
is rounded to an integer.
*/
double DGRID = 1.0; // round coordinate X or Y value in calculations to this (initial value = 1000.0 in kbool example)
// Note: in kicad, coordinates are already integer so DGRID can be set to 1
double MARGE = 2.0; // snap with in this range points to lines in the intersection routines
// should always be > DGRID a MARGE >= 10*DGRID is ok
// this is also used to remove small segments and to decide when
// two segments are in line.
// two segments are in line. ( initial value = 0.001 )
double CORRECTIONFACTOR = 500.0; // correct the polygons by this number
double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction
double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle
@ -534,13 +552,14 @@ void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen
// DGRID is only meant to make fractional parts of input data which
// are doubles, part of the integers used in vertexes within the boolean algorithm.
// Within the algorithm all input data is multiplied with DGRID
// space for extra intersection inside the boolean algorithms
// only change this if there are problems
int GRID = 10000;
/*
Grid makes sure that the integer data used within the algorithm has room for extra intersections
smaller than the smallest number within the input data.
The input data scaled up with DGrid is related to the accuracy the user has in his input data.
Another scaling with Grid is applied on top of it to create space in the integer number for
even smaller numbers.
*/
int GRID = 100; // initial value = 10000 in kbool example
aBooleng->SetMarge( MARGE );
aBooleng->SetGrid( GRID );