Updated boost to version 1.34. Added boost::polygon (experimental).

Fixed some issues with wxWidgets 2.9.1 (fixed Gerbview and Pcbnew crashes under Linux when starting. Could explain also crashes under MACOSX)
Code cleaning.
pcbnew:
    Added experimental zone fill calculations with boost::polygon
    old file zones_convert_brd_items_to_polygons.cpp has now 2 versions:
    zones_convert_brd_items_to_polygons_with_Boost.cpp use boost::polygon to calculate filled areas
    zones_convert_brd_items_to_polygons_with_BKbool.cpp use kbool (code cleaned).
    >>> to use boost polygon version:
        call cmake with option: -DUSE_BOOST_POLYGON_LIBRARY=ON
Eeschema: added patches from Yuri Khalyavin
This commit is contained in:
jean-pierre charras 2010-07-27 20:36:16 +02:00
commit 1794a2ae73
1921 changed files with 298442 additions and 256912 deletions

View File

@ -4,6 +4,20 @@ KiCad ChangeLog 2010
Please add newer entries at the top, list the date and your name with
email address.
2010-jul-27, UPDATE Jean-Pierre Charras <jean-pierre.charras@gipsa-lab.inpg.fr>
================================================================================
++all:
Updated boost to version 1.34
Added boost::polygon (experimental)
++pcbnew:
Added experimental zone fill calculations with boost::polygon
old file zones_convert_brd_items_to_polygons.cpp has now 2 versions:
zones_convert_brd_items_to_polygons_with_Boost.cpp use boost::polygon to calculate filled areas
zones_convert_brd_items_to_polygons_with_BKbool.cpp use kbool (code cleaned).
>>> to use boost polygon version:
call cmake with option: -DUSE_BOOST_POLYGON_LIBRARY=ON
2010-jul-12, UPDATE Jean-Pierre Charras <jean-pierre.charras@gipsa-lab.inpg.fr>
================================================================================
++pcbnew:

View File

@ -24,6 +24,8 @@ option(USE_WX_ZOOM "Use wxDC to perform zooming (default OFF). Warning, this is
option(USE_WX_GRAPHICS_CONTEXT
"Use wxGraphicsContext for rendering (default OFF). Warning, this is experimental")
option(USE_BOOST_POLYGON_LIBRARY
"Use boost polygon library instead of Kbool to calculate filled areas in zones (default OFF). Warning, this is experimental")
#================================================
# Set flags for GCC.
@ -58,6 +60,11 @@ if(USE_WX_GRAPHICS_CONTEXT)
add_definitions(-DUSE_WX_GRAPHICS_CONTEXT)
endif(USE_WX_GRAPHICS_CONTEXT)
if(USE_BOOST_POLYGON_LIBRARY)
set( USE_BOOST_POLYGON_LIBRARY ON )
add_definitions(-DUSE_BOOST_POLYGON_LIBRARY)
endif(USE_WX_GRAPHICS_CONTEXT)
# Locations for install targets.
set(KICAD_BIN bin
CACHE PATH "Location of KiCad binaries.")

View File

@ -88,12 +88,12 @@ BM2CMP_FRAME_BASE::BM2CMP_FRAME_BASE( wxWindow* parent, wxWindowID id, const wxS
brightSizer->Add( m_buttonLoad, 0, wxALL|wxEXPAND|wxALIGN_CENTER_HORIZONTAL, 5 );
m_buttonExportEeschema = new wxButton( this, wxID_ANY, _("Export to eeschema"), wxDefaultPosition, wxDefaultSize, 0 );
m_buttonExportEeschema->SetToolTip( _("Create a lib file for Eeschema") );
m_buttonExportEeschema->SetToolTip( _("Create a library file for Eeschema\nThis library contains only one component: logo") );
brightSizer->Add( m_buttonExportEeschema, 0, wxALL|wxEXPAND|wxALIGN_CENTER_HORIZONTAL, 5 );
m_buttonExportPcbnew = new wxButton( this, wxID_ANY, _("Export to Pcbnew"), wxDefaultPosition, wxDefaultSize, 0 );
m_buttonExportPcbnew->SetToolTip( _("Create a footprint file for PcbNew") );
m_buttonExportPcbnew->SetToolTip( _("Create a footprint file for PcbNew\nThis footprint contains only one footprint: logo") );
brightSizer->Add( m_buttonExportPcbnew, 0, wxALL|wxEXPAND|wxALIGN_CENTER_HORIZONTAL, 5 );
@ -108,6 +108,8 @@ BM2CMP_FRAME_BASE::BM2CMP_FRAME_BASE( wxWindow* parent, wxWindowID id, const wxS
brightSizer->Add( m_ThresholdText, 0, wxTOP|wxRIGHT|wxLEFT, 5 );
m_sliderThreshold = new wxSlider( this, wxID_ANY, 25, 0, 50, wxDefaultPosition, wxDefaultSize, wxSL_AUTOTICKS|wxSL_HORIZONTAL|wxSL_TOP );
m_sliderThreshold->SetToolTip( _("Adjust the level to convert the greysvale picture to the binary picture.") );
brightSizer->Add( m_sliderThreshold, 0, wxEXPAND|wxALIGN_CENTER_HORIZONTAL|wxBOTTOM|wxRIGHT|wxLEFT, 5 );
bMainSizer->Add( brightSizer, 0, wxEXPAND, 5 );

View File

@ -851,7 +851,7 @@
<property name="size"></property>
<property name="style"></property>
<property name="subclass"></property>
<property name="tooltip">Create a lib file for Eeschema</property>
<property name="tooltip">Create a library file for Eeschema&#x0A;This library contains only one component: logo</property>
<property name="window_extra_style"></property>
<property name="window_name"></property>
<property name="window_style"></property>
@ -903,7 +903,7 @@
<property name="size"></property>
<property name="style"></property>
<property name="subclass"></property>
<property name="tooltip">Create a footprint file for PcbNew</property>
<property name="tooltip">Create a footprint file for PcbNew&#x0A;This footprint contains only one footprint: logo</property>
<property name="window_extra_style"></property>
<property name="window_name"></property>
<property name="window_style"></property>
@ -1060,7 +1060,7 @@
<property name="size"></property>
<property name="style">wxSL_AUTOTICKS|wxSL_HORIZONTAL|wxSL_TOP</property>
<property name="subclass"></property>
<property name="tooltip"></property>
<property name="tooltip">Adjust the level to convert the greysvale picture to the binary picture.</property>
<property name="value">25</property>
<property name="window_extra_style"></property>
<property name="window_name"></property>

View File

@ -364,28 +364,33 @@ void WinEDA_DrawFrame::OnSize( wxSizeEvent& SizeEv )
}
/*
/** Function SetToolID
* Enables the icon of the selected tool in the vertical toolbar.
* (Or tool ID_NO_SELECT_BUTT default if no new selection)
* if (id >= 0)
* @param aId = new m_ID_current_state value (if aId >= 0)
* @param aCursor = the new cursor shape (0 = default cursor)
* @param aTitle = tool message in status bar
* if (aId >= 0)
* Updates all variables related:
* Message m_ID_current_state, cursor
* If (id < 0)
* Only updates the variables message and cursor
* m_ID_current_state, cursor shape and message in status bar
* If (aId < 0)
* Only updates the cursor shape and message in status bar
* (does not the current m_ID_current_state value
*/
void WinEDA_DrawFrame::SetToolID( int id, int new_cursor_id,
const wxString& title )
void WinEDA_DrawFrame::SetToolID( int aId, int aCursor,
const wxString& aToolMsg )
{
// Change Cursor
// Keep default cursor in toolbars
SetCursor( wxNullCursor );
// Change Cursor in DrawPanel only
if( DrawPanel )
{
DrawPanel->m_PanelDefaultCursor = new_cursor_id;
DrawPanel->SetCursor( new_cursor_id );
DrawPanel->m_PanelDefaultCursor = aCursor;
DrawPanel->SetCursor( aCursor );
}
SetCursor( wxCURSOR_ARROW );
DisplayToolMsg( title );
DisplayToolMsg( aToolMsg );
if( id < 0 )
if( aId < 0 )
return;
// Old Tool ID_NO_SELECT_BUTT active or inactive if no new tool.
@ -399,7 +404,7 @@ void WinEDA_DrawFrame::SetToolID( int id, int new_cursor_id,
}
else
{
if( id )
if( aId )
{
if( m_VToolBar )
m_VToolBar->ToggleTool( ID_NO_SELECT_BUTT, FALSE );
@ -411,18 +416,18 @@ void WinEDA_DrawFrame::SetToolID( int id, int new_cursor_id,
m_VToolBar->ToggleTool( ID_NO_SELECT_BUTT, TRUE );
}
if( id )
if( aId )
{
if( m_VToolBar )
m_VToolBar->ToggleTool( id, TRUE );
m_VToolBar->ToggleTool( aId, TRUE );
if( m_AuxVToolBar )
m_AuxVToolBar->ToggleTool( id, TRUE );
m_AuxVToolBar->ToggleTool( aId, TRUE );
}
else if( m_VToolBar )
m_VToolBar->ToggleTool( ID_NO_SELECT_BUTT, TRUE );
m_ID_current_state = id;
m_ID_current_state = aId;
if( m_VToolBar )
m_VToolBar->Refresh( );
}

View File

@ -164,7 +164,7 @@ void WinEDA_SelColorFrame::Init_Dialog( int aOldColor )
iconDC.DrawRoundedRectangle( 0, 0, w, h, (double) h / 3 );
BitmapButton = new wxBitmapButton( this, butt_ID, ButtBitmap,
wxDefaultPosition, wxSize( w, h ) );
wxDefaultPosition, wxSize( w+8, h+6 ) );
FlexColumnBoxSizer->Add( BitmapButton, 0,
wxALIGN_LEFT | wxALIGN_CENTER_VERTICAL |
wxLEFT | wxBOTTOM, 5 );

View File

@ -1,4 +1,4 @@
update=05/07/2010 19:03:21
update=22/07/2010 13:46:39
version=1
last_client=pcbnew
[common]

View File

@ -199,7 +199,7 @@ void WinEDA_SetColorsFrame::CreateControls()
BitmapButton =
new wxBitmapButton( this, butt_ID, ButtBitmap, wxDefaultPosition,
wxSize( BUTT_SIZE_X, BUTT_SIZE_Y ) );
wxSize( BUTT_SIZE_X+8, BUTT_SIZE_Y+6 ) );
RowBoxSizer->Add( BitmapButton,
0,
wxALIGN_CENTER_VERTICAL | wxRIGHT | wxBOTTOM,

View File

@ -38,8 +38,8 @@ enum col_sel_id {
#endif
// Specify the width and height of every (color-displaying / bitmap) button
const int BUTT_SIZE_X = 30;
const int BUTT_SIZE_Y = 20;
const int BUTT_SIZE_X = 16;
const int BUTT_SIZE_Y = 16;
// Macro utile :
#define ADR( numlayer ) & (g_LayerDescr.LayerColor[numlayer])

View File

@ -106,6 +106,8 @@ static Ki_HotkeyInfo HkAddLabel( wxT( "add Label" ), HK_ADD_LABEL, 'L' );
static Ki_HotkeyInfo HkBeginWire( wxT( "begin Wire" ), HK_BEGIN_WIRE, 'W' );
static Ki_HotkeyInfo HkAddComponent( wxT( "Add Component" ),
HK_ADD_NEW_COMPONENT, 'A' );
static Ki_HotkeyInfo HkAddNoConn( wxT( "Add NoConnected Flag" ),
HK_ADD_NOCONN_FLAG, 'Q' );
static Ki_HotkeyInfo HkMirrorYComponent( wxT( "Mirror Y Component" ),
HK_MIRROR_Y_COMPONENT, 'Y' );
static Ki_HotkeyInfo HkMirrorXComponent( wxT( "Mirror X Component" ),
@ -146,11 +148,11 @@ static Ki_HotkeyInfo HkFindNextDrcMarker( wxT( "Find next DRC marker" ), HK_FIND
WXK_F5 + GR_KB_SHIFT );
// Special keys for library editor:
static Ki_HotkeyInfo HkCreatePin( wxT( "Create Pin" ),
HK_LIBEDIT_CREATE_PIN, 'P' );
static Ki_HotkeyInfo HkInsertPin( wxT( "Repeat Pin" ), HK_REPEAT_LAST,
WXK_INSERT );
static Ki_HotkeyInfo HkMovePin( wxT( "Move Pin" ), HK_LIBEDIT_MOVE_GRAPHIC_ITEM, 'M' );
static Ki_HotkeyInfo HkDeletePin( wxT( "Delete Pin" ), HK_DELETE_PIN,
WXK_DELETE );
// List of common hotkey descriptors
@ -190,16 +192,18 @@ Ki_HotkeyInfo* s_Schematic_Hotkey_List[] =
&HkEditComponentFootprint,
&HkBeginWire,
&HkAddLabel,
&HkAddNoConn,
NULL
};
// List of hotkey descriptors for library editor
Ki_HotkeyInfo* s_LibEdit_Hotkey_List[] =
{
&HkCreatePin,
&HkInsertPin,
&HkEdit,
&HkMovePin,
&HkDeletePin,
&HkDelete,
&HkRotate,
&HkDrag,
NULL
@ -332,7 +336,7 @@ void WinEDA_SchematicFrame::OnHotKey( wxDC* DC, int hotkey,
if( !ItemInEdit && screen->m_BlockLocate.m_State == STATE_NO_BLOCK )
{
RefreshToolBar = LocateAndDeleteItem( this, DC );
OnModify( );
OnModify();
GetScreen()->SetCurItem( NULL );
TestDanglingEnds( GetScreen()->EEDrawList, DC );
}
@ -393,9 +397,10 @@ void WinEDA_SchematicFrame::OnHotKey( wxDC* DC, int hotkey,
SetToolID( ID_LABEL_BUTT, wxCURSOR_PENCIL, _( "Add Label" ) );
OnLeftClick( DC, MousePos );
}
break;
break;
case HK_BEGIN_WIRE:
/* An item is selected. If edited and not a wire, a new command is not
* possible */
if( !ItemInEdit && screen->m_BlockLocate.m_State == STATE_NO_BLOCK )
@ -419,6 +424,16 @@ void WinEDA_SchematicFrame::OnHotKey( wxDC* DC, int hotkey,
}
break;
case HK_ADD_NOCONN_FLAG: // Add a no connected flag
if( !ItemInEdit )
{
if( m_ID_current_state != ID_NOCONN_BUTT )
SetToolID( ID_NOCONN_BUTT, wxCURSOR_PENCIL,
_( "Add a no connected flag" ) );
OnLeftClick( DC, MousePos );
}
break;
case HK_ROTATE: // Component or other schematic item rotation
if( DrawStruct == NULL )
@ -563,7 +578,7 @@ void WinEDA_SchematicFrame::OnHotKey( wxDC* DC, int hotkey,
// Create the events for moving a component or other schematic item
wxCommandEvent eventMoveOrDragComponent( wxEVT_COMMAND_TOOL_CLICKED,
HK_Descr->m_IdMenuEvent );
HK_Descr->m_IdMenuEvent );
wxCommandEvent eventMoveItem( wxEVT_COMMAND_TOOL_CLICKED,
ID_POPUP_SCH_MOVE_ITEM_REQUEST );
wxCommandEvent eventMovePinsheet( wxEVT_COMMAND_TOOL_CLICKED,
@ -584,7 +599,7 @@ void WinEDA_SchematicFrame::OnHotKey( wxDC* DC, int hotkey,
case TYPE_SCH_GLOBALLABEL:
case TYPE_SCH_HIERLABEL:
wxPostEvent( this, eventMoveOrDragComponent );
break;
break;
case TYPE_SCH_TEXT:
case DRAW_PART_TEXT_STRUCT_TYPE:
@ -831,8 +846,16 @@ void WinEDA_LibeditFrame::OnHotKey( wxDC* DC, int hotkey,
}
break;
case HK_LIBEDIT_CREATE_PIN:
{
wxCommandEvent evt;
evt.SetId( ID_LIBEDIT_PIN_BUTT );
Process_Special_Functions( evt );
break;
}
case HK_DELETE_PIN:
case HK_DELETE:
m_drawItem = LocateItemUsingCursor();
if( m_drawItem )

View File

@ -15,15 +15,14 @@ enum hotkey_id_commnand {
HK_FIND_ITEM,
HK_DELETE,
HK_REPEAT_LAST,
HK_EDIT_PIN,
HK_LIBEDIT_MOVE_GRAPHIC_ITEM,
HK_LIBEDIT_ROTATE_PIN,
HK_DELETE_PIN,
HK_LIBEDIT_MOVE_GRAPHIC_ITEM,
HK_MOVEBLOCK_TO_DRAGBLOCK,
HK_LIBEDIT_CREATE_PIN,
HK_DELETE_PIN,
HK_ROTATE,
HK_EDIT,
HK_EDIT_COMPONENT_VALUE,
HK_EDIT_COMPONENT_FOOTPRINT,
HK_EDIT,
HK_EDIT_COMPONENT_VALUE,
HK_EDIT_COMPONENT_FOOTPRINT,
HK_MIRROR_X_COMPONENT,
HK_MIRROR_Y_COMPONENT,
HK_ORIENT_NORMAL_COMPONENT,
@ -32,16 +31,20 @@ enum hotkey_id_commnand {
HK_DRAG,
HK_ADD_NEW_COMPONENT,
HK_BEGIN_WIRE,
HK_ADD_LABEL
HK_ADD_LABEL,
HK_ADD_NOCONN_FLAG
};
// List of hotkey descriptors for eeschema
extern struct Ki_HotkeyInfoSectionDescriptor s_Eeschema_Hokeys_Descr[];
// List of hotkey descriptors for the schematic editor only
extern struct Ki_HotkeyInfoSectionDescriptor s_Schematic_Hokeys_Descr[];
// List of hotkey descriptors for the lib editor only
extern struct Ki_HotkeyInfoSectionDescriptor s_Libedit_Hokeys_Descr[];
// List of hotkey descriptors for the lib browser only
extern struct Ki_HotkeyInfoSectionDescriptor s_Viewlib_Hokeys_Descr[];
#endif // KOTKEYS_H
#endif // KOTKEYS_H

