Very minor fixes: Uncrustify a few files and rename a shadowed var.

This commit is contained in:
jean-pierre charras 2016-07-22 08:59:17 +02:00
parent 78e4787297
commit 146a78a8fb
7 changed files with 1277 additions and 998 deletions

View File

@ -56,7 +56,7 @@ struct Point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point( double x, double y ) : x( x ), y( y ) {}
Point( double ax, double ay ) : x( ax ), y( ay ) {}
/// Set this point to all zeros.
void set_zero()

View File

@ -31,7 +31,6 @@
#include "advancing_front.h"
namespace p2t {
AdvancingFront::AdvancingFront( Node& head, Node& tail )
{
head_ = &head;
@ -39,28 +38,38 @@ AdvancingFront::AdvancingFront(Node& head, Node& tail)
search_node_ = &head;
}
Node* AdvancingFront::LocateNode( const double& x )
{
Node* node = search_node_;
if (x < node->value) {
while ((node = node->prev) != NULL) {
if (x >= node->value) {
if( x < node->value )
{
while( (node = node->prev) != NULL )
{
if( x >= node->value )
{
search_node_ = node;
return node;
}
}
} else {
while ((node = node->next) != NULL) {
if (x < node->value) {
}
else
{
while( (node = node->next) != NULL )
{
if( x < node->value )
{
search_node_ = node->prev;
return node->prev;
}
}
}
return NULL;
}
Node* AdvancingFront::FindSearchNode( const double& x )
{
(void) x; // suppress compiler warnings "unused parameter 'x'"
@ -68,42 +77,59 @@ Node* AdvancingFront::FindSearchNode(const double& x)
return search_node_;
}
Node* AdvancingFront::LocatePoint( const Point* point )
{
const double px = point->x;
Node* node = FindSearchNode( px );
const double nx = node->point->x;
if (px == nx) {
if (point != node->point) {
if( px == nx )
{
if( point != node->point )
{
// We might have two nodes with same x value for a short time
if (point == node->prev->point) {
if( point == node->prev->point )
{
node = node->prev;
} else if (point == node->next->point) {
}
else if( point == node->next->point )
{
node = node->next;
} else {
}
else
{
assert( 0 );
}
}
} else if (px < nx) {
while ((node = node->prev) != NULL) {
if (point == node->point) {
}
else if( px < nx )
{
while( (node = node->prev) != NULL )
{
if( point == node->point )
{
break;
}
}
} else {
while ((node = node->next) != NULL) {
}
else
{
while( (node = node->next) != NULL )
{
if( point == node->point )
break;
}
}
if(node) search_node_ = node;
if( node )
search_node_ = node;
return node;
}
AdvancingFront::~AdvancingFront()
{
}
}

View File

@ -35,11 +35,11 @@
#include "../common/shapes.h"
namespace p2t {
struct Node;
// Advancing front node
struct Node {
struct Node
{
Point* point;
Triangle* triangle;
@ -52,14 +52,15 @@ struct Node {
{
}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), next(NULL), prev(NULL), value(p.x)
Node( Point& p, Triangle& t ) : point( &p ), triangle( &t ), next( NULL ), prev( NULL ), value(
p.x )
{
}
};
// Advancing front
class AdvancingFront {
class AdvancingFront
{
public:
AdvancingFront( Node& head, Node& tail );
@ -89,30 +90,36 @@ inline Node* AdvancingFront::head()
{
return head_;
}
inline void AdvancingFront::set_head( Node* node )
{
head_ = node;
}
inline Node* AdvancingFront::tail()
{
return tail_;
}
inline void AdvancingFront::set_tail( Node* node )
{
tail_ = node;
}
inline Node* AdvancingFront::search()
{
return search_node_;
}
inline void AdvancingFront::set_search( Node* node )
{
search_node_ = node;
}
}
#endif

View File

@ -31,42 +31,46 @@
#include "cdt.h"
namespace p2t {
CDT::CDT( std::vector<Point*> polyline )
{
sweep_context_ = new SweepContext( polyline );
sweep_ = new Sweep;
}
void CDT::AddHole( std::vector<Point*> polyline )
{
sweep_context_->AddHole( polyline );
}
void CDT::AddPoint(Point* point) {
void CDT::AddPoint( Point* point )
{
sweep_context_->AddPoint( point );
}
void CDT::Triangulate()
{
sweep_->Triangulate( *sweep_context_ );
}
std::vector<p2t::Triangle*> CDT::GetTriangles()
{
return sweep_context_->GetTriangles();
}
std::list<p2t::Triangle*> CDT::GetMap()
{
return sweep_context_->GetMap();
}
CDT::~CDT()
{
delete sweep_context_;
delete sweep_;
}
}