View File

@ -1,5 +1,5 @@
/****************************/
/* EESchema - libedit_onrightclick.cpp */
/* EESchema - libedit_onrightclick.cpp */
/****************************/
/* , In library editor, create the pop menu when clicking on mouse right button
@ -85,21 +85,21 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
HK_LIBEDIT_MOVE_GRAPHIC_ITEM );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MOVE_ITEM_REQUEST,
msg, move_arc_xpm );
msg = AddHotkeyName( _( "Drag Arc Size" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg = AddHotkeyName( _( "Drag Arc Size" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg, move_arc_xpm );
}
msg = AddHotkeyName( _( "Edit Arc Options" ), s_Libedit_Hokeys_Descr,
HK_EDIT );
HK_EDIT );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_BODY_EDIT_ITEM,
msg, options_arc_xpm );
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Delete Arc " ), s_Libedit_Hokeys_Descr,
HK_DELETE_PIN );
HK_DELETE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_DELETE_ITEM,
msg, delete_arc_xpm );
}
@ -115,22 +115,22 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
}
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Drag Circle Outline" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg, move_rectangle_xpm );
}
{
msg = AddHotkeyName( _( "Drag Circle Outline" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg, move_rectangle_xpm );
}
msg = AddHotkeyName( _( "Edit Circle Options" ), s_Libedit_Hokeys_Descr,
HK_EDIT );
HK_EDIT );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_BODY_EDIT_ITEM,
msg, options_circle_xpm );
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Delete Circle " ),
s_Libedit_Hokeys_Descr, HK_DELETE_PIN );
s_Libedit_Hokeys_Descr, HK_DELETE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_DELETE_ITEM,
msg, delete_circle_xpm );
}
@ -146,22 +146,22 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
}
msg = AddHotkeyName( _( "Edit Rectangle Options" ), s_Libedit_Hokeys_Descr,
HK_EDIT );
HK_EDIT );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_BODY_EDIT_ITEM,
msg, options_rectangle_xpm );
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Drag Rectangle Edge" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg, move_rectangle_xpm );
}
{
msg = AddHotkeyName( _( "Drag Rectangle Edge" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg, move_rectangle_xpm );
}
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Delete Rectangle " ), s_Libedit_Hokeys_Descr,
HK_DELETE_PIN );
HK_DELETE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_DELETE_ITEM,
msg, delete_rectangle_xpm );
}
@ -178,19 +178,19 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
}
msg = AddHotkeyName( _( "Edit Text " ), s_Libedit_Hokeys_Descr,
HK_EDIT );
HK_EDIT );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_BODY_EDIT_ITEM,
msg, edit_text_xpm );
msg = AddHotkeyName( _( "Rotate Text " ), s_Libedit_Hokeys_Descr,
HK_ROTATE );
HK_ROTATE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_ROTATE_GRAPHIC_TEXT,
msg, edit_text_xpm );
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Delete Text " ), s_Libedit_Hokeys_Descr,
HK_DELETE_PIN );
HK_DELETE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_DELETE_ITEM,
msg, delete_text_xpm );
}
@ -203,9 +203,9 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
HK_LIBEDIT_MOVE_GRAPHIC_ITEM );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MOVE_ITEM_REQUEST,
msg, move_line_xpm );
msg = AddHotkeyName( _( "Drag Edge Point" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg = AddHotkeyName( _( "Drag Edge Point" ), s_Libedit_Hokeys_Descr,
HK_DRAG );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_MODIFY_ITEM,
msg, move_line_xpm );
}
@ -216,14 +216,14 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
}
msg = AddHotkeyName( _( "Edit Line Options" ), s_Libedit_Hokeys_Descr,
HK_EDIT );
HK_EDIT );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_BODY_EDIT_ITEM,
msg, options_segment_xpm );
if( DrawEntry->m_Flags == 0 )
{
msg = AddHotkeyName( _( "Delete Line " ), s_Libedit_Hokeys_Descr,
HK_DELETE_PIN );
HK_DELETE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_DELETE_ITEM,
msg, delete_segment_xpm );
}
@ -232,7 +232,7 @@ bool WinEDA_LibeditFrame::OnRightClick( const wxPoint& MousePos,
if( ( (LIB_POLYLINE*) DrawEntry )->GetCornerCount() > 2 )
{
msg = AddHotkeyName( _( "Delete Segment " ),
s_Libedit_Hokeys_Descr, HK_DELETE_PIN );
s_Libedit_Hokeys_Descr, HK_DELETE );
ADD_MENUITEM( PopMenu,
ID_POPUP_LIBEDIT_DELETE_CURRENT_POLY_SEGMENT,
msg, delete_segment_xpm );
@ -296,7 +296,7 @@ void AddMenusForPin( wxMenu* PopMenu,
if( not_in_move )
{
msg = AddHotkeyName( _( "Delete Pin " ), s_Libedit_Hokeys_Descr,
HK_DELETE_PIN );
HK_DELETE );
ADD_MENUITEM( PopMenu, ID_POPUP_LIBEDIT_DELETE_ITEM,
msg, delete_pin_xpm );
}

View File

@ -24,9 +24,9 @@
*/
void WinEDA_SchematicFrame::ReCreateMenuBar()
{
wxString text;
wxMenuItem *item;
wxMenuBar *menuBar = GetMenuBar();
wxString text;
wxMenuItem* item;
wxMenuBar* menuBar = GetMenuBar();
/**
* Destroy the existing menu bar so it can be rebuilt. This allows
@ -44,14 +44,14 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
/* New */
item = new wxMenuItem( filesMenu, ID_NEW_PROJECT, _( "&New\tCtrl+N" ),
_( "New schematic project" ) );
_( "New schematic project" ) );
item->SetBitmap( new_xpm );
filesMenu->Append( item );
/* Open */
/* Open */
item = new wxMenuItem( filesMenu, ID_LOAD_PROJECT, _( "&Open\tCtrl+O" ),
_( "Open an existing schematic project" ) );
_( "Open an existing schematic project" ) );
item->SetBitmap( open_xpm );
filesMenu->Append( item );
@ -60,7 +60,7 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
wxGetApp().m_fileHistory.AddFilesToMenu( openRecentMenu );
ADD_MENUITEM_WITH_HELP_AND_SUBMENU( filesMenu, openRecentMenu,
-1, _( "Open &Recent" ),
_("Open a recent opened schematic project" ),
_( "Open a recent opened schematic project" ),
open_project_xpm );
/* Separator */
@ -69,20 +69,20 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
/* Save */
/* Save Project */
item = new wxMenuItem( filesMenu, ID_SAVE_PROJECT,
_( "&Save Whole Schematic Project\tCtrl+S" ),
_( "Save all sheets in the schematic project" ) );
_( "&Save Whole Schematic Project\tCtrl+S" ),
_( "Save all sheets in the schematic project" ) );
item->SetBitmap( save_project_xpm );
filesMenu->Append( item );
item = new wxMenuItem( filesMenu, ID_SAVE_ONE_SHEET, _( "Save &Current Sheet Only" ),
_( "Save only current schematic sheet" ) );
_( "Save only current schematic sheet" ) );
item->SetBitmap( save_xpm );
filesMenu->Append( item );
/* Save as... */
item = new wxMenuItem( filesMenu, ID_SAVE_ONE_SHEET_AS,
_( "Save Current Sheet &as" ),
_( "Save current schematic sheet as..." ) );
_( "Save Current Sheet &as" ),
_( "Save current schematic sheet as..." ) );
item->SetBitmap( save_as_xpm );
filesMenu->Append( item );
@ -91,33 +91,33 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
/* Print */
item = new wxMenuItem( filesMenu, wxID_PRINT, _( "P&rint" ),
_( "Print schematic" ) );
_( "Print schematic" ) );
item->SetBitmap( print_button );
filesMenu->Append( item );
/* Plot submenu */
wxMenu* choice_plot_fmt = new wxMenu;
item = new wxMenuItem( choice_plot_fmt, ID_GEN_PLOT_PS,
_( "Plot PostScript" ),
_( "Plot schematic sheet in PostScript format" ) );
_( "Plot PostScript" ),
_( "Plot schematic sheet in PostScript format" ) );
item->SetBitmap( plot_PS_xpm );
choice_plot_fmt->Append( item );
/* Plot HPGL */
item = new wxMenuItem( choice_plot_fmt, ID_GEN_PLOT_HPGL, _( "Plot HPGL" ),
_( "Plot schematic sheet in HPGL format" ) );
_( "Plot schematic sheet in HPGL format" ) );
item->SetBitmap( plot_HPG_xpm );
choice_plot_fmt->Append( item );
/* Plot SVG */
item = new wxMenuItem( choice_plot_fmt, ID_GEN_PLOT_SVG, _( "Plot SVG" ),
_( "Plot schematic sheet in SVG format" ) );
_( "Plot schematic sheet in SVG format" ) );
item->SetBitmap( plot_xpm );
choice_plot_fmt->Append( item );
/* Plot DXF */
item = new wxMenuItem( choice_plot_fmt, ID_GEN_PLOT_DXF, _( "Plot DXF" ),
_( "Plot schematic sheet in DXF format" ) );
_( "Plot schematic sheet in DXF format" ) );
item->SetBitmap( plot_xpm );
choice_plot_fmt->Append( item );
@ -125,8 +125,8 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
#ifdef __WINDOWS__
item = new wxMenuItem( choice_plot_fmt, ID_GEN_COPY_SHEET_TO_CLIPBOARD,
_( "Plot to Clipboard" ),
_( "Export drawings to clipboard" ) );
_( "Plot to Clipboard" ),
_( "Export drawings to clipboard" ) );
item->SetBitmap( copy_button );
choice_plot_fmt->Append( item );
@ -134,7 +134,8 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
ADD_MENUITEM_WITH_HELP_AND_SUBMENU( filesMenu, choice_plot_fmt,
ID_GEN_PLOT, _( "&Plot" ),
_( "Plot schematic sheet in HPGL, PostScript or SVG format" ),
_(
"Plot schematic sheet in HPGL, PostScript or SVG format" ),
plot_xpm );
/* Quit on all platforms except WXMAC */
@ -142,20 +143,19 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
filesMenu->AppendSeparator();
item = new wxMenuItem( filesMenu, wxID_EXIT, _( "&Quit" ),
_( "Quit EESchema" ) );
_( "Quit EESchema" ) );
filesMenu->Append( item );
#endif /* !defined( __WXMAC__) */
/**
* Edit menu
*/
wxMenu* editMenu = new wxMenu;
/* Undo */
text = AddHotkeyName( _( "Undo" ), s_Schematic_Hokeys_Descr, HK_UNDO);
text = AddHotkeyName( _( "Undo" ), s_Schematic_Hokeys_Descr, HK_UNDO );
item = new wxMenuItem( editMenu, wxID_UNDO, text,
HELP_UNDO, wxITEM_NORMAL );
@ -163,7 +163,7 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
editMenu->Append( item );
/* Redo */
text = AddHotkeyName( _( "Redo" ), s_Schematic_Hokeys_Descr, HK_REDO);
text = AddHotkeyName( _( "Redo" ), s_Schematic_Hokeys_Descr, HK_REDO );
item = new wxMenuItem( editMenu, wxID_REDO, text,
HELP_REDO, wxITEM_NORMAL );
@ -200,14 +200,13 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
editMenu->Append( item );
/**
* View menu
*/
wxMenu* viewMenu = new wxMenu;
/* Important Note for ZOOM IN and ZOOM OUT commands from menubar:
* we cannot add hotkey info here, because the hotkey HK_ZOOM_IN and HK_ZOOM_OUT
* we cannot add hotkey shortcut here, because the hotkey HK_ZOOM_IN and HK_ZOOM_OUT
* events(default = WXK_F1 and WXK_F2) are *NOT* equivalent to this menu command:
* zoom in and out from hotkeys are equivalent to the pop up menu zoom
* From here, zoomming is made around the screen center
@ -216,16 +215,20 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
*
* in others words HK_ZOOM_IN and HK_ZOOM_OUT *are NOT* accelerators
* for Zoom in and Zoom out sub menus
* SO WE ADD THE NAME OF THE CORRESPONDING HOTKEY AS A COMMENT, NOT AS A SHORTCUT
* using in AddHotkeyName call the option "false" (not a shortcut)
*/
/* Zoom in */
text =_( "Zoom In" );
text = AddHotkeyName( _( "Zoom In" ), s_Schematic_Hokeys_Descr,
ID_ZOOM_IN, false ); // add comment, not a shortcut
item = new wxMenuItem( viewMenu, ID_ZOOM_IN, text, HELP_ZOOM_IN,
wxITEM_NORMAL );
item->SetBitmap( zoom_in_xpm );
viewMenu->Append( item );
/* Zoom out */
text = _( "Zoom Out" );
text = AddHotkeyName( _( "Zoom Out" ), s_Schematic_Hokeys_Descr,
ID_ZOOM_OUT, false ); // add comment, not a shortcut
item = new wxMenuItem( viewMenu, ID_ZOOM_OUT, text, HELP_ZOOM_OUT,
wxITEM_NORMAL );
item->SetBitmap( zoom_out_xpm );
@ -252,7 +255,6 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
viewMenu->Append( item );
/**
* Place menu
* TODO: Unify the ID names!
@ -260,7 +262,9 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
wxMenu* placeMenu = new wxMenu;
/* Component */
item = new wxMenuItem( placeMenu, ID_COMPONENT_BUTT, _( "&Component" ),
text = AddHotkeyName( _( "&Component" ), s_Schematic_Hokeys_Descr,
HK_ADD_NEW_COMPONENT, false ); // add comment, not a shortcut
item = new wxMenuItem( placeMenu, ID_COMPONENT_BUTT, text,
HELP_PLACE_COMPONENTS, wxITEM_NORMAL );
item->SetBitmap( add_component_xpm );
placeMenu->Append( item );
@ -272,13 +276,15 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
placeMenu->Append( item );
/* Wire */
item = new wxMenuItem( placeMenu, ID_WIRE_BUTT, _( "&Wire" ),
text = AddHotkeyName( _( "&Wire" ), s_Schematic_Hokeys_Descr,
HK_BEGIN_WIRE, false ); // add comment, not a shortcut
item = new wxMenuItem( placeMenu, ID_WIRE_BUTT, text,
HELP_PLACE_WIRE, wxITEM_NORMAL );
item->SetBitmap( add_line_xpm );
placeMenu->Append( item );
/* Bus */
item = new wxMenuItem( placeMenu, ID_BUS_BUTT, _( "&Bus" ),
item = new wxMenuItem( placeMenu, ID_BUS_BUTT, _( "&Bus" ),
HELP_PLACE_BUS, wxITEM_NORMAL );
item->SetBitmap( add_bus_xpm );
placeMenu->Append( item );
@ -298,20 +304,25 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
placeMenu->Append( item );
/* No connect flag */
item = new wxMenuItem( placeMenu, ID_NOCONN_BUTT, _( "No connect flag" ),
text = AddHotkeyName( _( "No connect flag" ), s_Schematic_Hokeys_Descr,
HK_ADD_NOCONN_FLAG, false ); // add comment, not a shortcut
item = new wxMenuItem( placeMenu, ID_NOCONN_BUTT, text,
HELP_PLACE_NC_FLAG, wxITEM_NORMAL );
item->SetBitmap( noconn_button );
placeMenu->Append( item );
/* Net name */
item = new wxMenuItem( placeMenu, ID_LABEL_BUTT, _( "Label" ),
text = AddHotkeyName( _( "Label" ), s_Schematic_Hokeys_Descr,
HK_ADD_LABEL, false ); // add comment, not a shortcut
item = new wxMenuItem( placeMenu, ID_LABEL_BUTT, text,
HELP_PLACE_NETLABEL, wxITEM_NORMAL );
item->SetBitmap( add_line_label_xpm );
placeMenu->Append( item );
/* Global label */
item = new wxMenuItem( placeMenu, ID_GLABEL_BUTT, _( "Global label" ),
_( "Place a global label. Warning: all global labels with the same name are connected in whole hierarchy" ),
_(
"Place a global label. Warning: all global labels with the same name are connected in whole hierarchy" ),
wxITEM_NORMAL );
item->SetBitmap( add_glabel_xpm );
placeMenu->Append( item );
@ -371,7 +382,6 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
placeMenu->Append( item );
/**
* Preferences Menu
*/
@ -379,19 +389,19 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
/* Library */
item = new wxMenuItem( configmenu, ID_CONFIG_REQ, _( "&Library" ),
_( "Library preferences" ) );
_( "Library preferences" ) );
item->SetBitmap( library_xpm );
configmenu->Append( item );
/* Colors */
item = new wxMenuItem( configmenu, ID_COLORS_SETUP, _( "&Colors" ),
_( "Color preferences" ) );
_( "Color preferences" ) );
item->SetBitmap( palette_xpm );
configmenu->Append( item );
/* Options */
item = new wxMenuItem( configmenu, ID_OPTIONS_SETUP, _( "&Options" ),
_( "Eeschema general options and preferences" ) );
_( "Eeschema general options and preferences" ) );
item->SetBitmap( preference_xpm );
configmenu->Append( item );
@ -406,24 +416,23 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
/* Save preferences */
item = new wxMenuItem( configmenu, ID_CONFIG_SAVE, _( "&Save preferences" ),
_( "Save application preferences" ) );
_( "Save application preferences" ) );
item->SetBitmap( save_setup_xpm );
configmenu->Append( item );
/* Read preferences */
item = new wxMenuItem( configmenu, ID_CONFIG_READ, _( "&Read preferences" ),
_( "Read application preferences" ) );
_( "Read application preferences" ) );
item->SetBitmap( read_setup_xpm );
configmenu->Append( item );
/**
* Help Menu
*/
wxMenu* helpMenu = new wxMenu;
item = new wxMenuItem( helpMenu, ID_GENERAL_HELP, _( "&Contents" ),
_( "Open the eeschema manual" ) );
_( "Open the eeschema manual" ) );
item->SetBitmap( online_help_xpm );
helpMenu->Append( item );
@ -431,7 +440,7 @@ void WinEDA_SchematicFrame::ReCreateMenuBar()
#if !defined(__WXMAC__)
item = new wxMenuItem( helpMenu, ID_KICAD_ABOUT, _( "&About" ),
_( "About eeschema schematic designer" ) );
_( "About eeschema schematic designer" ) );
item->SetBitmap( info_xpm );
helpMenu->Append( item );

View File

@ -104,13 +104,13 @@ void WinEDA_GerberFrame::Process_Special_Functions( wxCommandEvent& event )
GetScreen()->m_BlockLocate.ClearItemsList();
}
if( m_ID_current_state == 0 )
SetToolID( 0, wxCURSOR_ARROW, wxEmptyString );
SetToolID( 0, 0, wxEmptyString );
else
SetCursor( DrawPanel->m_PanelCursor = DrawPanel->m_PanelDefaultCursor );
DrawPanel->SetCursor( DrawPanel->m_PanelCursor = DrawPanel->m_PanelDefaultCursor );
break;
default:
DrawPanel->UnManageCursor( 0, wxCURSOR_ARROW, wxEmptyString );
DrawPanel->UnManageCursor( 0, 0, wxEmptyString );
break;
}
@ -146,7 +146,7 @@ void WinEDA_GerberFrame::Process_Special_Functions( wxCommandEvent& event )
break;
case ID_POPUP_CLOSE_CURRENT_TOOL:
SetToolID( 0, wxCURSOR_ARROW, wxEmptyString );
SetToolID( 0, 0, wxEmptyString );
break;
case ID_POPUP_CANCEL_CURRENT_COMMAND:
@ -172,8 +172,6 @@ void WinEDA_GerberFrame::Process_Special_Functions( wxCommandEvent& event )
gerber_layer->m_Selected_Tool = tool;
DrawPanel->Refresh( TRUE );
}
else
DisplayError( this, _( "No layer selected" ) );
break;
case ID_GERBVIEW_SHOW_LIST_DCODES:

View File

@ -131,10 +131,13 @@ WinEDA_GerberFrame::WinEDA_GerberFrame( wxWindow* father,
m_show_layer_manager_tools = true;
m_Draw_Axis = true; // true to show X and Y axis on screen
m_Draw_Sheet_Ref = FALSE; // TRUE for reference drawings.
m_Draw_Sheet_Ref = false; // true for reference drawings.
m_HotkeysZoomAndGridList = s_Gerbview_Hokeys_Descr;
m_SelLayerBox = NULL;
m_SelLayerTool = NULL;
if( DrawPanel )
DrawPanel->m_Block_Enable = TRUE;
DrawPanel->m_Block_Enable = true;
// Give an icon
#ifdef __WINDOWS__
@ -238,7 +241,8 @@ void WinEDA_GerberFrame::OnCloseWindow( wxCloseEvent& Event )
*/
void WinEDA_GerberFrame::SetToolbars()
{
int layer = ( (PCB_SCREEN*) GetScreen() )->m_Active_Layer;
PCB_SCREEN* screen = (PCB_SCREEN*) GetScreen();
int layer = screen->m_Active_Layer;
GERBER* gerber = g_GERBER_List[layer];
if( m_HToolBar == NULL )
@ -246,40 +250,41 @@ void WinEDA_GerberFrame::SetToolbars()
if( GetScreen()->m_BlockLocate.m_Command == BLOCK_MOVE )
{
m_HToolBar->EnableTool( wxID_CUT, TRUE );
m_HToolBar->EnableTool( wxID_COPY, TRUE );
m_HToolBar->EnableTool( wxID_CUT, true );
m_HToolBar->EnableTool( wxID_COPY, true );
}
else
{
m_HToolBar->EnableTool( wxID_CUT, FALSE );
m_HToolBar->EnableTool( wxID_COPY, FALSE );
m_HToolBar->EnableTool( wxID_CUT, false );
m_HToolBar->EnableTool( wxID_COPY, false );
}
if( m_SelLayerBox->GetSelection() !=
( (PCB_SCREEN*) GetScreen() )->m_Active_Layer )
if( m_SelLayerBox && (m_SelLayerBox->GetSelection() != screen->m_Active_Layer) )
{
m_SelLayerBox->SetSelection(
( (PCB_SCREEN*) GetScreen() )->m_Active_Layer );
m_SelLayerBox->SetSelection( screen->m_Active_Layer );
}
if( gerber )
if( m_SelLayerTool )
{
int sel_index;
m_SelLayerTool->Enable( TRUE );
if( gerber->m_Selected_Tool < FIRST_DCODE ) // No tool selected
sel_index = 0;
else
sel_index = gerber->m_Selected_Tool - FIRST_DCODE + 1;
if( sel_index != m_SelLayerTool->GetSelection() )
if( gerber )
{
m_SelLayerTool->SetSelection( sel_index );
int sel_index;
m_SelLayerTool->Enable( true );
if( gerber->m_Selected_Tool < FIRST_DCODE ) // No tool selected
sel_index = 0;
else
sel_index = gerber->m_Selected_Tool - FIRST_DCODE + 1;
if( sel_index != m_SelLayerTool->GetSelection() )
{
m_SelLayerTool->SetSelection( sel_index );
}
}
else
{
m_SelLayerTool->SetSelection( 0 );
m_SelLayerTool->Enable( false );
}
}
else
{
m_SelLayerTool->SetSelection( 0 );
m_SelLayerTool->Enable( FALSE );
}
if( m_OptionsToolBar )
@ -287,9 +292,9 @@ void WinEDA_GerberFrame::SetToolbars()
m_OptionsToolBar->ToggleTool(
ID_TB_OPTIONS_SELECT_UNIT_MM,
g_UserUnit ==
MILLIMETRES ? TRUE : FALSE );
MILLIMETRES ? true : false );
m_OptionsToolBar->ToggleTool( ID_TB_OPTIONS_SELECT_UNIT_INCH,
g_UserUnit == INCHES ? TRUE : FALSE );
g_UserUnit == INCHES ? true : false );
m_OptionsToolBar->ToggleTool( ID_TB_OPTIONS_SHOW_POLAR_COORD,
DisplayOpt.DisplayPolarCood );

View File

@ -105,7 +105,6 @@ bool WinEDA_App::OnInit()
* main frame in order to display the
* real hotkeys in menus or tool tips
*/
frame = new WinEDA_GerberFrame( NULL, wxT( "GerbView" ),
wxPoint( 0, 0 ),
wxSize( 600, 400 ) );

View File

@ -3,6 +3,8 @@
/***************************************************/
#include "fctsys.h"
#include "wx/wupdlock.h"
#include "appl_wxstruct.h"
#include "common.h"
#include "macros.h"
@ -16,6 +18,8 @@
void WinEDA_GerberFrame::ReCreateMenuBar( void )
{
wxWindowUpdateLocker dummy(this);
wxMenuBar *menuBar = GetMenuBar();
/* Destroy the existing menu bar so it can be rebuilt. This allows
@ -143,6 +147,10 @@ void WinEDA_GerberFrame::ReCreateHToolbar( void )
if( m_HToolBar != NULL )
return;
// we create m_SelLayerTool that have a lot of items,
// so create a wxWindowUpdateLocker is a good idea
wxWindowUpdateLocker dummy(this);
if( GetScreen() )
{
layer = GetScreen()->m_Active_Layer;
@ -214,11 +222,12 @@ void WinEDA_GerberFrame::ReCreateHToolbar( void )
ID_TOOLBARH_GERBVIEW_SELECT_LAYER,
wxDefaultPosition, wxSize( 150, -1 ),
choices );
m_SelLayerBox->SetSelection( getActiveLayer() );
m_HToolBar->AddControl( m_SelLayerBox );
m_HToolBar->AddSeparator();
choices.Clear();
choices.Alloc(MAX_TOOLS+1);
choices.Add( _( "No tool" ) );
for( ii = 0; ii < MAX_TOOLS; ii++ )
@ -227,7 +236,6 @@ void WinEDA_GerberFrame::ReCreateHToolbar( void )
msg = _( "Tool " ); msg << ii + FIRST_DCODE;
choices.Add( msg );
}
m_SelLayerTool = new WinEDAChoiceBox( m_HToolBar,
ID_TOOLBARH_GERBER_SELECT_TOOL,
wxDefaultPosition, wxSize( 150, -1 ),
@ -238,7 +246,6 @@ void WinEDA_GerberFrame::ReCreateHToolbar( void )
// after adding the buttons to the toolbar, must call Realize() to reflect
// the changes
m_HToolBar->Realize();
SetToolbars();
}
@ -250,6 +257,8 @@ void WinEDA_GerberFrame::ReCreateVToolbar( void )
if( m_VToolBar )
return;
wxWindowUpdateLocker dummy(this);
m_VToolBar = new WinEDA_Toolbar( TOOLBAR_TOOL, this, ID_V_TOOLBAR, FALSE );
// Set up toolbar
@ -262,7 +271,6 @@ void WinEDA_GerberFrame::ReCreateVToolbar( void )
_( "Delete items" ) );
m_VToolBar->Realize();
SetToolbars();
}
@ -274,6 +282,8 @@ void WinEDA_GerberFrame::ReCreateOptToolbar( void )
if( m_OptionsToolBar )
return;
wxWindowUpdateLocker dummy(this);
// creation of tool bar options
m_OptionsToolBar = new WinEDA_Toolbar( TOOLBAR_OPTION, this,
ID_OPT_TOOLBAR, FALSE );
@ -327,5 +337,4 @@ void WinEDA_GerberFrame::ReCreateOptToolbar( void )
m_OptionsToolBar->Realize();
SetToolbars();
}

View File

@ -1 +1 @@
boost version: 1_40_0
boost version: 1_43_0

View File

@ -0,0 +1,46 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_ASSERT_DWA2006430_HPP
# define BOOST_CONCEPT_ASSERT_DWA2006430_HPP
# include <boost/config.hpp>
# include <boost/detail/workaround.hpp>
// The old protocol used a constraints() member function in concept
// checking classes. If the compiler supports SFINAE, we can detect
// that function and seamlessly support the old concept checking
// classes. In this release, backward compatibility with the old
// concept checking classes is enabled by default, where available.
// The old protocol is deprecated, though, and backward compatibility
// will no longer be the default in the next release.
# if !defined(BOOST_NO_OLD_CONCEPT_SUPPORT) \
&& !defined(BOOST_NO_SFINAE) \
\
&& !(BOOST_WORKAROUND(__GNUC__, == 3) && BOOST_WORKAROUND(__GNUC_MINOR__, < 4)) \
&& !(BOOST_WORKAROUND(__GNUC__, == 2))
// Note: gcc-2.96 through 3.3.x have some SFINAE, but no ability to
// check for the presence of particularmember functions.
# define BOOST_OLD_CONCEPT_SUPPORT
# endif
# ifdef BOOST_MSVC
# include <boost/concept/detail/msvc.hpp>
# elif BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
# include <boost/concept/detail/borland.hpp>
# else
# include <boost/concept/detail/general.hpp>
# endif
// Usage, in class or function context:
//
// BOOST_CONCEPT_ASSERT((UnaryFunctionConcept<F,bool,int>));
//
# define BOOST_CONCEPT_ASSERT(ModelInParens) \
BOOST_CONCEPT_ASSERT_FN(void(*)ModelInParens)
#endif // BOOST_CONCEPT_ASSERT_DWA2006430_HPP

View File

@ -0,0 +1,29 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_DETAIL_BORLAND_DWA2006429_HPP
# define BOOST_CONCEPT_DETAIL_BORLAND_DWA2006429_HPP
# include <boost/preprocessor/cat.hpp>
namespace boost { namespace concept {
template <class ModelFnPtr>
struct require;
template <class Model>
struct require<void(*)(Model)>
{
enum { instantiate = sizeof((((Model*)0)->~Model()), 3) };
};
# define BOOST_CONCEPT_ASSERT_FN( ModelFnPtr ) \
enum \
{ \
BOOST_PP_CAT(boost_concept_check,__LINE__) = \
boost::concept::require<ModelFnPtr>::instantiate \
}
}} // namespace boost::concept
#endif // BOOST_CONCEPT_DETAIL_BORLAND_DWA2006429_HPP

View File

@ -0,0 +1,51 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_DETAIL_CONCEPT_DEF_DWA200651_HPP
# define BOOST_CONCEPT_DETAIL_CONCEPT_DEF_DWA200651_HPP
# include <boost/preprocessor/seq/for_each_i.hpp>
# include <boost/preprocessor/seq/enum.hpp>
# include <boost/preprocessor/comma_if.hpp>
# include <boost/preprocessor/cat.hpp>
#endif // BOOST_CONCEPT_DETAIL_CONCEPT_DEF_DWA200651_HPP
// BOOST_concept(SomeName, (p1)(p2)...(pN))
//
// Expands to "template <class p1, class p2, ...class pN> struct SomeName"
//
// Also defines an equivalent SomeNameConcept for backward compatibility.
// Maybe in the next release we can kill off the "Concept" suffix for good.
#if BOOST_WORKAROUND(__GNUC__, <= 3)
# define BOOST_concept(name, params) \
template < BOOST_PP_SEQ_FOR_EACH_I(BOOST_CONCEPT_typename,~,params) > \
struct name; /* forward declaration */ \
\
template < BOOST_PP_SEQ_FOR_EACH_I(BOOST_CONCEPT_typename,~,params) > \
struct BOOST_PP_CAT(name,Concept) \
: name< BOOST_PP_SEQ_ENUM(params) > \
{ \
/* at least 2.96 and 3.4.3 both need this */ \
BOOST_PP_CAT(name,Concept)(); \
}; \
\
template < BOOST_PP_SEQ_FOR_EACH_I(BOOST_CONCEPT_typename,~,params) > \
struct name
#else
# define BOOST_concept(name, params) \
template < BOOST_PP_SEQ_FOR_EACH_I(BOOST_CONCEPT_typename,~,params) > \
struct name; /* forward declaration */ \
\
template < BOOST_PP_SEQ_FOR_EACH_I(BOOST_CONCEPT_typename,~,params) > \
struct BOOST_PP_CAT(name,Concept) \
: name< BOOST_PP_SEQ_ENUM(params) > \
{ \
}; \
\
template < BOOST_PP_SEQ_FOR_EACH_I(BOOST_CONCEPT_typename,~,params) > \
struct name
#endif
// Helper for BOOST_concept, above.
# define BOOST_CONCEPT_typename(r, ignored, index, t) \
BOOST_PP_COMMA_IF(index) typename t

View File

@ -0,0 +1,5 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
# undef BOOST_concept_typename
# undef BOOST_concept

View File

@ -0,0 +1,66 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_DETAIL_GENERAL_DWA2006429_HPP
# define BOOST_CONCEPT_DETAIL_GENERAL_DWA2006429_HPP
# include <boost/preprocessor/cat.hpp>
# ifdef BOOST_OLD_CONCEPT_SUPPORT
# include <boost/concept/detail/has_constraints.hpp>
# include <boost/mpl/if.hpp>
# endif
// This implementation works on Comeau and GCC, all the way back to
// 2.95
namespace boost { namespace concept {
template <class ModelFn>
struct requirement_;
namespace detail
{
template <void(*)()> struct instantiate {};
}
template <class Model>
struct requirement
{
static void failed() { ((Model*)0)->~Model(); }
};
# ifdef BOOST_OLD_CONCEPT_SUPPORT
template <class Model>
struct constraint
{
static void failed() { ((Model*)0)->constraints(); }
};
template <class Model>
struct requirement_<void(*)(Model)>
: mpl::if_<
concept::not_satisfied<Model>
, constraint<Model>
, requirement<Model>
>::type
{};
# else
// For GCC-2.x, these can't have exactly the same name
template <class Model>
struct requirement_<void(*)(Model)>
: requirement<Model>
{};
# endif
# define BOOST_CONCEPT_ASSERT_FN( ModelFnPtr ) \
typedef ::boost::concept::detail::instantiate< \
&::boost::concept::requirement_<ModelFnPtr>::failed> \
BOOST_PP_CAT(boost_concept_check,__LINE__)
}}
#endif // BOOST_CONCEPT_DETAIL_GENERAL_DWA2006429_HPP

View File

@ -0,0 +1,48 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_DETAIL_HAS_CONSTRAINTS_DWA2006429_HPP
# define BOOST_CONCEPT_DETAIL_HAS_CONSTRAINTS_DWA2006429_HPP
# include <boost/mpl/bool.hpp>
# include <boost/detail/workaround.hpp>
namespace boost { namespace concept {
namespace detail
{
// Here we implement the metafunction that detects whether a
// constraints metafunction exists
typedef char yes;
typedef char (&no)[2];
template <class Model, void (Model::*)()>
struct wrap_constraints {};
#if BOOST_WORKAROUND(__SUNPRO_CC, <= 0x580) || defined(__CUDACC__)
// Work around the following bogus error in Sun Studio 11, by
// turning off the has_constraints function entirely:
// Error: complex expression not allowed in dependent template
// argument expression
inline no has_constraints_(...);
#else
template <class Model>
inline yes has_constraints_(Model*, wrap_constraints<Model,&Model::constraints>* = 0);
inline no has_constraints_(...);
#endif
}
// This would be called "detail::has_constraints," but it has a strong
// tendency to show up in error messages.
template <class Model>
struct not_satisfied
{
BOOST_STATIC_CONSTANT(
bool
, value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) );
typedef mpl::bool_<value> type;
};
}} // namespace boost::concept::detail
#endif // BOOST_CONCEPT_DETAIL_HAS_CONSTRAINTS_DWA2006429_HPP

View File

@ -0,0 +1,92 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_CHECK_MSVC_DWA2006429_HPP
# define BOOST_CONCEPT_CHECK_MSVC_DWA2006429_HPP
# include <boost/preprocessor/cat.hpp>
# ifdef BOOST_OLD_CONCEPT_SUPPORT
# include <boost/concept/detail/has_constraints.hpp>
# include <boost/mpl/if.hpp>
# endif
namespace boost { namespace concept {
template <class Model>
struct check
{
virtual void failed(Model* x)
{
x->~Model();
}
};
# ifdef BOOST_OLD_CONCEPT_SUPPORT
namespace detail
{
// No need for a virtual function here, since evaluating
// not_satisfied below will have already instantiated the
// constraints() member.
struct constraint {};
}
template <class Model>
struct require
: mpl::if_c<
not_satisfied<Model>::value
, detail::constraint
, check<Model>
>::type
{};
# else
template <class Model>
struct require
: check<Model>
{};
# endif
# if BOOST_WORKAROUND(BOOST_MSVC, == 1310)
//
// The iterator library sees some really strange errors unless we
// do things this way.
//
template <class Model>
struct require<void(*)(Model)>
{
virtual void failed(Model*)
{
require<Model>();
}
};
# define BOOST_CONCEPT_ASSERT_FN( ModelFnPtr ) \
enum \
{ \
BOOST_PP_CAT(boost_concept_check,__LINE__) = \
sizeof(::boost::concept::require<ModelFnPtr>) \
}
# else // Not vc-7.1
template <class Model>
require<Model>
require_(void(*)(Model));
# define BOOST_CONCEPT_ASSERT_FN( ModelFnPtr ) \
enum \
{ \
BOOST_PP_CAT(boost_concept_check,__LINE__) = \
sizeof(::boost::concept::require_((ModelFnPtr)0)) \
}
# endif
}}
#endif // BOOST_CONCEPT_CHECK_MSVC_DWA2006429_HPP

View File

@ -0,0 +1,78 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_REQUIRES_DWA2006430_HPP
# define BOOST_CONCEPT_REQUIRES_DWA2006430_HPP
# include <boost/config.hpp>
# include <boost/parameter/aux_/parenthesized_type.hpp>
# include <boost/concept/assert.hpp>
# include <boost/preprocessor/seq/for_each.hpp>
namespace boost {
// Template for use in handwritten assertions
template <class Model, class More>
struct requires_ : More
{
# if BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
typedef typename More::type type;
# endif
BOOST_CONCEPT_ASSERT((Model));
};
// Template for use by macros, where models must be wrapped in parens.
// This isn't in namespace detail to keep extra cruft out of resulting
// error messages.
template <class ModelFn>
struct _requires_
{
enum { value = 0 };
BOOST_CONCEPT_ASSERT_FN(ModelFn);
};
template <int check, class Result>
struct Requires_ : ::boost::parameter::aux::unaryfunptr_arg_type<Result>
{
# if BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
typedef typename ::boost::parameter::aux::unaryfunptr_arg_type<Result>::type type;
# endif
};
# if BOOST_WORKAROUND(BOOST_INTEL_WIN, BOOST_TESTED_AT(1010))
# define BOOST_CONCEPT_REQUIRES_(r,data,t) | (::boost::_requires_<void(*)t>::value)
# else
# define BOOST_CONCEPT_REQUIRES_(r,data,t) + (::boost::_requires_<void(*)t>::value)
# endif
#if defined(NDEBUG) || BOOST_WORKAROUND(BOOST_MSVC, < 1300)
# define BOOST_CONCEPT_REQUIRES(models, result) \
typename ::boost::parameter::aux::unaryfunptr_arg_type<void(*)result>::type
#elif BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
// Same thing as below without the initial typename
# define BOOST_CONCEPT_REQUIRES(models, result) \
::boost::Requires_< \
(0 BOOST_PP_SEQ_FOR_EACH(BOOST_CONCEPT_REQUIRES_, ~, models)), \
::boost::parameter::aux::unaryfunptr_arg_type<void(*)result> \
>::type
#else
// This just ICEs on MSVC6 :(
# define BOOST_CONCEPT_REQUIRES(models, result) \
typename ::boost::Requires_< \
(0 BOOST_PP_SEQ_FOR_EACH(BOOST_CONCEPT_REQUIRES_, ~, models)), \
void(*)result \
>::type
#endif
// C++0x proposed syntax changed. This supports an older usage
#define BOOST_CONCEPT_WHERE(models,result) BOOST_CONCEPT_REQUIRES(models,result)
} // namespace boost::concept_check
#endif // BOOST_CONCEPT_REQUIRES_DWA2006430_HPP