View File

@ -35,7 +35,6 @@
#include "../common/utils.h"
namespace p2t {
// Triangulate simple polygon with holes
void Sweep::Triangulate( SweepContext& tcx )
{
@ -47,23 +46,30 @@ void Sweep::Triangulate(SweepContext& tcx)
FinalizationPolygon( tcx );
}
void Sweep::SweepPoints( SweepContext& tcx )
{
for (int i = 1; i < tcx.point_count(); i++) {
Point& point = *tcx.GetPoint(i);
for( int jj = 1; jj < tcx.point_count(); jj++ )
{
Point& point = *tcx.GetPoint( jj );
Node* node = &PointEvent( tcx, point );
for (unsigned int i = 0; i < point.edge_list.size(); i++) {
for( unsigned int i = 0; i < point.edge_list.size(); i++ )
{
EdgeEvent( tcx, point.edge_list[i], node );
}
}
}
void Sweep::FinalizationPolygon( SweepContext& tcx )
{
// Get an Internal triangle to start with
Triangle* t = tcx.front()->head()->next->triangle;
Point* p = tcx.front()->head()->next->point;
while (!t->GetConstrainedEdgeCW(*p)) {
while( !t->GetConstrainedEdgeCW( *p ) )
{
t = t->NeighborCCW( *p );
}
@ -71,6 +77,7 @@ void Sweep::FinalizationPolygon(SweepContext& tcx)
tcx.MeshClean( *t );
}
Node& Sweep::PointEvent( SweepContext& tcx, Point& point )
{
Node& node = tcx.LocateNode( point );
@ -78,7 +85,8 @@ Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
// Only need to check +epsilon since point never have smaller
// x value than node due to how we fetch nodes from the front
if (point.x <= node.point->x + EPSILON) {
if( point.x <= node.point->x + EPSILON )
{
Fill( tcx, node );
}
@ -88,12 +96,14 @@ Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
return new_node;
}
void Sweep::EdgeEvent( SweepContext& tcx, Edge* edge, Node* node )
{
tcx.edge_event.constrained_edge = edge;
tcx.edge_event.right = (edge->p->x > edge->q->x);
if (IsEdgeSideOfTriangle(*node->triangle, *edge->p, *edge->q)) {
if( IsEdgeSideOfTriangle( *node->triangle, *edge->p, *edge->q ) )
{
return;
}
@ -104,76 +114,104 @@ void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
EdgeEvent( tcx, *edge->p, *edge->q, node->triangle, *edge->q );
}
void Sweep::EdgeEvent( SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point )
{
if (IsEdgeSideOfTriangle(*triangle, ep, eq)) {
if( IsEdgeSideOfTriangle( *triangle, ep, eq ) )
{
return;
}
Point* p1 = triangle->PointCCW( point );
Orientation o1 = Orient2d( eq, *p1, ep );
if (o1 == COLLINEAR) {
if( triangle->Contains(&eq, p1)) {
if( o1 == COLLINEAR )
{
if( triangle->Contains( &eq, p1 ) )
{
triangle->MarkConstrainedEdge( &eq, p1 );
// We are modifying the constraint maybe it would be better to
// not change the given constraint and just keep a variable for the new constraint
tcx.edge_event.constrained_edge->q = p1;
triangle = &triangle->NeighborAcross( point );
EdgeEvent( tcx, ep, *p1, triangle, *p1 );
} else {
}
else
{
std::runtime_error( "EdgeEvent - collinear points not supported" );
assert( 0 );
}
return;
}
Point* p2 = triangle->PointCW( point );
Orientation o2 = Orient2d( eq, *p2, ep );
if (o2 == COLLINEAR) {
if( triangle->Contains(&eq, p2)) {
if( o2 == COLLINEAR )
{
if( triangle->Contains( &eq, p2 ) )
{
triangle->MarkConstrainedEdge( &eq, p2 );
// We are modifying the constraint maybe it would be better to
// not change the given constraint and just keep a variable for the new constraint
tcx.edge_event.constrained_edge->q = p2;
triangle = &triangle->NeighborAcross( point );
EdgeEvent( tcx, ep, *p2, triangle, *p2 );
} else {
}
else
{
std::runtime_error( "EdgeEvent - collinear points not supported" );
assert( 0 );
}
return;
}
if (o1 == o2) {
if( o1 == o2 )
{
// Need to decide if we are rotating CW or CCW to get to a triangle
// that will cross edge
if (o1 == CW) {
if( o1 == CW )
{
triangle = triangle->NeighborCCW( point );
} else{
}
else
{
triangle = triangle->NeighborCW( point );
}
EdgeEvent( tcx, ep, eq, triangle, point );
} else {
}
else
{
// This triangle crosses constraint so lets flippin start!
FlipEdgeEvent( tcx, ep, eq, triangle, point );
}
}
bool Sweep::IsEdgeSideOfTriangle( Triangle& triangle, Point& ep, Point& eq )
{
int index = triangle.EdgeIndex( &ep, &eq );
if (index != -1) {
if( index != -1 )
{
triangle.MarkConstrainedEdge( index );
Triangle* t = triangle.GetNeighbor( index );
if (t) {
if( t )
{
t->MarkConstrainedEdge( &ep, &eq );
}
return true;
}
return false;
}
Node& Sweep::NewFrontTriangle( SweepContext& tcx, Point& point, Node& node )
{
Triangle* triangle = new Triangle( point, *node.point, *node.next->point );
@ -189,13 +227,15 @@ Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node)
node.next->prev = new_node;
node.next = new_node;
if (!Legalize(tcx, *triangle)) {
if( !Legalize( tcx, *triangle ) )
{
tcx.MapTriangleToNodes( *triangle );
}
return *new_node;
}
void Sweep::Fill( SweepContext& tcx, Node& node )
{
Triangle* triangle = new Triangle( *node.prev->point, *node.point, *node.next->point );
@ -212,21 +252,24 @@ void Sweep::Fill(SweepContext& tcx, Node& node)
node.next->prev = node.prev;
// If it was legalized the triangle has already been mapped
if (!Legalize(tcx, *triangle)) {
if( !Legalize( tcx, *triangle ) )
{
tcx.MapTriangleToNodes( *triangle );
}
}
void Sweep::FillAdvancingFront( SweepContext& tcx, Node& n )
{
// Fill right holes
Node* node = n.next;
while (node->next) {
while( node->next )
{
// if HoleAngle exceeds 90 degrees then break.
if (LargeHole_DontFill(node)) break;
if( LargeHole_DontFill( node ) )
break;
Fill( tcx, *node );
node = node->next;
}
@ -234,57 +277,79 @@ void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n)
// Fill left holes
node = n.prev;
while (node->prev) {
while( node->prev )
{
// if HoleAngle exceeds 90 degrees then break.
if (LargeHole_DontFill(node)) break;
if( LargeHole_DontFill( node ) )
break;
Fill( tcx, *node );
node = node->prev;
}
// Fill right basins
if (n.next && n.next->next) {
if( n.next && n.next->next )
{
double angle = BasinAngle( n );
if (angle < PI_3div4) {
if( angle < PI_3div4 )
{
FillBasin( tcx, n );
}
}
}
// True if HoleAngle exceeds 90 degrees.
bool Sweep::LargeHole_DontFill(Node* node) {
// True if HoleAngle exceeds 90 degrees.
bool Sweep::LargeHole_DontFill( Node* node )
{
Node* nextNode = node->next;
Node* prevNode = node->prev;
if( !AngleExceeds90Degrees( node->point, nextNode->point, prevNode->point ) )
return false;
// Check additional points on front.
Node* next2Node = nextNode->next;
// "..Plus.." because only want angles on same side as point being added.
if ((next2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, next2Node->point, prevNode->point))
if( (next2Node != NULL)
&& !AngleExceedsPlus90DegreesOrIsNegative( node->point, next2Node->point,
prevNode->point ) )
return false;
Node* prev2Node = prevNode->prev;
// "..Plus.." because only want angles on same side as point being added.
if ((prev2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, nextNode->point, prev2Node->point))
if( (prev2Node != NULL)
&& !AngleExceedsPlus90DegreesOrIsNegative( node->point, nextNode->point,
prev2Node->point ) )
return false;
return true;
}
bool Sweep::AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb) {
bool Sweep::AngleExceeds90Degrees( Point* origin, Point* pa, Point* pb )