View File

@ -0,0 +1,43 @@
// Copyright David Abrahams 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONCEPT_USAGE_DWA2006919_HPP
# define BOOST_CONCEPT_USAGE_DWA2006919_HPP
# include <boost/concept/assert.hpp>
# include <boost/detail/workaround.hpp>
namespace boost { namespace concept {
# if BOOST_WORKAROUND(__GNUC__, == 2)
# define BOOST_CONCEPT_USAGE(model) ~model()
# else
template <class Model>
struct usage_requirements
{
~usage_requirements() { ((Model*)0)->~Model(); }
};
# if BOOST_WORKAROUND(__GNUC__, <= 3)
# define BOOST_CONCEPT_USAGE(model) \
model(); /* at least 2.96 and 3.4.3 both need this :( */ \
BOOST_CONCEPT_ASSERT((boost::concept::usage_requirements<model>)); \
~model()
# else
# define BOOST_CONCEPT_USAGE(model) \
BOOST_CONCEPT_ASSERT((boost::concept::usage_requirements<model>)); \
~model()
# endif
# endif
}} // namespace boost::concept
#endif // BOOST_CONCEPT_USAGE_DWA2006919_HPP

File diff suppressed because it is too large Load Diff

View File

@ -66,7 +66,6 @@
// Borland C++ Builder 6 and below:
#if (__BORLANDC__ <= 0x564)
# define BOOST_NO_INTEGRAL_INT64_T
# ifdef NDEBUG
// fix broken <cstring> so that Boost.test works:
@ -121,6 +120,7 @@
#endif
// Borland C++ Builder 2008 and below:
# define BOOST_NO_INTEGRAL_INT64_T
# define BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL
# define BOOST_NO_DEPENDENT_NESTED_DERIVATIONS
# define BOOST_NO_MEMBER_TEMPLATE_FRIENDS

View File

@ -19,8 +19,8 @@
#endif
//
// versions check:
// last known and checked version is 0x610
#if (__CODEGEARC__ > 0x613)
// last known and checked version is 0x620
#if (__CODEGEARC__ > 0x620)
# if defined(BOOST_ASSERT_CONFIG)
# error "Unknown compiler version - please run the configure tests and report the results"
# else
@ -30,20 +30,24 @@
// CodeGear C++ Builder 2009
#if (__CODEGEARC__ <= 0x613)
# define BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL
# define BOOST_NO_INTEGRAL_INT64_T
# define BOOST_NO_DEPENDENT_NESTED_DERIVATIONS
# define BOOST_NO_MEMBER_TEMPLATE_FRIENDS
# define BOOST_NO_PRIVATE_IN_AGGREGATE
# define BOOST_NO_TWO_PHASE_NAME_LOOKUP
# define BOOST_NO_USING_DECLARATION_OVERLOADS_FROM_TYPENAME_BASE
# define BOOST_NO_USING_TEMPLATE
// we shouldn't really need this - but too many things choke
// without it, this needs more investigation:
# define BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
# define BOOST_NO_TYPENAME_WITH_CTOR // Cannot use typename keyword when making temporaries of a dependant type
# define BOOST_NO_NESTED_FRIENDSHIP // TC1 gives nested classes access rights as any other member
# define BOOST_SP_NO_SP_CONVERTIBLE
#endif
// CodeGear C++ Builder 2010
#if (__CODEGEARC__ <= 0x620)
# define BOOST_NO_TYPENAME_WITH_CTOR // Cannot use typename keyword when making temporaries of a dependant type
# define BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL
# define BOOST_NO_MEMBER_TEMPLATE_FRIENDS
# define BOOST_NO_NESTED_FRIENDSHIP // TC1 gives nested classes access rights as any other member
# define BOOST_NO_USING_TEMPLATE
# define BOOST_NO_TWO_PHASE_NAME_LOOKUP
// Temporary hack, until specific MPL preprocessed headers are generated
# define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS
@ -59,7 +63,6 @@
# endif
#endif
//
// C++0x macros:
//

View File

@ -108,11 +108,8 @@
//
#define BOOST_NO_CONSTEXPR
#define BOOST_NO_EXTERN_TEMPLATE
#define BOOST_NO_LAMBDAS
#define BOOST_NO_NULLPTR
#define BOOST_NO_RAW_LITERALS
#define BOOST_NO_TEMPLATE_ALIASES
#define BOOST_NO_UNICODE_LITERALS
// C++0x features in 4.3.n and later
//
@ -168,6 +165,9 @@
//
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 5) || !defined(__GXX_EXPERIMENTAL_CXX0X__)
# define BOOST_NO_EXPLICIT_CONVERSION_OPERATORS
# define BOOST_NO_LAMBDAS
# define BOOST_NO_RAW_LITERALS
# define BOOST_NO_UNICODE_LITERALS
#endif
// ConceptGCC compiler:

View File

@ -0,0 +1,85 @@
// (C) Copyright Eric Jourdanneau, Joel Falcou 2010
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
// NVIDIA CUDA C++ compiler setup
#ifndef BOOST_COMPILER
# define BOOST_COMPILER "NVIDIA CUDA C++ Compiler"
#endif
// NVIDIA Specific support
// BOOST_GPU_ENABLED : Flag a function or a method as being enabled on the host and device
#define BOOST_GPU_ENABLED __host__ __device__
// Boost support macro for NVCC
// NVCC Basically behaves like some flavor of MSVC6 + some specific quirks
#define BOOST_NO_INCLASS_MEMBER_INITIALIZATION
#define BOOST_MSVC6_MEMBER_TEMPLATES
#define BOOST_HAS_UNISTD_H
#define BOOST_HAS_STDINT_H
#define BOOST_HAS_SIGACTION
#define BOOST_HAS_SCHED_YIELD
#define BOOST_HAS_PTHREADS
#define BOOST_HAS_PTHREAD_YIELD
#define BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
#define BOOST_HAS_PARTIAL_STD_ALLOCATOR
#define BOOST_HAS_NRVO
#define BOOST_HAS_NL_TYPES_H
#define BOOST_HAS_NANOSLEEP
#define BOOST_HAS_LONG_LONG
#define BOOST_HAS_LOG1P
#define BOOST_HAS_GETTIMEOFDAY
#define BOOST_HAS_EXPM1
#define BOOST_HAS_DIRENT_H
#define BOOST_HAS_CLOCK_GETTIME
#define BOOST_NO_VARIADIC_TEMPLATES
#define BOOST_NO_UNICODE_LITERALS
#define BOOST_NO_TEMPLATE_ALIASES
#define BOOST_NO_STD_UNORDERED
#define BOOST_NO_STATIC_ASSERT
#define BOOST_NO_SFINAE_EXPR
#define BOOST_NO_SCOPED_ENUMS
#define BOOST_NO_RVALUE_REFERENCES
#define BOOST_NO_RAW_LITERALS
#define BOOST_NO_NULLPTR
#define BOOST_NO_LAMBDAS
#define BOOST_NO_INITIALIZER_LISTS
#define BOOST_NO_MS_INT64_NUMERIC_LIMITS
#define BOOST_NO_FUNCTION_TEMPLATE_DEFAULT_ARGS
#define BOOST_NO_EXTERN_TEMPLATE
#define BOOST_NO_EXPLICIT_CONVERSION_OPERATORS
#define BOOST_NO_DELETED_FUNCTIONS
#define BOOST_NO_DEFAULTED_FUNCTIONS
#define BOOST_NO_DECLTYPE
#define BOOST_NO_CONSTEXPR
#define BOOST_NO_CONCEPTS
#define BOOST_NO_CHAR32_T
#define BOOST_NO_CHAR16_T
#define BOOST_NO_AUTO_MULTIDECLARATIONS
#define BOOST_NO_AUTO_DECLARATIONS
#define BOOST_NO_0X_HDR_UNORDERED_SET
#define BOOST_NO_0X_HDR_UNORDERED_MAP
#define BOOST_NO_0X_HDR_TYPE_TRAITS
#define BOOST_NO_0X_HDR_TUPLE
#define BOOST_NO_0X_HDR_THREAD
#define BOOST_NO_0X_HDR_SYSTEM_ERROR
#define BOOST_NO_0X_HDR_REGEX
#define BOOST_NO_0X_HDR_RATIO
#define BOOST_NO_0X_HDR_RANDOM
#define BOOST_NO_0X_HDR_MUTEX
#define BOOST_NO_0X_HDR_MEMORY_CONCEPTS
#define BOOST_NO_0X_HDR_ITERATOR_CONCEPTS
#define BOOST_NO_0X_HDR_INITIALIZER_LIST
#define BOOST_NO_0X_HDR_FUTURE
#define BOOST_NO_0X_HDR_FORWARD_LIST
#define BOOST_NO_0X_HDR_CONTAINER_CONCEPTS
#define BOOST_NO_0X_HDR_CONDITION_VARIABLE
#define BOOST_NO_0X_HDR_CONCEPTS
#define BOOST_NO_0X_HDR_CODECVT
#define BOOST_NO_0X_HDR_CHRONO
#define BOOST_NO_0X_HDR_ARRAY

View File

@ -16,11 +16,28 @@
// if no threading API is detected.
//
#if (__PGIC__ >= 7)
// PGI 10.x doesn't seem to define __PGIC__
// versions earlier than 10.x do define __PGIC__
#if __PGIC__ >= 10
// options requested by configure --enable-test
#define BOOST_HAS_PTHREADS
#define BOOST_HAS_NRVO
#define BOOST_HAS_LONG_LONG
// options --enable-test wants undefined
#undef BOOST_NO_STDC_NAMESPACE
#undef BOOST_NO_EXCEPTION_STD_NAMESPACE
#undef BOOST_DEDUCED_TYPENAME
#elif __PGIC__ >= 7
#define BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL
#define BOOST_NO_TWO_PHASE_NAME_LOOKUP
#define BOOST_NO_SWPRINTF
#define BOOST_NO_AUTO_MULTIDECLARATIONS
#define BOOST_NO_AUTO_DECLARATIONS
#else
@ -32,8 +49,6 @@
//
// See boost\config\suffix.hpp for BOOST_NO_LONG_LONG
//
#define BOOST_NO_AUTO_DECLARATIONS
#define BOOST_NO_AUTO_MULTIDECLARATIONS
#define BOOST_NO_CHAR16_T
#define BOOST_NO_CHAR32_T
#define BOOST_NO_CONCEPTS

View File

@ -125,7 +125,7 @@
#if (_MSC_VER >= 1200)
# define BOOST_HAS_MS_INT64
#endif
#if (_MSC_VER >= 1310) && defined(_MSC_EXTENSIONS)
#if (_MSC_VER >= 1310) && (defined(_MSC_EXTENSIONS) || (_MSC_VER >= 1400))
# define BOOST_HAS_LONG_LONG
#else
# define BOOST_NO_LONG_LONG

View File

@ -0,0 +1,94 @@
// (C) Copyright Yuriy Krasnoschek 2009.
// (C) Copyright John Maddock 2001 - 2003.
// (C) Copyright Jens Maurer 2001 - 2003.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version.
// symbian specific config options:
#define BOOST_PLATFORM "Symbian"
#define BOOST_SYMBIAN 1
#if defined(__S60_3X__)
// Open C / C++ plugin was introdused in this SDK, earlier versions don't have CRT / STL
# define BOOST_S60_3rd_EDITION_FP2_OR_LATER_SDK
// make sure we have __GLIBC_PREREQ if available at all
# include <cstdlib>
// boilerplate code:
# define BOOST_HAS_UNISTD_H
# include <boost/config/posix_features.hpp>
// S60 SDK defines _POSIX_VERSION as POSIX.1
# ifndef BOOST_HAS_STDINT_H
# define BOOST_HAS_STDINT_H
# endif
# ifndef BOOST_HAS_GETTIMEOFDAY
# define BOOST_HAS_GETTIMEOFDAY
# endif
# ifndef BOOST_HAS_DIRENT_H
# define BOOST_HAS_DIRENT_H
# endif
# ifndef BOOST_HAS_SIGACTION
# define BOOST_HAS_SIGACTION
# endif
# ifndef BOOST_HAS_PTHREADS
# define BOOST_HAS_PTHREADS
# endif
# ifndef BOOST_HAS_NANOSLEEP
# define BOOST_HAS_NANOSLEEP
# endif
# ifndef BOOST_HAS_SCHED_YIELD
# define BOOST_HAS_SCHED_YIELD
# endif
# ifndef BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
# define BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE
# endif
# ifndef BOOST_HAS_LOG1P
# define BOOST_HAS_LOG1P
# endif
# ifndef BOOST_HAS_EXPM1
# define BOOST_HAS_EXPM1
# endif
# ifndef BOOST_POSIX_API
# define BOOST_POSIX_API
# endif
// endianess support
# include <sys/endian.h>
// Symbian SDK provides _BYTE_ORDER instead of __BYTE_ORDER
# ifndef __LITTLE_ENDIAN
# ifdef _LITTLE_ENDIAN
# define __LITTLE_ENDIAN _LITTLE_ENDIAN
# else
# define __LITTLE_ENDIAN 1234
# endif
# endif
# ifndef __BIG_ENDIAN
# ifdef _BIG_ENDIAN
# define __BIG_ENDIAN _BIG_ENDIAN
# else
# define __BIG_ENDIAN 4321
# endif
# endif
# ifndef __BYTE_ORDER
# define __BYTE_ORDER __LITTLE_ENDIAN // Symbian is LE
# endif
// Known limitations
# define BOOST_ASIO_DISABLE_SERIAL_PORT
# define BOOST_DATE_TIME_NO_LOCALE
# define BOOST_NO_STD_WSTRING
# define BOOST_EXCEPTION_DISABLE
# define BOOST_NO_EXCEPTIONS
#else // TODO: More platform support e.g. UIQ
# error "Unsuppoted Symbian SDK"
#endif
#if defined(__WINSCW__) && !defined(BOOST_DISABLE_WIN32)
# define BOOST_DISABLE_WIN32 // winscw defines WIN32 macro
#endif

View File

@ -31,6 +31,7 @@
# define BOOST_CXX_IBMCPP 0
# define BOOST_CXX_MSVC 0
# define BOOST_CXX_PGI 0
# define BOOST_CXX_NVCC 0
// locate which compiler we are using and define
@ -40,6 +41,10 @@
// GCC-XML emulates other compilers, it has to appear first here!
# define BOOST_COMPILER_CONFIG "boost/config/compiler/gcc_xml.hpp"
#elif defined __CUDACC__
// NVIDIA CUDA C++ compiler for GPU
# define BOOST_COMPILER_CONFIG "boost/config/compiler/nvcc.hpp"
#elif defined __COMO__
// Comeau C++
# define BOOST_COMPILER_CONFIG "boost/config/compiler/comeau.hpp"

View File

@ -65,6 +65,10 @@
// vxWorks:
# define BOOST_PLATFORM_CONFIG "boost/config/platform/vxworks.hpp"
#elif defined(__SYMBIAN32__)
// Symbian:
# define BOOST_PLATFORM_CONFIG "boost/config/platform/symbian.hpp"
#else
# if defined(unix) \

View File

@ -8,7 +8,7 @@
// Copyright (c) 2002-2003 David Abrahams
// Copyright (c) 2003 Gennaro Prota
// Copyright (c) 2003 Eric Friedman
//
// Copyright (c) 2010 Eric Jourdanneau, Joel Falcou
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
@ -596,6 +596,11 @@ namespace boost{
# endif
# endif
//
// Set some default values GPU support
//
# ifndef BOOST_GPU_ENABLED
# define BOOST_GPU_ENABLED
# endif
#endif

View File

@ -40,115 +40,30 @@
#include <algorithm>
#include <vector>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/algorithm/copy.hpp>
#include <boost/range/algorithm/equal.hpp>
#include <boost/range/algorithm/sort.hpp>
#include <boost/range/algorithm/stable_sort.hpp>
#include <boost/range/algorithm/find_if.hpp>
#include <boost/range/algorithm/count.hpp>
#include <boost/range/algorithm/count_if.hpp>
#include <boost/range/algorithm_ext/is_sorted.hpp>
#include <boost/range/algorithm_ext/iota.hpp>
namespace boost {
template <typename Iter1, typename Iter2>
Iter1 begin(const std::pair<Iter1, Iter2>& p) { return p.first; }
template <typename Iter1, typename Iter2>
Iter2 end(const std::pair<Iter1, Iter2>& p) { return p.second; }
template <typename Iter1, typename Iter2>
typename boost::detail::iterator_traits<Iter1>::difference_type
size(const std::pair<Iter1, Iter2>& p) {
return std::distance(p.first, p.second);
}
#if 0
// These seem to interfere with the std::pair overloads :(
template <typename Container>
typename Container::iterator
begin(Container& c) { return c.begin(); }
template <typename Container>
typename Container::const_iterator
begin(const Container& c) { return c.begin(); }
template <typename Container>
typename Container::iterator
end(Container& c) { return c.end(); }
template <typename Container>
typename Container::const_iterator
end(const Container& c) { return c.end(); }
template <typename Container>
typename Container::size_type
size(const Container& c) { return c.size(); }
#else
template <typename T>
typename std::vector<T>::iterator
begin(std::vector<T>& c) { return c.begin(); }
template <typename T>
typename std::vector<T>::const_iterator
begin(const std::vector<T>& c) { return c.begin(); }
template <typename T>
typename std::vector<T>::iterator
end(std::vector<T>& c) { return c.end(); }
template <typename T>
typename std::vector<T>::const_iterator
end(const std::vector<T>& c) { return c.end(); }
template <typename T>
typename std::vector<T>::size_type
size(const std::vector<T>& c) { return c.size(); }
#endif
template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value)
{
for (; first != last; ++first, ++value)
*first = value;
}
template <typename Container, typename T>
void iota(Container& c, const T& value)
{
iota(begin(c), end(c), value);
}
// Also do version with 2nd container?
template <typename Container, typename OutIter>
OutIter copy(const Container& c, OutIter result) {
return std::copy(begin(c), end(c), result);
}
template <typename Container1, typename Container2>
bool equal(const Container1& c1, const Container2& c2)
{
if (size(c1) != size(c2))
return false;
return std::equal(begin(c1), end(c1), begin(c2));
}
template <typename Container>
void sort(Container& c) { std::sort(begin(c), end(c)); }
template <typename Container, typename Predicate>
void sort(Container& c, const Predicate& p) {
std::sort(begin(c), end(c), p);
}
template <typename Container>
void stable_sort(Container& c) { std::stable_sort(begin(c), end(c)); }
template <typename Container, typename Predicate>
void stable_sort(Container& c, const Predicate& p) {
std::stable_sort(begin(c), end(c), p);
}
template <typename InputIterator, typename Predicate>
bool any_if(InputIterator first, InputIterator last, Predicate p)
{
return std::find_if(first, last, p) != last;
}
template <typename Container, typename Predicate>
bool any_if(const Container& c, Predicate p)
{
return any_if(begin(c), end(c), p);
return any_if(boost::begin(c), boost::end(c), p);
}
template <typename InputIterator, typename T>
@ -159,62 +74,7 @@ namespace boost {
template <typename Container, typename T>
bool container_contains(const Container& c, const T& value)
{
return container_contains(begin(c), end(c), value);
}
template <typename Container, typename T>
std::size_t count(const Container& c, const T& value)
{
return std::count(begin(c), end(c), value);
}
template <typename Container, typename Predicate>
std::size_t count_if(const Container& c, Predicate p)
{
return std::count_if(begin(c), end(c), p);
}
template <typename ForwardIterator>
bool is_sorted(ForwardIterator first, ForwardIterator last)
{
if (first == last)
return true;
ForwardIterator next = first;
for (++next; next != last; first = next, ++next) {
if (*next < *first)
return false;
}
return true;
}
template <typename ForwardIterator, typename StrictWeakOrdering>
bool is_sorted(ForwardIterator first, ForwardIterator last,
StrictWeakOrdering comp)
{
if (first == last)
return true;
ForwardIterator next = first;
for (++next; next != last; first = next, ++next) {
if (comp(*next, *first))
return false;
}
return true;
}
template <typename Container>
bool is_sorted(const Container& c)
{
return is_sorted(begin(c), end(c));
}
template <typename Container, typename StrictWeakOrdering>
bool is_sorted(const Container& c, StrictWeakOrdering comp)
{
return is_sorted(begin(c), end(c), comp);
return container_contains(boost::begin(c), boost::end(c), value);
}
} // namespace boost