{
double angle = Angle( *origin, *pa, *pb );
bool exceeds90Degrees = ( (angle > PI_div2) || (angle < -PI_div2) );
return exceeds90Degrees;
}
bool Sweep::AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb) {
bool Sweep::AngleExceedsPlus90DegreesOrIsNegative( Point* origin, Point* pa, Point* pb )
{
double angle = Angle( *origin, *pa, *pb );
bool exceedsPlus90DegreesOrIsNegative = (angle > PI_div2) || (angle < 0);
return exceedsPlus90DegreesOrIsNegative;
}
double Sweep::Angle(Point& origin, Point& pa, Point& pb) {
double Sweep::Angle( Point& origin, Point& pa, Point& pb )
{
/* Complex plane
* ab = cosA +i*sinA
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
@ -302,16 +367,20 @@ double Sweep::Angle(Point& origin, Point& pa, Point& pb) {
double x = ax * by - ay * bx;
double y = ax * bx + ay * by;
double angle = atan2( x, y );
return angle;
}
double Sweep::BasinAngle( Node& node )
{
double ax = node.point->x - node.next->next->point->x;
double ay = node.point->y - node.next->next->point->y;
return atan2( ay, ax );
}
double Sweep::HoleAngle( Node& node )
{
/* Complex plane
@ -326,34 +395,40 @@ double Sweep::HoleAngle(Node& node)
double ay = node.next->point->y - node.point->y;
double bx = node.prev->point->x - node.point->x;
double by = node.prev->point->y - node.point->y;
return atan2( ax * by - ay * bx, ax * bx + ay * by );
}
bool Sweep::Legalize( SweepContext& tcx, Triangle& t )
{
// To legalize a triangle we start by finding if any of the three edges
// violate the Delaunay condition
for (int i = 0; i < 3; i++) {
for( int i = 0; i < 3; i++ )
{
if( t.delaunay_edge[i] )
continue;
Triangle* ot = t.GetNeighbor( i );
if (ot) {
if( ot )
{
Point* p = t.GetPoint( i );
Point* op = ot->OppositePoint( t, *p );
int oi = ot->Index( op );
// If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
// then we should not try to legalize
if (ot->constrained_edge[oi] || ot->delaunay_edge[oi]) {
if( ot->constrained_edge[oi] || ot->delaunay_edge[oi] )
{
t.constrained_edge[i] = ot->constrained_edge[oi];
continue;
}
bool inside = Incircle( *p, *t.PointCCW( *p ), *t.PointCW( *p ), *op );
if (inside) {
if( inside )
{
// Lets mark this shared edge as Delaunay
t.delaunay_edge[i] = true;
ot->delaunay_edge[oi] = true;
@ -366,11 +441,14 @@ bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
// Make sure that triangle to node mapping is done only one time for a specific triangle
bool not_legalized = !Legalize( tcx, t );
if (not_legalized) {
if( not_legalized )
{
tcx.MapTriangleToNodes( t );
}
not_legalized = !Legalize( tcx, *ot );
if( not_legalized )
tcx.MapTriangleToNodes( *ot );
@ -387,9 +465,11 @@ bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
}
}
}
return false;
}
bool Sweep::Incircle( Point& pa, Point& pb, Point& pc, Point& pd )
{
double adx = pa.x - pd.x;
@ -426,9 +506,11 @@ bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd)
return det > 0;
}
void Sweep::RotateTrianglePair( Triangle& t, Point& p, Triangle& ot, Point& op )
{
Triangle* n1, * n2, * n3, * n4;
n1 = t.NeighborCCW( p );
n2 = t.NeighborCW( p );
n3 = ot.NeighborCCW( op );
@ -468,38 +550,59 @@ void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op)
// the right side.
t.ClearNeighbors();
ot.ClearNeighbors();
if (n1) ot.MarkNeighbor(*n1);
if (n2) t.MarkNeighbor(*n2);
if (n3) t.MarkNeighbor(*n3);
if (n4) ot.MarkNeighbor(*n4);
if( n1 )
ot.MarkNeighbor( *n1 );
if( n2 )
t.MarkNeighbor( *n2 );
if( n3 )
t.MarkNeighbor( *n3 );
if( n4 )
ot.MarkNeighbor( *n4 );
t.MarkNeighbor( ot );
}
void Sweep::FillBasin( SweepContext& tcx, Node& node )
{
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
if( Orient2d( *node.point, *node.next->point, *node.next->next->point ) == CCW )
{
tcx.basin.left_node = node.next->next;
} else {
}
else
{
tcx.basin.left_node = node.next;
}
// Find the bottom and right node
tcx.basin.bottom_node = tcx.basin.left_node;
while( tcx.basin.bottom_node->next
&& tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y) {
&& tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y )
{
tcx.basin.bottom_node = tcx.basin.bottom_node->next;
}
if (tcx.basin.bottom_node == tcx.basin.left_node) {
if( tcx.basin.bottom_node == tcx.basin.left_node )
{
// No valid basin
return;
}
tcx.basin.right_node = tcx.basin.bottom_node;
while( tcx.basin.right_node->next
&& tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y) {
&& tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y )
{
tcx.basin.right_node = tcx.basin.right_node->next;
}
if (tcx.basin.right_node == tcx.basin.bottom_node) {
if( tcx.basin.right_node == tcx.basin.bottom_node )
{
// No valid basins
return;
}
@ -510,34 +613,52 @@ void Sweep::FillBasin(SweepContext& tcx, Node& node)
FillBasinReq( tcx, tcx.basin.bottom_node );
}
void Sweep::FillBasinReq( SweepContext& tcx, Node* node )
{
// if shallow stop filling
if (IsShallow(tcx, *node)) {
if( IsShallow( tcx, *node ) )
{
return;
}
Fill( tcx, *node );
if (node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node) {
if( node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node )
{
return;
} else if (node->prev == tcx.basin.left_node) {
}
else if( node->prev == tcx.basin.left_node )
{
Orientation o = Orient2d( *node->point, *node->next->point, *node->next->next->point );
if (o == CW) {
if( o == CW )
{
return;
}
node = node->next;
} else if (node->next == tcx.basin.right_node) {
}
else if( node->next == tcx.basin.right_node )
{
Orientation o = Orient2d( *node->point, *node->prev->point, *node->prev->prev->point );
if (o == CCW) {
if( o == CCW )
{
return;
}
node = node->prev;
} else {
}
else
{
// Continue with the neighbor node with lowest Y value
if (node->prev->point->y < node->next->point->y) {
if( node->prev->point->y < node->next->point->y )
{
node = node->prev;
} else {
}
else
{
node = node->next;
}
}
@ -545,51 +666,71 @@ void Sweep::FillBasinReq(SweepContext& tcx, Node* node)
FillBasinReq( tcx, node );
}
bool Sweep::IsShallow( SweepContext& tcx, Node& node )
{
double height;
if (tcx.basin.left_highest) {
if( tcx.basin.left_highest )
{
height = tcx.basin.left_node->point->y - node.point->y;
} else {
}
else
{
height = tcx.basin.right_node->point->y - node.point->y;
}
// if shallow stop filling
if (tcx.basin.width > height) {
if( tcx.basin.width > height )
{
return true;
}
return false;
}
void Sweep::FillEdgeEvent( SweepContext& tcx, Edge* edge, Node* node )
{
if (tcx.edge_event.right) {
if( tcx.edge_event.right )
{
FillRightAboveEdgeEvent( tcx, edge, node );
} else {
}
else
{
FillLeftAboveEdgeEvent( tcx, edge, node );
}
}
void Sweep::FillRightAboveEdgeEvent( SweepContext& tcx, Edge* edge, Node* node )
{
while (node->next->point->x < edge->p->x) {
while( node->next->point->x < edge->p->x )
{
// Check if next node is below the edge
if (Orient2d(*edge->q, *node->next->point, *edge->p) == CCW) {
if( Orient2d( *edge->q, *node->next->point, *edge->p ) == CCW )
{
FillRightBelowEdgeEvent( tcx, edge, *node );
} else {
}
else
{
node = node->next;
}
}
}
void Sweep::FillRightBelowEdgeEvent( SweepContext& tcx, Edge* edge, Node& node )
{
if (node.point->x < edge->p->x) {