View File

@ -13,7 +13,9 @@
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#if ((defined(__GLIBCPP__) || defined(__GLIBCXX__)) && defined(_GLIBCXX_DEBUG)) \
#if defined(BOOST_DETAIL_NO_CONTAINER_FWD) \
|| ((defined(__GLIBCPP__) || defined(__GLIBCXX__)) \
&& (defined(_GLIBCXX_DEBUG) || defined(_GLIBCXX_PARALLEL))) \
|| BOOST_WORKAROUND(__BORLANDC__, > 0x551) \
|| BOOST_WORKAROUND(__DMC__, BOOST_TESTED_AT(0x842)) \
|| (defined(__SGI_STL_PORT) || defined(_STLPORT_VERSION))

View File

@ -54,11 +54,23 @@ extern "C" long __cdecl InterlockedExchangeAdd( long*, long );
#elif defined( BOOST_MSVC ) || defined( BOOST_INTEL_WIN )
#if defined( __CLRCALL_PURE_OR_CDECL )
extern "C" long __CLRCALL_PURE_OR_CDECL _InterlockedIncrement( long volatile * );
extern "C" long __CLRCALL_PURE_OR_CDECL _InterlockedDecrement( long volatile * );
extern "C" long __CLRCALL_PURE_OR_CDECL _InterlockedCompareExchange( long volatile *, long, long );
extern "C" long __CLRCALL_PURE_OR_CDECL _InterlockedExchange( long volatile *, long );
extern "C" long __CLRCALL_PURE_OR_CDECL _InterlockedExchangeAdd( long volatile *, long );
#else
extern "C" long __cdecl _InterlockedIncrement( long volatile * );
extern "C" long __cdecl _InterlockedDecrement( long volatile * );
extern "C" long __cdecl _InterlockedCompareExchange( long volatile *, long, long );
extern "C" long __cdecl _InterlockedExchange( long volatile *, long);
extern "C" long __cdecl _InterlockedExchangeAdd( long volatile *, long);
extern "C" long __cdecl _InterlockedExchange( long volatile *, long );
extern "C" long __cdecl _InterlockedExchangeAdd( long volatile *, long );
#endif
# pragma intrinsic( _InterlockedIncrement )
# pragma intrinsic( _InterlockedDecrement )

View File

@ -173,8 +173,8 @@ inline void lcast_set_precision(std::ios_base& stream, T*)
template<class Source, class Target>
inline void lcast_set_precision(std::ios_base& stream, Source*, Target*)
{
std::streamsize const s = lcast_get_precision((Source*)0);
std::streamsize const t = lcast_get_precision((Target*)0);
std::streamsize const s = lcast_get_precision(static_cast<Source*>(0));
std::streamsize const t = lcast_get_precision(static_cast<Target*>(0));
stream.precision(s > t ? s : t);
}

View File

@ -41,9 +41,9 @@
#ifdef BOOST_NO_SCOPED_ENUMS
# define BOOST_SCOPED_ENUM_START(name) struct name { enum enum_t
# define BOOST_SCOPED_ENUM_START(name) struct name { enum enum_type
# define BOOST_SCOPED_ENUM_END };
# define BOOST_SCOPED_ENUM(name) name::enum_t
# define BOOST_SCOPED_ENUM(name) name::enum_type
#else

View File

@ -19,20 +19,66 @@
#if defined( BOOST_NO_TYPEID )
#include <boost/current_function.hpp>
#include <functional>
namespace boost
{
namespace detail
{
typedef void* sp_typeinfo;
class sp_typeinfo
{
private:
sp_typeinfo( sp_typeinfo const& );
sp_typeinfo& operator=( sp_typeinfo const& );
char const * name_;
public:
explicit sp_typeinfo( char const * name ): name_( name )
{
}
bool operator==( sp_typeinfo const& rhs ) const
{
return this == &rhs;
}
bool operator!=( sp_typeinfo const& rhs ) const
{
return this != &rhs;
}
bool before( sp_typeinfo const& rhs ) const
{
return std::less< sp_typeinfo const* >()( this, &rhs );
}
char const* name() const
{
return name_;
}
};
template<class T> struct sp_typeid_
{
static char v_;
static sp_typeinfo ti_;
static char const * name()
{
return BOOST_CURRENT_FUNCTION;
}
};
template<class T> char sp_typeid_< T >::v_;
template<class T> sp_typeinfo sp_typeid_< T >::ti_( sp_typeid_< T >::name() );
template<class T> struct sp_typeid_< T & >: sp_typeid_< T >
{
};
template<class T> struct sp_typeid_< T const >: sp_typeid_< T >
{
@ -50,7 +96,7 @@ template<class T> struct sp_typeid_< T const volatile >: sp_typeid_< T >
} // namespace boost
#define BOOST_SP_TYPEID(T) (&boost::detail::sp_typeid_<T>::v_)
#define BOOST_SP_TYPEID(T) (boost::detail::sp_typeid_<T>::ti_)
#else

146
include/boost/limits.hpp Normal file
View File

@ -0,0 +1,146 @@
// (C) Copyright John maddock 1999.
// (C) David Abrahams 2002. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// use this header as a workaround for missing <limits>
// See http://www.boost.org/libs/compatibility/index.html for documentation.
#ifndef BOOST_LIMITS
#define BOOST_LIMITS
#include <boost/config.hpp>
#ifdef BOOST_NO_LIMITS
# include <boost/detail/limits.hpp>
#else
# include <limits>
#endif
#if (defined(BOOST_HAS_LONG_LONG) && defined(BOOST_NO_LONG_LONG_NUMERIC_LIMITS)) \
|| (defined(BOOST_HAS_MS_INT64) && defined(BOOST_NO_MS_INT64_NUMERIC_LIMITS))
// Add missing specializations for numeric_limits:
#ifdef BOOST_HAS_MS_INT64
# define BOOST_LLT __int64
# define BOOST_ULLT unsigned __int64
#else
# define BOOST_LLT ::boost::long_long_type
# define BOOST_ULLT ::boost::ulong_long_type
#endif
#include <climits> // for CHAR_BIT
namespace std
{
template<>
class numeric_limits<BOOST_LLT>
{
public:
BOOST_STATIC_CONSTANT(bool, is_specialized = true);
#ifdef BOOST_HAS_MS_INT64
static BOOST_LLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return 0x8000000000000000i64; }
static BOOST_LLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return 0x7FFFFFFFFFFFFFFFi64; }
#elif defined(LLONG_MAX)
static BOOST_LLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return LLONG_MIN; }
static BOOST_LLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return LLONG_MAX; }
#elif defined(LONGLONG_MAX)
static BOOST_LLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return LONGLONG_MIN; }
static BOOST_LLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return LONGLONG_MAX; }
#else
static BOOST_LLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return 1LL << (sizeof(BOOST_LLT) * CHAR_BIT - 1); }
static BOOST_LLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return ~(min)(); }
#endif
BOOST_STATIC_CONSTANT(int, digits = sizeof(BOOST_LLT) * CHAR_BIT -1);
BOOST_STATIC_CONSTANT(int, digits10 = (CHAR_BIT * sizeof (BOOST_LLT) - 1) * 301L / 1000);
BOOST_STATIC_CONSTANT(bool, is_signed = true);
BOOST_STATIC_CONSTANT(bool, is_integer = true);
BOOST_STATIC_CONSTANT(bool, is_exact = true);
BOOST_STATIC_CONSTANT(int, radix = 2);
static BOOST_LLT epsilon() throw() { return 0; };
static BOOST_LLT round_error() throw() { return 0; };
BOOST_STATIC_CONSTANT(int, min_exponent = 0);
BOOST_STATIC_CONSTANT(int, min_exponent10 = 0);
BOOST_STATIC_CONSTANT(int, max_exponent = 0);
BOOST_STATIC_CONSTANT(int, max_exponent10 = 0);
BOOST_STATIC_CONSTANT(bool, has_infinity = false);
BOOST_STATIC_CONSTANT(bool, has_quiet_NaN = false);
BOOST_STATIC_CONSTANT(bool, has_signaling_NaN = false);
BOOST_STATIC_CONSTANT(bool, has_denorm = false);
BOOST_STATIC_CONSTANT(bool, has_denorm_loss = false);
static BOOST_LLT infinity() throw() { return 0; };
static BOOST_LLT quiet_NaN() throw() { return 0; };
static BOOST_LLT signaling_NaN() throw() { return 0; };
static BOOST_LLT denorm_min() throw() { return 0; };
BOOST_STATIC_CONSTANT(bool, is_iec559 = false);
BOOST_STATIC_CONSTANT(bool, is_bounded = true);
BOOST_STATIC_CONSTANT(bool, is_modulo = true);
BOOST_STATIC_CONSTANT(bool, traps = false);
BOOST_STATIC_CONSTANT(bool, tinyness_before = false);
BOOST_STATIC_CONSTANT(float_round_style, round_style = round_toward_zero);
};
template<>
class numeric_limits<BOOST_ULLT>
{
public:
BOOST_STATIC_CONSTANT(bool, is_specialized = true);
#ifdef BOOST_HAS_MS_INT64
static BOOST_ULLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return 0ui64; }
static BOOST_ULLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return 0xFFFFFFFFFFFFFFFFui64; }
#elif defined(ULLONG_MAX) && defined(ULLONG_MIN)
static BOOST_ULLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return ULLONG_MIN; }
static BOOST_ULLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return ULLONG_MAX; }
#elif defined(ULONGLONG_MAX) && defined(ULONGLONG_MIN)
static BOOST_ULLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return ULONGLONG_MIN; }
static BOOST_ULLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return ULONGLONG_MAX; }
#else
static BOOST_ULLT min BOOST_PREVENT_MACRO_SUBSTITUTION (){ return 0uLL; }
static BOOST_ULLT max BOOST_PREVENT_MACRO_SUBSTITUTION (){ return ~0uLL; }
#endif
BOOST_STATIC_CONSTANT(int, digits = sizeof(BOOST_LLT) * CHAR_BIT);
BOOST_STATIC_CONSTANT(int, digits10 = (CHAR_BIT * sizeof (BOOST_LLT)) * 301L / 1000);
BOOST_STATIC_CONSTANT(bool, is_signed = false);
BOOST_STATIC_CONSTANT(bool, is_integer = true);
BOOST_STATIC_CONSTANT(bool, is_exact = true);
BOOST_STATIC_CONSTANT(int, radix = 2);
static BOOST_ULLT epsilon() throw() { return 0; };
static BOOST_ULLT round_error() throw() { return 0; };
BOOST_STATIC_CONSTANT(int, min_exponent = 0);
BOOST_STATIC_CONSTANT(int, min_exponent10 = 0);
BOOST_STATIC_CONSTANT(int, max_exponent = 0);
BOOST_STATIC_CONSTANT(int, max_exponent10 = 0);
BOOST_STATIC_CONSTANT(bool, has_infinity = false);
BOOST_STATIC_CONSTANT(bool, has_quiet_NaN = false);
BOOST_STATIC_CONSTANT(bool, has_signaling_NaN = false);
BOOST_STATIC_CONSTANT(bool, has_denorm = false);
BOOST_STATIC_CONSTANT(bool, has_denorm_loss = false);
static BOOST_ULLT infinity() throw() { return 0; };
static BOOST_ULLT quiet_NaN() throw() { return 0; };
static BOOST_ULLT signaling_NaN() throw() { return 0; };
static BOOST_ULLT denorm_min() throw() { return 0; };
BOOST_STATIC_CONSTANT(bool, is_iec559 = false);
BOOST_STATIC_CONSTANT(bool, is_bounded = true);
BOOST_STATIC_CONSTANT(bool, is_modulo = true);
BOOST_STATIC_CONSTANT(bool, traps = false);
BOOST_STATIC_CONSTANT(bool, tinyness_before = false);
BOOST_STATIC_CONSTANT(float_round_style, round_style = round_toward_zero);
};
}
#endif
#endif

View File

@ -6,11 +6,10 @@
// http://www.boost.org/LICENSE_1_0.txt)
//
// Preprocessed version of "boost/mpl/aux_/template_arity.hpp" header
// *Preprocessed* version of the main "template_arity.hpp" header
// -- DO NOT modify by hand!
namespace boost { namespace mpl { namespace aux {
template< int N > struct arity_tag
{
typedef char (&type)[N + 1];
@ -23,7 +22,6 @@ struct max_arity
{
BOOST_STATIC_CONSTANT(int, value =
( C6 > 0 ? C6 : ( C5 > 0 ? C5 : ( C4 > 0 ? C4 : ( C3 > 0 ? C3 : ( C2 > 0 ? C2 : ( C1 > 0 ? C1 : -1 ) ) ) ) ) )
);
};
@ -83,7 +81,7 @@ template< typename F, int N >
struct template_arity_impl
{
BOOST_STATIC_CONSTANT(int, value =
sizeof(arity_helper(type_wrapper<F>(), arity_tag<N>())) - 1
sizeof(::boost::mpl::aux::arity_helper(type_wrapper<F>(), arity_tag<N>())) - 1
);
};
@ -92,9 +90,7 @@ struct template_arity
{
BOOST_STATIC_CONSTANT(int, value = (
max_arity< template_arity_impl< F,1 >::value, template_arity_impl< F,2 >::value, template_arity_impl< F,3 >::value, template_arity_impl< F,4 >::value, template_arity_impl< F,5 >::value, template_arity_impl< F,6 >::value >::value
));
typedef mpl::int_<value> type;
};

View File

@ -14,9 +14,9 @@
//
// See http://www.boost.org/libs/mpl for documentation.
// $Id: template_arity.hpp 49267 2008-10-11 06:19:02Z agurtovoy $
// $Date: 2008-10-11 02:19:02 -0400 (Sat, 11 Oct 2008) $
// $Revision: 49267 $
// $Id: template_arity.hpp 61584 2010-04-26 18:48:26Z agurtovoy $
// $Date: 2010-04-26 14:48:26 -0400 (Mon, 26 Apr 2010) $
// $Revision: 61584 $
#include <boost/mpl/aux_/config/ttp.hpp>
#include <boost/mpl/aux_/config/lambda.hpp>
@ -98,7 +98,7 @@ template< typename F, BOOST_MPL_AUX_NTTP_DECL(int, N) >
struct template_arity_impl
{
BOOST_STATIC_CONSTANT(int, value =
sizeof(arity_helper(type_wrapper<F>(),arity_tag<N>())) - 1
sizeof(::boost::mpl::aux::arity_helper(type_wrapper<F>(),arity_tag<N>())) - 1
);
};

View File

@ -2,7 +2,7 @@
#ifndef BOOST_MPL_ZIP_VIEW_HPP_INCLUDED
#define BOOST_MPL_ZIP_VIEW_HPP_INCLUDED
// Copyright Aleksey Gurtovoy 2000-2002
// Copyright Aleksey Gurtovoy 2000-2010
// Copyright David Abrahams 2000-2002
//
// Distributed under the Boost Software License, Version 1.0.
@ -11,9 +11,9 @@
//
// See http://www.boost.org/libs/mpl for documentation.
// $Id: zip_view.hpp 49267 2008-10-11 06:19:02Z agurtovoy $
// $Date: 2008-10-11 02:19:02 -0400 (Sat, 11 Oct 2008) $
// $Revision: 49267 $
// $Id: zip_view.hpp 61591 2010-04-26 21:31:09Z agurtovoy $
// $Date: 2010-04-26 17:31:09 -0400 (Mon, 26 Apr 2010) $
// $Revision: 61591 $
#include <boost/mpl/transform.hpp>
#include <boost/mpl/begin_end.hpp>
@ -53,6 +53,7 @@ struct zip_view
public:
typedef nested_begin_end_tag tag;
typedef zip_view type;
typedef zip_iterator<first_ones_> begin;
typedef zip_iterator<last_ones_> end;
};