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
if( node.point->x < edge->p->x )
{
if( Orient2d( *node.point, *node.next->point, *node.next->next->point ) == CCW )
{
// Concave
FillRightConcaveEdgeEvent( tcx, edge, node );
} else{
}
else
{
// Convex
FillRightConvexEdgeEvent( tcx, edge, node );
// Retry this one
@ -598,61 +739,85 @@ void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
}
}
void Sweep::FillRightConcaveEdgeEvent( SweepContext& tcx, Edge* edge, Node& node )
{
Fill( tcx, *node.next );
if (node.next->point != edge->p) {
if( node.next->point != edge->p )
{
// Next above or below edge?
if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
if( Orient2d( *edge->q, *node.next->point, *edge->p ) == CCW )
{
// Below
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
if( Orient2d( *node.point, *node.next->point, *node.next->next->point ) == CCW )
{
// Next is concave
FillRightConcaveEdgeEvent( tcx, edge, node );
} else {
}
else
{
// Next is convex
}
}
}
}
void Sweep::FillRightConvexEdgeEvent( SweepContext& tcx, Edge* edge, Node& node )
{
// Next concave or convex?
if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) {
if( Orient2d( *node.next->point, *node.next->next->point,
*node.next->next->next->point ) == CCW )
{
// Concave
FillRightConcaveEdgeEvent( tcx, edge, *node.next );
} else{
}
else
{
// Convex
// Next above or below edge?
if (Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) {
if( Orient2d( *edge->q, *node.next->next->point, *edge->p ) == CCW )
{
// Below
FillRightConvexEdgeEvent( tcx, edge, *node.next );
} else{
}
else
{
// Above
}
}
}
void Sweep::FillLeftAboveEdgeEvent( SweepContext& tcx, Edge* edge, Node* node )
{
while (node->prev->point->x > edge->p->x) {
while( node->prev->point->x > edge->p->x )
{
// Check if next node is below the edge
if (Orient2d(*edge->q, *node->prev->point, *edge->p) == CW) {
if( Orient2d( *edge->q, *node->prev->point, *edge->p ) == CW )
{
FillLeftBelowEdgeEvent( tcx, edge, *node );
} else {
}
else
{
node = node->prev;
}
}
}
void Sweep::FillLeftBelowEdgeEvent( SweepContext& tcx, Edge* edge, Node& node )
{
if (node.point->x > edge->p->x) {
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
if( node.point->x > edge->p->x )
{
if( Orient2d( *node.point, *node.prev->point, *node.prev->prev->point ) == CW )
{
// Concave
FillLeftConcaveEdgeEvent( tcx, edge, node );
} else {
}
else
{
// Convex
FillLeftConvexEdgeEvent( tcx, edge, node );
// Retry this one
@ -661,84 +826,117 @@ void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
}
}
void Sweep::FillLeftConvexEdgeEvent( SweepContext& tcx, Edge* edge, Node& node )
{
// Next concave or convex?
if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
if( Orient2d( *node.prev->point, *node.prev->prev->point,
*node.prev->prev->prev->point ) == CW )
{
// Concave
FillLeftConcaveEdgeEvent( tcx, edge, *node.prev );
} else{
}
else
{
// Convex
// Next above or below edge?
if (Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) {
if( Orient2d( *edge->q, *node.prev->prev->point, *edge->p ) == CW )
{
// Below
FillLeftConvexEdgeEvent( tcx, edge, *node.prev );
} else{
}
else
{
// Above
}
}
}
void Sweep::FillLeftConcaveEdgeEvent( SweepContext& tcx, Edge* edge, Node& node )
{
Fill( tcx, *node.prev );
if (node.prev->point != edge->p) {
if( node.prev->point != edge->p )
{
// Next above or below edge?
if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
if( Orient2d( *edge->q, *node.prev->point, *edge->p ) == CW )
{
// Below
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