View File

@ -0,0 +1,448 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_BOOLEAN_OP_HPP
#define BOOST_POLYGON_BOOLEAN_OP_HPP
namespace boost { namespace polygon{
namespace boolean_op {
//BooleanOp is the generic boolean operation scanline algorithm that provides
//all the simple boolean set operations on manhattan data. By templatizing
//the intersection count of the input and algorithm internals it is extensible
//to multi-layer scans, properties and other advanced scanline operations above
//and beyond simple booleans.
//T must cast to int
template <class T, typename Unit>
class BooleanOp {
public:
typedef std::map<Unit, T> ScanData;
typedef std::pair<Unit, T> ElementType;
protected:
ScanData scanData_;
typename ScanData::iterator nextItr_;
T nullT_;
public:
inline BooleanOp () : scanData_(), nextItr_(), nullT_() { nextItr_ = scanData_.end(); nullT_ = 0; }
inline BooleanOp (T nullT) : scanData_(), nextItr_(), nullT_(nullT) { nextItr_ = scanData_.end(); }
inline BooleanOp (const BooleanOp& that) : scanData_(that.scanData_), nextItr_(),
nullT_(that.nullT_) { nextItr_ = scanData_.begin(); }
inline BooleanOp& operator=(const BooleanOp& that);
//moves scanline forward
inline void advanceScan() { nextItr_ = scanData_.begin(); }
//proceses the given interval and T data
//appends output edges to cT
template <class cT>
inline void processInterval(cT& outputContainer, interval_data<Unit> ivl, T deltaCount);
private:
inline typename ScanData::iterator lookup_(Unit pos){
if(nextItr_ != scanData_.end() && nextItr_->first >= pos) {
return nextItr_;
}
return nextItr_ = scanData_.lower_bound(pos);
}
inline typename ScanData::iterator insert_(Unit pos, T count){
return nextItr_ = scanData_.insert(nextItr_, ElementType(pos, count));
}
template <class cT>
inline void evaluateInterval_(cT& outputContainer, interval_data<Unit> ivl, T beforeCount, T afterCount);
};
class BinaryAnd {
public:
inline BinaryAnd() {}
inline bool operator()(int a, int b) { return (a > 0) & (b > 0); }
};
class BinaryOr {
public:
inline BinaryOr() {}
inline bool operator()(int a, int b) { return (a > 0) | (b > 0); }
};
class BinaryNot {
public:
inline BinaryNot() {}
inline bool operator()(int a, int b) { return (a > 0) & !(b > 0); }
};
class BinaryXor {
public:
inline BinaryXor() {}
inline bool operator()(int a, int b) { return (a > 0) ^ (b > 0); }
};
//BinaryCount is an array of two deltaCounts coming from two different layers
//of scan event data. It is the merged count of the two suitable for consumption
//as the template argument of the BooleanOp algorithm because BinaryCount casts to int.
//T is a binary functor object that evaluates the array of counts and returns a logical
//result of some operation on those values.
//BinaryCount supports many of the operators that work with int, particularly the
//binary operators, but cannot support less than or increment.
template <class T>
class BinaryCount {
public:
inline BinaryCount()
#ifndef BOOST_POLYGON_MSVC
: counts_()
#endif
{ counts_[0] = counts_[1] = 0; }
// constructs from two integers
inline BinaryCount(int countL, int countR)
#ifndef BOOST_POLYGON_MSVC
: counts_()
#endif
{ counts_[0] = countL, counts_[1] = countR; }
inline BinaryCount& operator=(int count) { counts_[0] = count, counts_[1] = count; return *this; }
inline BinaryCount& operator=(const BinaryCount& that);
inline BinaryCount(const BinaryCount& that)
#ifndef BOOST_POLYGON_MSVC
: counts_()
#endif
{ *this = that; }
inline bool operator==(const BinaryCount& that) const;
inline bool operator!=(const BinaryCount& that) const { return !((*this) == that);}
inline BinaryCount& operator+=(const BinaryCount& that);
inline BinaryCount& operator-=(const BinaryCount& that);
inline BinaryCount operator+(const BinaryCount& that) const;
inline BinaryCount operator-(const BinaryCount& that) const;
inline BinaryCount operator-() const;
inline int& operator[](bool index) { return counts_[index]; }
//cast to int operator evaluates data using T binary functor
inline operator int() const { return T()(counts_[0], counts_[1]); }
private:
int counts_[2];
};
class UnaryCount {
public:
inline UnaryCount() : count_(0) {}
// constructs from two integers
inline explicit UnaryCount(int count) : count_(count) {}
inline UnaryCount& operator=(int count) { count_ = count; return *this; }
inline UnaryCount& operator=(const UnaryCount& that) { count_ = that.count_; return *this; }
inline UnaryCount(const UnaryCount& that) : count_(that.count_) {}
inline bool operator==(const UnaryCount& that) const { return count_ == that.count_; }
inline bool operator!=(const UnaryCount& that) const { return !((*this) == that);}
inline UnaryCount& operator+=(const UnaryCount& that) { count_ += that.count_; return *this; }
inline UnaryCount& operator-=(const UnaryCount& that) { count_ -= that.count_; return *this; }
inline UnaryCount operator+(const UnaryCount& that) const { UnaryCount tmp(*this); tmp += that; return tmp; }
inline UnaryCount operator-(const UnaryCount& that) const { UnaryCount tmp(*this); tmp -= that; return tmp; }
inline UnaryCount operator-() const { UnaryCount tmp; return tmp - *this; }
//cast to int operator evaluates data using T binary functor
inline operator int() const { return count_ % 2; }
private:
int count_;
};
template <class T, typename Unit>
inline BooleanOp<T, Unit>& BooleanOp<T, Unit>::operator=(const BooleanOp& that) {
scanData_ = that.scanData_;
nextItr_ = scanData_.begin();
nullT_ = that.nullT_;
return *this;
}
//appends output edges to cT
template <class T, typename Unit>
template <class cT>
inline void BooleanOp<T, Unit>::processInterval(cT& outputContainer, interval_data<Unit> ivl, T deltaCount) {
typename ScanData::iterator lowItr = lookup_(ivl.low());
typename ScanData::iterator highItr = lookup_(ivl.high());
//add interval to scan data if it is past the end
if(lowItr == scanData_.end()) {
lowItr = insert_(ivl.low(), deltaCount);
highItr = insert_(ivl.high(), nullT_);
evaluateInterval_(outputContainer, ivl, nullT_, deltaCount);
return;
}
//ensure that highItr points to the end of the ivl
if(highItr == scanData_.end() || (*highItr).first > ivl.high()) {
T value = nullT_;
if(highItr != scanData_.begin()) {
--highItr;
value = highItr->second;
}
nextItr_ = highItr;
highItr = insert_(ivl.high(), value);
}
//split the low interval if needed
if(lowItr->first > ivl.low()) {
if(lowItr != scanData_.begin()) {
--lowItr;
nextItr_ = lowItr;
lowItr = insert_(ivl.low(), lowItr->second);
} else {
nextItr_ = lowItr;
lowItr = insert_(ivl.low(), nullT_);
}
}
//process scan data intersecting interval
for(typename ScanData::iterator itr = lowItr; itr != highItr; ){
T beforeCount = itr->second;
T afterCount = itr->second += deltaCount;
Unit low = itr->first;
++itr;
Unit high = itr->first;
evaluateInterval_(outputContainer, interval_data<Unit>(low, high), beforeCount, afterCount);
}
//merge the bottom interval with the one below if they have the same count
if(lowItr != scanData_.begin()){
typename ScanData::iterator belowLowItr = lowItr;
--belowLowItr;
if(belowLowItr->second == lowItr->second) {
scanData_.erase(lowItr);
}
}
//merge the top interval with the one above if they have the same count
if(highItr != scanData_.begin()) {
typename ScanData::iterator beforeHighItr = highItr;
--beforeHighItr;
if(beforeHighItr->second == highItr->second) {
scanData_.erase(highItr);
highItr = beforeHighItr;
++highItr;
}
}
nextItr_ = highItr;
}
template <class T, typename Unit>
template <class cT>
inline void BooleanOp<T, Unit>::evaluateInterval_(cT& outputContainer, interval_data<Unit> ivl,
T beforeCount, T afterCount) {
bool before = (int)beforeCount > 0;
bool after = (int)afterCount > 0;
int value = (!before & after) - (before & !after);
if(value) {
outputContainer.insert(outputContainer.end(), std::pair<interval_data<Unit>, int>(ivl, value));
}
}
template <class T>
inline BinaryCount<T>& BinaryCount<T>::operator=(const BinaryCount<T>& that) {
counts_[0] = that.counts_[0];
counts_[1] = that.counts_[1];
return *this;
}
template <class T>
inline bool BinaryCount<T>::operator==(const BinaryCount<T>& that) const {
return counts_[0] == that.counts_[0] &&
counts_[1] == that.counts_[1];
}
template <class T>
inline BinaryCount<T>& BinaryCount<T>::operator+=(const BinaryCount<T>& that) {
counts_[0] += that.counts_[0];
counts_[1] += that.counts_[1];
return *this;
}
template <class T>
inline BinaryCount<T>& BinaryCount<T>::operator-=(const BinaryCount<T>& that) {
counts_[0] += that.counts_[0];
counts_[1] += that.counts_[1];
return *this;
}
template <class T>
inline BinaryCount<T> BinaryCount<T>::operator+(const BinaryCount<T>& that) const {
BinaryCount retVal(*this);
retVal += that;
return retVal;
}
template <class T>
inline BinaryCount<T> BinaryCount<T>::operator-(const BinaryCount<T>& that) const {
BinaryCount retVal(*this);
retVal -= that;
return retVal;
}
template <class T>
inline BinaryCount<T> BinaryCount<T>::operator-() const {
return BinaryCount<T>() - *this;
}
template <class T, typename Unit, typename iterator_type_1, typename iterator_type_2>
inline void applyBooleanBinaryOp(std::vector<std::pair<Unit, std::pair<Unit, int> > >& output,
//const std::vector<std::pair<Unit, std::pair<Unit, int> > >& input1,
//const std::vector<std::pair<Unit, std::pair<Unit, int> > >& input2,
iterator_type_1 itr1, iterator_type_1 itr1_end,
iterator_type_2 itr2, iterator_type_2 itr2_end,
T defaultCount) {
BooleanOp<T, Unit> boolean(defaultCount);
//typename std::vector<std::pair<Unit, std::pair<Unit, int> > >::const_iterator itr1 = input1.begin();
//typename std::vector<std::pair<Unit, std::pair<Unit, int> > >::const_iterator itr2 = input2.begin();
std::vector<std::pair<interval_data<Unit>, int> > container;
//output.reserve((std::max)(input1.size(), input2.size()));
//consider eliminating dependecy on limits with bool flag for initial state
Unit UnitMax = (std::numeric_limits<Unit>::max)();
Unit prevCoord = UnitMax;
Unit prevPosition = UnitMax;
T count(defaultCount);
//define the starting point
if(itr1 != itr1_end) {
prevCoord = (*itr1).first;
prevPosition = (*itr1).second.first;
count[0] += (*itr1).second.second;
}
if(itr2 != itr2_end) {
if((*itr2).first < prevCoord ||
((*itr2).first == prevCoord && (*itr2).second.first < prevPosition)) {
prevCoord = (*itr2).first;
prevPosition = (*itr2).second.first;
count = defaultCount;
count[1] += (*itr2).second.second;
++itr2;
} else if((*itr2).first == prevCoord && (*itr2).second.first == prevPosition) {
count[1] += (*itr2).second.second;
++itr2;
if(itr1 != itr1_end) ++itr1;
} else {
if(itr1 != itr1_end) ++itr1;
}
} else {
if(itr1 != itr1_end) ++itr1;
}
while(itr1 != itr1_end || itr2 != itr2_end) {
Unit curCoord = UnitMax;
Unit curPosition = UnitMax;
T curCount(defaultCount);
if(itr1 != itr1_end) {
curCoord = (*itr1).first;
curPosition = (*itr1).second.first;
curCount[0] += (*itr1).second.second;
}
if(itr2 != itr2_end) {
if((*itr2).first < curCoord ||
((*itr2).first == curCoord && (*itr2).second.first < curPosition)) {
curCoord = (*itr2).first;
curPosition = (*itr2).second.first;
curCount = defaultCount;
curCount[1] += (*itr2).second.second;
++itr2;
} else if((*itr2).first == curCoord && (*itr2).second.first == curPosition) {
curCount[1] += (*itr2).second.second;
++itr2;
if(itr1 != itr1_end) ++itr1;
} else {
if(itr1 != itr1_end) ++itr1;
}
} else {
++itr1;
}
if(prevCoord != curCoord) {
boolean.advanceScan();
prevCoord = curCoord;
prevPosition = curPosition;
count = curCount;
continue;
}
if(curPosition != prevPosition && count != defaultCount) {
interval_data<Unit> ivl(prevPosition, curPosition);
container.clear();
boolean.processInterval(container, ivl, count);
for(std::size_t i = 0; i < container.size(); ++i) {
std::pair<interval_data<Unit>, int>& element = container[i];
if(!output.empty() && output.back().first == prevCoord &&
output.back().second.first == element.first.low() &&
output.back().second.second == element.second * -1) {
output.pop_back();
} else {
output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevCoord, std::pair<Unit, int>(element.first.low(),
element.second)));
}
output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevCoord, std::pair<Unit, int>(element.first.high(),
element.second * -1)));
}
}
prevPosition = curPosition;
count += curCount;
}
}
template <class T, typename Unit>
inline void applyBooleanBinaryOp(std::vector<std::pair<Unit, std::pair<Unit, int> > >& inputOutput,
const std::vector<std::pair<Unit, std::pair<Unit, int> > >& input2,
T defaultCount) {
std::vector<std::pair<Unit, std::pair<Unit, int> > > output;
applyBooleanBinaryOp(output, inputOutput, input2, defaultCount);
if(output.size() < inputOutput.size() / 2) {
inputOutput = std::vector<std::pair<Unit, std::pair<Unit, int> > >();
} else {
inputOutput.clear();
}
inputOutput.insert(inputOutput.end(), output.begin(), output.end());
}
template <typename Unit>
inline void applyUnaryXOr(std::vector<std::pair<Unit, std::pair<Unit, int> > >& input) {
BooleanOp<UnaryCount, Unit> booleanXOr;
}
template <typename count_type = int>
struct default_arg_workaround {
template <typename Unit>
static inline void applyBooleanOr(std::vector<std::pair<Unit, std::pair<Unit, int> > >& input) {
BooleanOp<count_type, Unit> booleanOr;
std::vector<std::pair<interval_data<Unit>, int> > container;
std::vector<std::pair<Unit, std::pair<Unit, int> > > output;
output.reserve(input.size());
//consider eliminating dependecy on limits with bool flag for initial state
Unit UnitMax = (std::numeric_limits<Unit>::max)();
Unit prevPos = UnitMax;
Unit prevY = UnitMax;
int count = 0;
for(typename std::vector<std::pair<Unit, std::pair<Unit, int> > >::iterator itr = input.begin();
itr != input.end(); ++itr) {
Unit pos = (*itr).first;
Unit y = (*itr).second.first;
if(pos != prevPos) {
booleanOr.advanceScan();
prevPos = pos;
prevY = y;
count = (*itr).second.second;
continue;
}
if(y != prevY && count != 0) {
interval_data<Unit> ivl(prevY, y);
container.clear();
booleanOr.processInterval(container, ivl, count_type(count));
for(std::size_t i = 0; i < container.size(); ++i) {
std::pair<interval_data<Unit>, int>& element = container[i];
if(!output.empty() && output.back().first == prevPos &&
output.back().second.first == element.first.low() &&
output.back().second.second == element.second * -1) {
output.pop_back();
} else {
output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevPos, std::pair<Unit, int>(element.first.low(),
element.second)));
}
output.push_back(std::pair<Unit, std::pair<Unit, int> >(prevPos, std::pair<Unit, int>(element.first.high(),
element.second * -1)));
}
}
prevY = y;
count += (*itr).second.second;
}
if(output.size() < input.size() / 2) {
input = std::vector<std::pair<Unit, std::pair<Unit, int> > >();
} else {
input.clear();
}
input.insert(input.end(), output.begin(), output.end());
}
};
}
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,69 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_ITERATOR_COMPACT_TO_POINTS_HPP
#define BOOST_POLYGON_ITERATOR_COMPACT_TO_POINTS_HPP
namespace boost { namespace polygon{
template <typename iterator_type, typename point_type>
class iterator_compact_to_points {
private:
iterator_type iter_;
iterator_type iter_end_;
point_type pt_;
typename point_traits<point_type>::coordinate_type firstX_;
orientation_2d orient_;
public:
typedef std::forward_iterator_tag iterator_category;
typedef point_type value_type;
typedef std::ptrdiff_t difference_type;
typedef const point_type* pointer; //immutable
typedef const point_type& reference; //immutable
inline iterator_compact_to_points() : iter_(), iter_end_(), pt_(), firstX_(), orient_() {}
inline iterator_compact_to_points(iterator_type iter, iterator_type iter_end) :
iter_(iter), iter_end_(iter_end), pt_(), firstX_(), orient_(HORIZONTAL) {
if(iter_ != iter_end_) {
firstX_ = *iter_;
x(pt_, firstX_);
++iter_;
if(iter_ != iter_end_) {
y(pt_, *iter_);
}
}
}
//use bitwise copy and assign provided by the compiler
inline iterator_compact_to_points& operator++() {
iterator_type prev_iter = iter_;
++iter_;
if(iter_ == iter_end_) {
if(x(pt_) != firstX_) {
iter_ = prev_iter;
x(pt_, firstX_);
}
} else {
set(pt_, orient_, *iter_);
orient_.turn_90();
}
return *this;
}
inline const iterator_compact_to_points operator++(int) {
iterator_compact_to_points tmp(*this);
++(*this);
return tmp;
}
inline bool operator==(const iterator_compact_to_points& that) const {
return (iter_ == that.iter_);
}
inline bool operator!=(const iterator_compact_to_points& that) const {
return (iter_ != that.iter_);
}
inline reference operator*() const { return pt_; }
};
}
}
#endif

View File

@ -0,0 +1,309 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_ITERATOR_GEOMETRY_TO_SET_HPP
#define BOOST_POLYGON_ITERATOR_GEOMETRY_TO_SET_HPP
namespace boost { namespace polygon{
template <typename concept_type, typename geometry_type>
class iterator_geometry_to_set {};
template <typename rectangle_type>
class iterator_geometry_to_set<rectangle_concept, rectangle_type> {
public:
typedef typename rectangle_traits<rectangle_type>::coordinate_type coordinate_type;
typedef std::forward_iterator_tag iterator_category;
typedef std::pair<coordinate_type, std::pair<coordinate_type, int> > value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer; //immutable
typedef const value_type& reference; //immutable
private:
rectangle_data<coordinate_type> rectangle_;
mutable value_type vertex_;
unsigned int corner_;
orientation_2d orient_;
bool is_hole_;
public:
iterator_geometry_to_set() : rectangle_(), vertex_(), corner_(4), orient_(), is_hole_() {}
iterator_geometry_to_set(const rectangle_type& rectangle, direction_1d dir,
orientation_2d orient = HORIZONTAL, bool is_hole = false) :
rectangle_(), vertex_(), corner_(0), orient_(orient), is_hole_(is_hole) {
assign(rectangle_, rectangle);
if(dir == HIGH) corner_ = 4;
}
inline iterator_geometry_to_set& operator++() {
++corner_;
return *this;
}
inline const iterator_geometry_to_set operator++(int) {
iterator_geometry_to_set tmp(*this);
++(*this);
return tmp;
}
inline bool operator==(const iterator_geometry_to_set& that) const {
return corner_ == that.corner_;
}
inline bool operator!=(const iterator_geometry_to_set& that) const {
return !(*this == that);
}
inline reference operator*() const {
if(corner_ == 0) {
vertex_.first = get(get(rectangle_, orient_.get_perpendicular()), LOW);
vertex_.second.first = get(get(rectangle_, orient_), LOW);
vertex_.second.second = 1;
if(is_hole_) vertex_.second.second *= -1;
} else if(corner_ == 1) {
vertex_.second.first = get(get(rectangle_, orient_), HIGH);
vertex_.second.second = -1;
if(is_hole_) vertex_.second.second *= -1;
} else if(corner_ == 2) {
vertex_.first = get(get(rectangle_, orient_.get_perpendicular()), HIGH);
vertex_.second.first = get(get(rectangle_, orient_), LOW);
} else {
vertex_.second.first = get(get(rectangle_, orient_), HIGH);
vertex_.second.second = 1;
if(is_hole_) vertex_.second.second *= -1;
}
return vertex_;
}
};
template <typename polygon_type>
class iterator_geometry_to_set<polygon_90_concept, polygon_type> {
public:
typedef typename polygon_traits<polygon_type>::coordinate_type coordinate_type;
typedef std::forward_iterator_tag iterator_category;
typedef std::pair<coordinate_type, std::pair<coordinate_type, int> > value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer; //immutable
typedef const value_type& reference; //immutable
typedef typename polygon_traits<polygon_type>::iterator_type coord_iterator_type;
private:
value_type vertex_;
typename polygon_traits<polygon_type>::iterator_type itrb, itre;
bool last_vertex_;
bool is_hole_;
int multiplier_;
point_data<coordinate_type> first_pt, second_pt, pts[3];
bool use_wrap;
orientation_2d orient_;
int polygon_index;
public:
iterator_geometry_to_set() : vertex_(), itrb(), itre(), last_vertex_(), is_hole_(), multiplier_(), first_pt(), second_pt(), pts(), use_wrap(), orient_(), polygon_index(-1) {}
iterator_geometry_to_set(const polygon_type& polygon, direction_1d dir, orientation_2d orient = HORIZONTAL, bool is_hole = false) :
vertex_(), itrb(), itre(), last_vertex_(),
is_hole_(is_hole), multiplier_(), first_pt(), second_pt(), pts(), use_wrap(),
orient_(orient), polygon_index(0) {
itrb = begin_points(polygon);
itre = end_points(polygon);
use_wrap = false;
if(itrb == itre || dir == HIGH || size(polygon) < 4) {
polygon_index = -1;
} else {
direction_1d wdir = winding(polygon);
multiplier_ = wdir == LOW ? -1 : 1;
if(is_hole_) multiplier_ *= -1;
first_pt = pts[0] = *itrb;
++itrb;
second_pt = pts[1] = *itrb;
++itrb;
pts[2] = *itrb;
evaluate_();
}
}
iterator_geometry_to_set(const iterator_geometry_to_set& that) :
vertex_(), itrb(), itre(), last_vertex_(), is_hole_(), multiplier_(), first_pt(),
second_pt(), pts(), use_wrap(), orient_(), polygon_index(-1) {
vertex_ = that.vertex_;
itrb = that.itrb;
itre = that.itre;
last_vertex_ = that.last_vertex_;
is_hole_ = that.is_hole_;
multiplier_ = that.multiplier_;
first_pt = that.first_pt;
second_pt = that.second_pt;
pts[0] = that.pts[0];
pts[1] = that.pts[1];
pts[2] = that.pts[2];
use_wrap = that.use_wrap;
orient_ = that.orient_;
polygon_index = that.polygon_index;
}
inline iterator_geometry_to_set& operator++() {
++polygon_index;
if(itrb == itre) {
if(first_pt == pts[1]) polygon_index = -1;
else {
pts[0] = pts[1];
pts[1] = pts[2];
if(first_pt == pts[2]) {
pts[2] = second_pt;
} else {
pts[2] = first_pt;
}
}
} else {
++itrb;
pts[0] = pts[1];
pts[1] = pts[2];
if(itrb == itre) {
if(first_pt == pts[2]) {
pts[2] = second_pt;
} else {
pts[2] = first_pt;
}
} else {
pts[2] = *itrb;
}
}
evaluate_();
return *this;
}
inline const iterator_geometry_to_set operator++(int) {
iterator_geometry_to_set tmp(*this);
++(*this);
return tmp;
}
inline bool operator==(const iterator_geometry_to_set& that) const {
return polygon_index == that.polygon_index;
}
inline bool operator!=(const iterator_geometry_to_set& that) const {
return !(*this == that);
}
inline reference operator*() const {
return vertex_;
}
inline void evaluate_() {
vertex_.first = pts[1].get(orient_.get_perpendicular());
vertex_.second.first =pts[1].get(orient_);
if(pts[1] == pts[2]) {
vertex_.second.second = 0;
return;
}
if(pts[0].get(HORIZONTAL) != pts[1].get(HORIZONTAL)) {
vertex_.second.second = -1;
} else if(pts[0].get(VERTICAL) != pts[1].get(VERTICAL)) {
vertex_.second.second = 1;
} else {
vertex_.second.second = 0;
}
vertex_.second.second *= multiplier_;
}
};
template <typename polygon_with_holes_type>
class iterator_geometry_to_set<polygon_90_with_holes_concept, polygon_with_holes_type> {
public:
typedef typename polygon_90_traits<polygon_with_holes_type>::coordinate_type coordinate_type;
typedef std::forward_iterator_tag iterator_category;
typedef std::pair<coordinate_type, std::pair<coordinate_type, int> > value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer; //immutable
typedef const value_type& reference; //immutable
private:
iterator_geometry_to_set<polygon_90_concept, polygon_with_holes_type> itrb, itre;
iterator_geometry_to_set<polygon_90_concept, typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type> itrhib, itrhie;
typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itrhb, itrhe;
orientation_2d orient_;
bool is_hole_;
bool started_holes;
public:
iterator_geometry_to_set() : itrb(), itre(), itrhib(), itrhie(), itrhb(), itrhe(), orient_(), is_hole_(), started_holes() {}
iterator_geometry_to_set(const polygon_with_holes_type& polygon, direction_1d dir,
orientation_2d orient = HORIZONTAL, bool is_hole = false) :
itrb(), itre(), itrhib(), itrhie(), itrhb(), itrhe(), orient_(orient), is_hole_(is_hole), started_holes() {
itre = iterator_geometry_to_set<polygon_90_concept, polygon_with_holes_type>(polygon, HIGH, orient, is_hole_);
itrhe = end_holes(polygon);
if(dir == HIGH) {
itrb = itre;
itrhb = itrhe;
started_holes = true;
} else {
itrb = iterator_geometry_to_set<polygon_90_concept, polygon_with_holes_type>(polygon, LOW, orient, is_hole_);
itrhb = begin_holes(polygon);
started_holes = false;
}
}
iterator_geometry_to_set(const iterator_geometry_to_set& that) :
itrb(), itre(), itrhib(), itrhie(), itrhb(), itrhe(), orient_(), is_hole_(), started_holes() {
itrb = that.itrb;
itre = that.itre;
if(that.itrhib != that.itrhie) {
itrhib = that.itrhib;
itrhie = that.itrhie;
}
itrhb = that.itrhb;
itrhe = that.itrhe;
orient_ = that.orient_;
is_hole_ = that.is_hole_;
started_holes = that.started_holes;
}
inline iterator_geometry_to_set& operator++() {
//this code can be folded with flow control factoring
if(itrb == itre) {
if(itrhib == itrhie) {
if(itrhb != itrhe) {
itrhib = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, LOW, orient_, !is_hole_);
itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, HIGH, orient_, !is_hole_);
++itrhb;
} else {
itrhib = itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>();
}
} else {
++itrhib;
if(itrhib == itrhie) {
if(itrhb != itrhe) {
itrhib = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, LOW, orient_, !is_hole_);
itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, HIGH, orient_, !is_hole_);
++itrhb;
} else {
itrhib = itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>();
}
}
}
} else {
++itrb;
if(itrb == itre) {
if(itrhb != itrhe) {
itrhib = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, LOW, orient_, !is_hole_);
itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, HIGH, orient_, !is_hole_);
++itrhb;
}
}
}
return *this;
}
inline const iterator_geometry_to_set operator++(int) {
iterator_geometry_to_set tmp(*this);
++(*this);
return tmp;
}
inline bool operator==(const iterator_geometry_to_set& that) const {
return itrb == that.itrb && itrhb == that.itrhb && itrhib == that.itrhib;
}
inline bool operator!=(const iterator_geometry_to_set& that) const {
return !(*this == that);
}
inline reference operator*() const {
if(itrb != itre) return *itrb;
return *itrhib;
}
};
}
}
#endif

View File

@ -0,0 +1,60 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_ITERATOR_POINTS_TO_COMPACT_HPP
#define BOOST_POLYGON_ITERATOR_POINTS_TO_COMPACT_HPP
namespace boost { namespace polygon{
template <typename iT, typename point_type>
class iterator_points_to_compact {
private:
iT iter_, iterEnd_;
orientation_2d orient_;
mutable typename point_traits<point_type>::coordinate_type coord_;
public:
typedef typename point_traits<point_type>::coordinate_type coordinate_type;
typedef std::forward_iterator_tag iterator_category;
typedef coordinate_type value_type;
typedef std::ptrdiff_t difference_type;
typedef const coordinate_type* pointer; //immutable
typedef const coordinate_type& reference; //immutable
inline iterator_points_to_compact() : iter_(), iterEnd_(), orient_(), coord_() {}
inline iterator_points_to_compact(iT iter, iT iterEnd) :
iter_(iter), iterEnd_(iterEnd), orient_(HORIZONTAL), coord_() {}
inline iterator_points_to_compact(const iterator_points_to_compact& that) :
iter_(that.iter_), iterEnd_(that.iterEnd_), orient_(that.orient_), coord_(that.coord_) {}
//use bitwise copy and assign provided by the compiler
inline iterator_points_to_compact& operator++() {
//iT tmp = iter_;
++iter_;
//iT tmp2 = iter_;
orient_.turn_90();
//while(tmp2 != iterEnd_ && get(*tmp2, orient_) == get(*tmp, orient_)) {
// iter_ = tmp2;
// ++tmp2;
//}
return *this;
}
inline const iterator_points_to_compact operator++(int) {
iT tmp(*this);
++(*this);
return tmp;
}
inline bool operator==(const iterator_points_to_compact& that) const {
return (iter_ == that.iter_);
}
inline bool operator!=(const iterator_points_to_compact& that) const {
return (iter_ != that.iter_);
}
inline reference operator*() const { coord_ = get(*iter_, orient_);
return coord_;
}
};
}
}
#endif