if( Orient2d( *node.point, *node.prev->point, *node.prev->prev->point ) == CW )
{
// Next is concave
FillLeftConcaveEdgeEvent( tcx, edge, node );
} else{
}
else
{
// Next is convex
}
}
}
}
void Sweep::FlipEdgeEvent( SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p )
{
Triangle& ot = t->NeighborAcross( p );
Point& op = *ot.OppositePoint( *t, p );
if (&ot == NULL) {
if( &ot == NULL )
{
// If we want to integrate the fillEdgeEvent do it here
// With current implementation we should never get here
// throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
assert( 0 );
}
if (InScanArea(p, *t->PointCCW(p), *t->PointCW(p), op)) {
if( InScanArea( p, *t->PointCCW( p ), *t->PointCW( p ), op ) )
{
// Lets rotate shared edge one vertex CW
RotateTrianglePair( *t, p, ot, op );
tcx.MapTriangleToNodes( *t );
tcx.MapTriangleToNodes( ot );
if (p == eq && op == ep) {
if (eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) {
if( p == eq && op == ep )
{
if( eq == *tcx.edge_event.constrained_edge->q
&& ep == *tcx.edge_event.constrained_edge->p )
{
t->MarkConstrainedEdge( &ep, &eq );
ot.MarkConstrainedEdge( &ep, &eq );
Legalize( tcx, *t );
Legalize( tcx, ot );
} else {
}
else
{
// XXX: I think one of the triangles should be legalized here?
}
} else {
}
else
{
Orientation o = Orient2d( eq, op, ep );
t = &NextFlipTriangle( tcx, (int) o, *t, ot, p, op );
FlipEdgeEvent( tcx, ep, eq, t, p );
}
} else {
}
else
{
Point& newP = NextFlipPoint( ep, eq, ot, op );
FlipScanEdgeEvent( tcx, ep, eq, *t, ot, newP );
EdgeEvent( tcx, ep, eq, t, p );
}
}
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op)
Triangle& Sweep::NextFlipTriangle( SweepContext& tcx,
int o,
Triangle& t,
Triangle& ot,
Point& p,
Point& op )
{
if( o == CCW )
{
if (o == CCW) {
// ot is not crossing edge after flip
int edge_index = ot.EdgeIndex( &p, &op );
ot.delaunay_edge[edge_index] = true;
@ -756,13 +954,18 @@ Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangl
return ot;
}
Point& Sweep::NextFlipPoint( Point& ep, Point& eq, Triangle& ot, Point& op )
{
Orientation o2d = Orient2d( eq, op, ep );
if (o2d == CW) {
if( o2d == CW )
{
// Right
return *ot.PointCCW( op );
} else if (o2d == CCW) {
}
else if( o2d == CCW )
{
// Left
return *ot.PointCW( op );
}
@ -774,20 +977,23 @@ Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op)
return ep;
}
void Sweep::FlipScanEdgeEvent( SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle,
Triangle& t, Point& p )
{
Triangle& ot = t.NeighborAcross( p );
Point& op = *ot.OppositePoint( t, p );
if (&t.NeighborAcross(p) == NULL) {
if( &t.NeighborAcross( p ) == NULL )
{
// If we want to integrate the fillEdgeEvent do it here
// With current implementation we should never get here
// throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
assert( 0 );
}
if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) {
if( InScanArea( eq, *flip_triangle.PointCCW( eq ), *flip_triangle.PointCW( eq ), op ) )
{
// flip with new edge op->eq
FlipEdgeEvent( tcx, eq, op, &ot, op );
// TODO: Actually I just figured out that it should be possible to
@ -797,21 +1003,21 @@ void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle&
// also need to set a new flip_triangle first
// Turns out at first glance that this is somewhat complicated
// so it will have to wait.
} else{
}
else
{
Point& newP = NextFlipPoint( ep, eq, ot, op );
FlipScanEdgeEvent( tcx, ep, eq, flip_triangle, ot, newP );
}
}
Sweep::~Sweep() {
Sweep::~Sweep()
{
// Clean up memory
for( unsigned i = 0; i < nodes_.size(); i++ )
{
delete nodes_[i];
}
}
}

View File

@ -33,7 +33,6 @@
#include "advancing_front.h"
namespace p2t {
SweepContext::SweepContext( std::vector<Point*> polyline ) :
front_( 0 ),
head_( 0 ),
@ -50,42 +49,55 @@ SweepContext::SweepContext(std::vector<Point*> polyline) :
InitEdges( points_ );
}
void SweepContext::AddHole( std::vector<Point*> polyline )
{
InitEdges( polyline );
for(unsigned int i = 0; i < polyline.size(); i++) {
for( unsigned int i = 0; i < polyline.size(); i++ )
{
points_.push_back( polyline[i] );
}
}
void SweepContext::AddPoint(Point* point) {
void SweepContext::AddPoint( Point* point )
{
points_.push_back( point );
}
std::vector<Triangle*> SweepContext::GetTriangles()
{
return triangles_;
}
std::list<Triangle*> SweepContext::GetMap()
{
return map_;
}
void SweepContext::InitTriangulation()
{
double xmax( points_[0]->x ), xmin( points_[0]->x );
double ymax( points_[0]->y ), ymin( points_[0]->y );
// Calculate bounds.
for (unsigned int i = 0; i < points_.size(); i++) {
for( unsigned int i = 0; i < points_.size(); i++ )
{
Point& p = *points_[i];
if( p.x > xmax )
xmax = p.x;
if( p.x < xmin )
xmin = p.x;
if( p.y > ymax )
ymax = p.y;
if( p.y < ymin )
ymin = p.y;
}
@ -97,37 +109,42 @@ void SweepContext::InitTriangulation()
// Sort points along y-axis
std::sort( points_.begin(), points_.end(), cmp );
}
void SweepContext::InitEdges( std::vector<Point*> polyline )
{
int num_points = polyline.size();
for (int i = 0; i < num_points; i++) {
for( int i = 0; i < num_points; i++ )
{
int j = i < num_points - 1 ? i + 1 : 0;
edge_list.push_back( new Edge( *polyline[i], *polyline[j] ) );
}
}
Point* SweepContext::GetPoint( const int& index )
{
return points_[index];
}
void SweepContext::AddToMap( Triangle* triangle )
{
map_.push_back( triangle );
}
Node& SweepContext::LocateNode( Point& point )
{
// TODO implement search tree
return *front_->LocateNode( point.x );
}
void SweepContext::CreateAdvancingFront( std::vector<Node*> nodes )
{
(void) nodes;
// Initial triangle
Triangle* triangle = new Triangle( *points_[0], *tail_, *head_ );
@ -147,40 +164,52 @@ void SweepContext::CreateAdvancingFront(std::vector<Node*> nodes)
af_tail_->prev = af_middle_;
}
void SweepContext::RemoveNode( Node* node )
{
delete node;
}
void SweepContext::MapTriangleToNodes( Triangle& t )
{
for (int i = 0; i < 3; i++) {
if (!t.GetNeighbor(i)) {
for( int i = 0; i < 3; i++ )
{
if( !t.GetNeighbor( i ) )
{
Node* n = front_->LocatePoint( t.PointCW( *t.GetPoint( i ) ) );
if( n )
n->triangle = &t;
}
}
}
void SweepContext::RemoveFromMap( Triangle* triangle )
{
map_.remove( triangle );
}
void SweepContext::MeshClean( Triangle& triangle )
{
std::vector<Triangle*> triangles;
triangles.push_back( &triangle );
while(!triangles.empty()){
while( !triangles.empty() )
{
Triangle* t = triangles.back();
triangles.pop_back();
if (t != NULL && !t->IsInterior()) {
if( t != NULL && !t->IsInterior() )
{
t->IsInterior( true );
triangles_.push_back( t );
for (int i = 0; i < 3; i++) {
for( int i = 0; i < 3; i++ )
{
if( !t->constrained_edge[i] )
triangles.push_back( t->GetNeighbor( i ) );
}
@ -188,9 +217,9 @@ void SweepContext::MeshClean(Triangle& triangle)
}
}
SweepContext::~SweepContext()
{
// Clean up memory
delete head_;
@ -202,15 +231,15 @@ SweepContext::~SweepContext()
typedef std::list<Triangle*> type_list;
for(type_list::iterator iter = map_.begin(); iter != map_.end(); ++iter) {
for( type_list::iterator iter = map_.begin(); iter != map_.end(); ++iter )
{
Triangle* ptr = *iter;
delete ptr;
}
for(unsigned int i = 0; i < edge_list.size(); i++) {
for( unsigned int i = 0; i < edge_list.size(); i++ )
{
delete edge_list[i];
}
}
}

View File

@ -37,7 +37,6 @@
#include <cstddef>
namespace p2t {
// Inital triangle factor, seed triangle will extend 30% of
// PointSet width to both left and right.
const double kAlpha = 0.3;
@ -48,7 +47,8 @@ struct Node;
struct Edge;
class AdvancingFront;
class SweepContext {
class SweepContext
{
public:
/// Constructor
@ -92,18 +92,21 @@ AdvancingFront* front();
void MeshClean( Triangle& triangle );
std::vector<Triangle*> GetTriangles();
std::list<Triangle*> GetMap();
std::vector<Edge*> edge_list;
struct Basin {
struct Basin
{
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL), width(0.0), left_highest(false)
Basin() : left_node( NULL ), bottom_node( NULL ), right_node( NULL ), width( 0.0 ),
left_highest( false )
{
}
@ -117,7 +120,8 @@ struct Basin {
}
};
struct EdgeEvent {
struct EdgeEvent
{
Edge* constrained_edge;
bool right;
@ -148,7 +152,6 @@ Node *af_head_, *af_middle_, *af_tail_;
void InitTriangulation();
void InitEdges( std::vector<Point*> polyline );
};
inline AdvancingFront* SweepContext::front()
@ -156,31 +159,35 @@ inline AdvancingFront* SweepContext::front()
return front_;
}
inline int SweepContext::point_count()
{
return points_.size();
}
inline void SweepContext::set_head( Point* p1 )
{
head_ = p1;
}
inline Point* SweepContext::head()
{
return head_;
}
inline void SweepContext::set_tail( Point* p1 )
{
tail_ = p1;
}
inline Point* SweepContext::tail()
{
return tail_;
}
}
#endif