View File

@ -0,0 +1,278 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_MAX_COVER_HPP
#define BOOST_POLYGON_MAX_COVER_HPP
namespace boost { namespace polygon{
template <typename Unit>
struct MaxCover {
typedef interval_data<Unit> Interval;
typedef rectangle_data<Unit> Rectangle;
class Node {
private:
std::vector<Node*> children_;
std::set<Interval> tracedPaths_;
public:
Rectangle rect;
Node() : children_(), tracedPaths_(), rect() {}
Node(const Rectangle rectIn) : children_(), tracedPaths_(), rect(rectIn) {}
typedef typename std::vector<Node*>::iterator iterator;
inline iterator begin() { return children_.begin(); }
inline iterator end() { return children_.end(); }
inline void add(Node* child) { children_.push_back(child); }
inline bool tracedPath(const Interval& ivl) const {
return tracedPaths_.find(ivl) != tracedPaths_.end();
}
inline void addPath(const Interval& ivl) {
tracedPaths_.insert(tracedPaths_.end(), ivl);
}
};
typedef std::pair<std::pair<Unit, Interval>, Node* > EdgeAssociation;
class lessEdgeAssociation : public std::binary_function<const EdgeAssociation&, const EdgeAssociation&, bool> {
public:
inline lessEdgeAssociation() {}
inline bool operator () (const EdgeAssociation& elem1, const EdgeAssociation& elem2) const {
if(elem1.first.first < elem2.first.first) return true;
if(elem1.first.first > elem2.first.first) return false;
return elem1.first.second < elem2.first.second;
}
};
template <class cT>
static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient) {
Interval rectIvl = node->rect.get(orient);
if(node->tracedPath(rectIvl)) {
return;
}
node->addPath(rectIvl);
if(node->begin() == node->end()) {
//std::cout << "WRITE OUT 3: " << node->rect << std::endl;
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(node->rect));
return;
}
bool writeOut = true;
for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) {
getMaxCover(outputContainer, *itr, orient, node->rect); //get rectangles down path
Interval nodeIvl = (*itr)->rect.get(orient);
if(contains(nodeIvl, rectIvl, true)) writeOut = false;
}
if(writeOut) {
//std::cout << "WRITE OUT 2: " << node->rect << std::endl;
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(node->rect));
}
}
struct stack_element {
inline stack_element() :
node(), rect(), itr() {}
inline stack_element(Node* n,
const Rectangle& r,
typename Node::iterator i) :
node(n), rect(r), itr(i) {}
Node* node;
Rectangle rect;
typename Node::iterator itr;
};
template <class cT>
static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient,
Rectangle rect) {
//std::cout << "New Root\n";
std::vector<stack_element> stack;
typename Node::iterator itr = node->begin();
do {
//std::cout << "LOOP\n";
//std::cout << node->rect << std::endl;
Interval rectIvl = rect.get(orient);
Interval nodeIvl = node->rect.get(orient);
bool iresult = intersect(rectIvl, nodeIvl, false);
bool tresult = !node->tracedPath(rectIvl);
//std::cout << (itr != node->end()) << " " << iresult << " " << tresult << std::endl;
Rectangle nextRect1 = Rectangle(rectIvl, rectIvl);
Unit low = rect.get(orient.get_perpendicular()).low();
Unit high = node->rect.get(orient.get_perpendicular()).high();
nextRect1.set(orient.get_perpendicular(), Interval(low, high));
if(iresult && tresult) {
node->addPath(rectIvl);
bool writeOut = true;
//check further visibility beyond this node
for(typename Node::iterator itr2 = node->begin(); itr2 != node->end(); ++itr2) {
Interval nodeIvl3 = (*itr2)->rect.get(orient);
//if a child of this node can contain the interval then we can extend through
if(contains(nodeIvl3, rectIvl, true)) writeOut = false;
//std::cout << "child " << (*itr2)->rect << std::endl;
}
Rectangle nextRect2 = Rectangle(rectIvl, rectIvl);
Unit low2 = rect.get(orient.get_perpendicular()).low();
Unit high2 = node->rect.get(orient.get_perpendicular()).high();
nextRect2.set(orient.get_perpendicular(), Interval(low2, high2));
if(writeOut) {
//std::cout << "write out " << nextRect << std::endl;
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect2));
} else {
//std::cout << "supress " << nextRect << std::endl;
}
}
if(itr != node->end() && iresult && tresult) {
//std::cout << "recurse into child\n";
stack.push_back(stack_element(node, rect, itr));
rect = nextRect1;
node = *itr;
itr = node->begin();
} else {
if(!stack.empty()) {
//std::cout << "recurse out of child\n";
node = stack.back().node;
rect = stack.back().rect;
itr = stack.back().itr;
stack.pop_back();
} else {
//std::cout << "empty stack\n";
//if there were no children of the root node
// Rectangle nextRect = Rectangle(rectIvl, rectIvl);
// Unit low = rect.get(orient.get_perpendicular()).low();
// Unit high = node->rect.get(orient.get_perpendicular()).high();
// nextRect.set(orient.get_perpendicular(), Interval(low, high));
// outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect));
}
//std::cout << "increment " << (itr != node->end()) << std::endl;
if(itr != node->end()) {
++itr;
if(itr != node->end()) {
//std::cout << "recurse into next child.\n";
stack.push_back(stack_element(node, rect, itr));
Interval rectIvl2 = rect.get(orient);
Interval nodeIvl2 = node->rect.get(orient);
/*bool iresult =*/ intersect(rectIvl2, nodeIvl2, false);
Rectangle nextRect2 = Rectangle(rectIvl2, rectIvl2);
Unit low2 = rect.get(orient.get_perpendicular()).low();
Unit high2 = node->rect.get(orient.get_perpendicular()).high();
nextRect2.set(orient.get_perpendicular(), Interval(low2, high2));
rect = nextRect2;
//std::cout << "rect for next child" << rect << std::endl;
node = *itr;
itr = node->begin();
}
}
}
} while(!stack.empty() || itr != node->end());
}
/* Function recursive version of getMaxCover
Because the code is so much simpler than the loop algorithm I retain it for clarity
template <class cT>
static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient,
const Rectangle& rect) {
Interval rectIvl = rect.get(orient);
Interval nodeIvl = node->rect.get(orient);
if(!intersect(rectIvl, nodeIvl, false)) {
return;
}
if(node->tracedPath(rectIvl)) {
return;
}
node->addPath(rectIvl);
Rectangle nextRect(rectIvl, rectIvl);
Unit low = rect.get(orient.get_perpendicular()).low();
Unit high = node->rect.get(orient.get_perpendicular()).high();
nextRect.set(orient.get_perpendicular(), Interval(low, high));
bool writeOut = true;
rectIvl = nextRect.get(orient);
for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) {
nodeIvl = (*itr)->rect.get(orient);
if(contains(nodeIvl, rectIvl, true)) writeOut = false;
}
if(writeOut) {
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect));
}
for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) {
getMaxCover(outputContainer, *itr, orient, nextRect);
}
}
*/
//iterator range is assummed to be in topological order meaning all node's trailing
//edges are in sorted order
template <class iT>
static inline void computeDag(iT beginNode, iT endNode, orientation_2d orient,
std::size_t size) {
std::vector<EdgeAssociation> leadingEdges;
leadingEdges.reserve(size);
for(iT iter = beginNode; iter != endNode; ++iter) {
Node* nodep = &(*iter);
Unit leading = nodep->rect.get(orient.get_perpendicular()).low();
Interval rectIvl = nodep->rect.get(orient);
leadingEdges.push_back(EdgeAssociation(std::pair<Unit, Interval>(leading, rectIvl), nodep));
}
std::sort(leadingEdges.begin(), leadingEdges.end(), lessEdgeAssociation());
typename std::vector<EdgeAssociation>::iterator leadingBegin = leadingEdges.begin();
iT trailingBegin = beginNode;
while(leadingBegin != leadingEdges.end()) {
EdgeAssociation& leadingSegment = (*leadingBegin);
Unit trailing = (*trailingBegin).rect.get(orient.get_perpendicular()).high();
Interval ivl = (*trailingBegin).rect.get(orient);
std::pair<Unit, Interval> trailingSegment(trailing, ivl);
if(leadingSegment.first.first < trailingSegment.first) {
++leadingBegin;
continue;
}
if(leadingSegment.first.first > trailingSegment.first) {
++trailingBegin;
continue;
}
if(leadingSegment.first.second.high() <= trailingSegment.second.low()) {
++leadingBegin;
continue;
}
if(trailingSegment.second.high() <= leadingSegment.first.second.low()) {
++trailingBegin;
continue;
}
//leading segment intersects trailing segment
(*trailingBegin).add((*leadingBegin).second);
if(leadingSegment.first.second.high() > trailingSegment.second.high()) {
++trailingBegin;
continue;
}
if(trailingSegment.second.high() > leadingSegment.first.second.high()) {
++leadingBegin;
continue;
}
++leadingBegin;
++trailingBegin;
}
}
template <class cT>
static inline void getMaxCover(cT& outputContainer,
const std::vector<Rectangle>& rects, orientation_2d orient) {
if(rects.empty()) return;
std::vector<Node> nodes;
{
if(rects.size() == 1) {
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(rects[0]));
return;
}
nodes.reserve(rects.size());
for(std::size_t i = 0; i < rects.size(); ++i) { nodes.push_back(Node(rects[i])); }
}
computeDag(nodes.begin(), nodes.end(), orient, nodes.size());
for(std::size_t i = 0; i < nodes.size(); ++i) {
getMaxCover(outputContainer, &(nodes[i]), orient);
}
}
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,378 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_SET_VIEW_HPP
#define BOOST_POLYGON_POLYGON_45_SET_VIEW_HPP
namespace boost { namespace polygon{
template <typename ltype, typename rtype, int op_type>
class polygon_45_set_view;
template <typename ltype, typename rtype, int op_type>
struct polygon_45_set_traits<polygon_45_set_view<ltype, rtype, op_type> > {
typedef typename polygon_45_set_view<ltype, rtype, op_type>::coordinate_type coordinate_type;
typedef typename polygon_45_set_view<ltype, rtype, op_type>::iterator_type iterator_type;
typedef typename polygon_45_set_view<ltype, rtype, op_type>::operator_arg_type operator_arg_type;
static inline iterator_type begin(const polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set);
static inline iterator_type end(const polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set);
template <typename input_iterator_type>
static inline void set(polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set,
input_iterator_type input_begin, input_iterator_type input_end);
static inline bool clean(const polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set);
};
template <typename value_type, typename ltype, typename rtype, int op_type>
struct compute_45_set_value {
static
void value(value_type& output_, const ltype& lvalue_, const rtype& rvalue_) {
output_.set(polygon_45_set_traits<ltype>::begin(lvalue_),
polygon_45_set_traits<ltype>::end(lvalue_));
value_type rinput_;
rinput_.set(polygon_45_set_traits<rtype>::begin(rvalue_),
polygon_45_set_traits<rtype>::end(rvalue_));
#ifdef BOOST_POLYGON_MSVC
#pragma warning (disable: 4127)
#endif
if(op_type == 0)
output_ |= rinput_;
else if(op_type == 1)
output_ &= rinput_;
else if(op_type == 2)
output_ ^= rinput_;
else
output_ -= rinput_;
#ifdef BOOST_POLYGON_MSVC
#pragma warning (default: 4127)
#endif
}
};
template <typename value_type, typename ltype, typename rcoord, int op_type>
struct compute_45_set_value<value_type, ltype, polygon_45_set_data<rcoord>, op_type> {
static
void value(value_type& output_, const ltype& lvalue_, const polygon_45_set_data<rcoord>& rvalue_) {
output_.set(polygon_45_set_traits<ltype>::begin(lvalue_),
polygon_45_set_traits<ltype>::end(lvalue_));
#ifdef BOOST_POLYGON_MSVC
#pragma warning (disable: 4127)
#endif
if(op_type == 0)
output_ |= rvalue_;
else if(op_type == 1)
output_ &= rvalue_;
else if(op_type == 2)
output_ ^= rvalue_;
else
output_ -= rvalue_;
#ifdef BOOST_POLYGON_MSVC
#pragma warning (default: 4127)
#endif
}
};
template <typename ltype, typename rtype, int op_type>
class polygon_45_set_view {
public:
typedef typename polygon_45_set_traits<ltype>::coordinate_type coordinate_type;
typedef polygon_45_set_data<coordinate_type> value_type;
typedef typename value_type::iterator_type iterator_type;
typedef polygon_45_set_view operator_arg_type;
private:
const ltype& lvalue_;
const rtype& rvalue_;
mutable value_type output_;
mutable bool evaluated_;
polygon_45_set_view& operator=(const polygon_45_set_view&);
public:
polygon_45_set_view(const ltype& lvalue,
const rtype& rvalue ) :
lvalue_(lvalue), rvalue_(rvalue), output_(), evaluated_(false) {}
// get iterator to begin vertex data
public:
const value_type& value() const {
if(!evaluated_) {
evaluated_ = true;
compute_45_set_value<value_type, ltype, rtype, op_type>::value(output_, lvalue_, rvalue_);
}
return output_;
}
public:
iterator_type begin() const { return value().begin(); }
iterator_type end() const { return value().end(); }
bool dirty() const { return value().dirty(); } //result of a boolean is clean
bool sorted() const { return value().sorted(); } //result of a boolean is sorted
// template <typename input_iterator_type>
// void set(input_iterator_type input_begin, input_iterator_type input_end,
// orientation_2d orient) const {
// orient_ = orient;
// output_.clear();
// output_.insert(output_.end(), input_begin, input_end);
// std::sort(output_.begin(), output_.end());
// }
};
template <typename ltype, typename rtype, int op_type>
typename polygon_45_set_view<ltype, rtype, op_type>::iterator_type
polygon_45_set_traits<polygon_45_set_view<ltype, rtype, op_type> >::
begin(const polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set) {
return polygon_45_set.begin();
}
template <typename ltype, typename rtype, int op_type>
typename polygon_45_set_view<ltype, rtype, op_type>::iterator_type
polygon_45_set_traits<polygon_45_set_view<ltype, rtype, op_type> >::
end(const polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set) {
return polygon_45_set.end();
}
template <typename ltype, typename rtype, int op_type>
bool polygon_45_set_traits<polygon_45_set_view<ltype, rtype, op_type> >::
clean(const polygon_45_set_view<ltype, rtype, op_type>& polygon_45_set) {
return polygon_45_set.value().clean(); }
template <typename geometry_type_1, typename geometry_type_2, int op_type>
geometry_type_1& self_assignment_boolean_op_45(geometry_type_1& lvalue_, const geometry_type_2& rvalue_) {
typedef geometry_type_1 ltype;
typedef geometry_type_2 rtype;
typedef typename polygon_45_set_traits<ltype>::coordinate_type coordinate_type;
typedef polygon_45_set_data<coordinate_type> value_type;
value_type output_;
value_type rinput_;
output_.set(polygon_45_set_traits<ltype>::begin(lvalue_),
polygon_45_set_traits<ltype>::end(lvalue_));
rinput_.set(polygon_45_set_traits<rtype>::begin(rvalue_),
polygon_45_set_traits<rtype>::end(rvalue_));
#ifdef BOOST_POLYGON_MSVC
#pragma warning (disable: 4127)
#endif
if(op_type == 0)
output_ |= rinput_;
else if(op_type == 1)
output_ &= rinput_;
else if(op_type == 2)
output_ ^= rinput_;
else
output_ -= rinput_;
#ifdef BOOST_POLYGON_MSVC
#pragma warning (default: 4127)
#endif
polygon_45_set_mutable_traits<geometry_type_1>::set(lvalue_, output_.begin(), output_.end());
return lvalue_;
}
template <typename concept_type>
struct fracture_holes_option_by_type {
static const bool value = true;
};
template <>
struct fracture_holes_option_by_type<polygon_45_with_holes_concept> {
static const bool value = false;
};
template <>
struct fracture_holes_option_by_type<polygon_with_holes_concept> {
static const bool value = false;
};
template <typename ltype, typename rtype, int op_type>
struct geometry_concept<polygon_45_set_view<ltype, rtype, op_type> > { typedef polygon_45_set_concept type; };
namespace operators {
struct y_ps45_b : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< y_ps45_b,
typename is_polygon_45_or_90_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type,
typename is_either_polygon_45_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_45_set_view<geometry_type_1, geometry_type_2, 0> >::type
operator|(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_45_set_view<geometry_type_1, geometry_type_2, 0>
(lvalue, rvalue);
}
struct y_ps45_p : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< y_ps45_p,
typename gtl_if<typename is_polygon_45_or_90_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
typename gtl_if<typename is_either_polygon_45_set_type<geometry_type_1, geometry_type_2>::type>::type>::type,
polygon_45_set_view<geometry_type_1, geometry_type_2, 0> >::type
operator+(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_45_set_view<geometry_type_1, geometry_type_2, 0>
(lvalue, rvalue);
}
struct y_ps45_s : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< y_ps45_s, typename is_polygon_45_or_90_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type,
typename is_either_polygon_45_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_45_set_view<geometry_type_1, geometry_type_2, 1> >::type
operator*(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_45_set_view<geometry_type_1, geometry_type_2, 1>
(lvalue, rvalue);
}
struct y_ps45_a : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< y_ps45_a, typename is_polygon_45_or_90_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type,
typename is_either_polygon_45_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_45_set_view<geometry_type_1, geometry_type_2, 1> >::type
operator&(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_45_set_view<geometry_type_1, geometry_type_2, 1>
(lvalue, rvalue);
}
struct y_ps45_x : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< y_ps45_x, typename is_polygon_45_or_90_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type,
typename is_either_polygon_45_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_45_set_view<geometry_type_1, geometry_type_2, 2> >::type
operator^(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_45_set_view<geometry_type_1, geometry_type_2, 2>
(lvalue, rvalue);
}
struct y_ps45_m : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< y_ps45_m,
typename gtl_if<typename is_polygon_45_or_90_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
typename gtl_if<typename is_either_polygon_45_set_type<geometry_type_1, geometry_type_2>::type>::type>::type,
polygon_45_set_view<geometry_type_1, geometry_type_2, 3> >::type
operator-(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_45_set_view<geometry_type_1, geometry_type_2, 3>
(lvalue, rvalue);
}
struct y_ps45_pe : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4<y_ps45_pe, typename is_mutable_polygon_45_set_type<geometry_type_1>::type, gtl_yes,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator+=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op_45<geometry_type_1, geometry_type_2, 0>(lvalue, rvalue);
}
struct y_ps45_be : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps45_be, typename is_mutable_polygon_45_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator|=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op_45<geometry_type_1, geometry_type_2, 0>(lvalue, rvalue);
}
struct y_ps45_se : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps45_se,
typename is_mutable_polygon_45_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator*=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op_45<geometry_type_1, geometry_type_2, 1>(lvalue, rvalue);
}
struct y_ps45_ae : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps45_ae, typename is_mutable_polygon_45_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator&=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op_45<geometry_type_1, geometry_type_2, 1>(lvalue, rvalue);
}
struct y_ps45_xe : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if<
typename gtl_and_3<y_ps45_xe, typename is_mutable_polygon_45_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator^=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op_45<geometry_type_1, geometry_type_2, 2>(lvalue, rvalue);
}
struct y_ps45_me : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps45_me, typename is_mutable_polygon_45_set_type<geometry_type_1>::type,
typename is_polygon_45_or_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator-=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op_45<geometry_type_1, geometry_type_2, 3>(lvalue, rvalue);
}
struct y_ps45_rpe : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3< y_ps45_rpe, typename is_mutable_polygon_45_set_type<geometry_type_1>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>::type,
geometry_type_1>::type &
operator+=(geometry_type_1& lvalue, coordinate_type_1 rvalue) {
return resize(lvalue, rvalue);
}
struct y_ps45_rme : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps45_rme, typename gtl_if<typename is_mutable_polygon_45_set_type<geometry_type_1>::type>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>::type,
geometry_type_1>::type &
operator-=(geometry_type_1& lvalue, coordinate_type_1 rvalue) {
return resize(lvalue, -rvalue);
}
struct y_ps45_rp : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps45_rp, typename gtl_if<typename is_mutable_polygon_45_set_type<geometry_type_1>::type>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>
::type, geometry_type_1>::type
operator+(const geometry_type_1& lvalue, coordinate_type_1 rvalue) {
geometry_type_1 retval(lvalue);
retval += rvalue;
return retval;
}
struct y_ps45_rm : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps45_rm, typename gtl_if<typename is_mutable_polygon_45_set_type<geometry_type_1>::type>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>
::type, geometry_type_1>::type
operator-(const geometry_type_1& lvalue, coordinate_type_1 rvalue) {
geometry_type_1 retval(lvalue);
retval -= rvalue;
return retval;
}
}
}
}
#endif

View File

@ -0,0 +1,236 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_TOUCH_HPP
#define BOOST_POLYGON_POLYGON_45_TOUCH_HPP
namespace boost { namespace polygon{
template <typename Unit>
struct polygon_45_touch {
typedef point_data<Unit> Point;
typedef typename coordinate_traits<Unit>::manhattan_area_type LongUnit;
template <typename property_map>
static inline void merge_property_maps(property_map& mp, const property_map& mp2, bool subtract = false) {
property_map newmp;
newmp.reserve(mp.size() + mp2.size());
std::size_t i = 0;
std::size_t j = 0;
while(i != mp.size() && j != mp2.size()) {
if(mp[i].first < mp2[j].first) {
newmp.push_back(mp[i]);
++i;
} else if(mp[i].first > mp2[j].first) {
newmp.push_back(mp2[j]);
if(subtract) newmp.back().second *= -1;
++j;
} else {
int count = mp[i].second;
if(subtract) count -= mp2[j].second;
else count += mp2[j].second;
if(count) {
newmp.push_back(mp[i]);
newmp.back().second = count;
}
++i;
++j;
}
}
while(i != mp.size()) {
newmp.push_back(mp[i]);
++i;
}
while(j != mp2.size()) {
newmp.push_back(mp2[j]);
if(subtract) newmp.back().second *= -1;
++j;
}
mp.swap(newmp);
}
class CountTouch {
public:
inline CountTouch() : counts() {}
//inline CountTouch(int count) { counts[0] = counts[1] = count; }
//inline CountTouch(int count1, int count2) { counts[0] = count1; counts[1] = count2; }
inline CountTouch(const CountTouch& count) : counts(count.counts) {}
inline bool operator==(const CountTouch& count) const { return counts == count.counts; }
inline bool operator!=(const CountTouch& count) const { return !((*this) == count); }
//inline CountTouch& operator=(int count) { counts[0] = counts[1] = count; return *this; }
inline CountTouch& operator=(const CountTouch& count) { counts = count.counts; return *this; }
inline int& operator[](int index) {
std::vector<std::pair<int, int> >::iterator itr = lower_bound(counts.begin(), counts.end(), std::make_pair(index, int(0)));
if(itr != counts.end() && itr->first == index) {
return itr->second;
}
itr = counts.insert(itr, std::make_pair(index, int(0)));
return itr->second;
}
// inline int operator[](int index) const {
// std::vector<std::pair<int, int> >::const_iterator itr = counts.begin();
// for( ; itr != counts.end() && itr->first <= index; ++itr) {
// if(itr->first == index) {
// return itr->second;
// }
// }
// return 0;
// }
inline CountTouch& operator+=(const CountTouch& count){
merge_property_maps(counts, count.counts, false);
return *this;
}
inline CountTouch& operator-=(const CountTouch& count){
merge_property_maps(counts, count.counts, true);
return *this;
}
inline CountTouch operator+(const CountTouch& count) const {
return CountTouch(*this)+=count;
}
inline CountTouch operator-(const CountTouch& count) const {
return CountTouch(*this)-=count;
}
inline CountTouch invert() const {
CountTouch retval;
retval -= *this;
return retval;
}
std::vector<std::pair<int, int> > counts;
};
typedef std::pair<std::pair<Unit, std::map<Unit, std::set<int> > >, std::map<int, std::set<int> > > map_graph_o;
typedef std::pair<std::pair<Unit, std::map<Unit, std::set<int> > >, std::vector<std::set<int> > > vector_graph_o;
template <typename cT>
static void process_previous_x(cT& output) {
std::map<Unit, std::set<int> >& y_prop_map = output.first.second;
for(typename std::map<Unit, std::set<int> >::iterator itr = y_prop_map.begin();
itr != y_prop_map.end(); ++itr) {
for(std::set<int>::iterator inner_itr = itr->second.begin();
inner_itr != itr->second.end(); ++inner_itr) {
std::set<int>& output_edges = (*(output.second))[*inner_itr];
std::set<int>::iterator inner_inner_itr = inner_itr;
++inner_inner_itr;
for( ; inner_inner_itr != itr->second.end(); ++inner_inner_itr) {
output_edges.insert(output_edges.end(), *inner_inner_itr);
std::set<int>& output_edges_2 = (*(output.second))[*inner_inner_itr];
output_edges_2.insert(output_edges_2.end(), *inner_itr);
}
}
}
y_prop_map.clear();
}
struct touch_45_output_functor {
template <typename cT>
void operator()(cT& output, const CountTouch& count1, const CountTouch& count2,
const Point& pt, int , direction_1d ) {
Unit& x = output.first.first;
std::map<Unit, std::set<int> >& y_prop_map = output.first.second;
if(pt.x() != x) process_previous_x(output);
x = pt.x();
std::set<int>& output_set = y_prop_map[pt.y()];
for(std::vector<std::pair<int, int> >::const_iterator itr1 = count1.counts.begin();
itr1 != count1.counts.end(); ++itr1) {
if(itr1->second > 0) {
output_set.insert(output_set.end(), itr1->first);
}
}
for(std::vector<std::pair<int, int> >::const_iterator itr2 = count2.counts.begin();
itr2 != count2.counts.end(); ++itr2) {
if(itr2->second > 0) {
output_set.insert(output_set.end(), itr2->first);
}
}
}
};
typedef typename std::pair<Point,
typename boolean_op_45<Unit>::template Scan45CountT<CountTouch> > Vertex45Compact;
typedef std::vector<Vertex45Compact> TouchSetData;
struct lessVertex45Compact {
bool operator()(const Vertex45Compact& l, const Vertex45Compact& r) {
return l.first < r.first;
}
};
// template <typename TSD>
// static void print_tsd(TSD& tsd) {
// for(std::size_t i = 0; i < tsd.size(); ++i) {
// std::cout << tsd[i].first << ": ";
// for(unsigned int r = 0; r < 4; ++r) {
// std::cout << r << " { ";
// for(std::vector<std::pair<int, int> >::iterator itr = tsd[i].second[r].counts.begin();
// itr != tsd[i].second[r].counts.end(); ++itr) {
// std::cout << itr->first << "," << itr->second << " ";
// } std::cout << "} ";
// }
// } std::cout << std::endl;
// }
// template <typename T>
// static void print_scanline(T& t) {
// for(typename T::iterator itr = t.begin(); itr != t.end(); ++itr) {
// std::cout << itr->x << "," << itr->y << " " << itr->rise << " ";
// for(std::vector<std::pair<int, int> >::iterator itr2 = itr->count.counts.begin();
// itr2 != itr->count.counts.end(); ++itr2) {
// std::cout << itr2->first << ":" << itr2->second << " ";
// } std::cout << std::endl;
// }
// }
template <typename graph_type>
static void performTouch(graph_type& graph, TouchSetData& tsd) {
std::sort(tsd.begin(), tsd.end(), lessVertex45Compact());
typedef std::vector<std::pair<Point, typename boolean_op_45<Unit>::template Scan45CountT<CountTouch> > > TSD;
TSD tsd_;
tsd_.reserve(tsd.size());
for(typename TouchSetData::iterator itr = tsd.begin(); itr != tsd.end(); ) {
typename TouchSetData::iterator itr2 = itr;
++itr2;
for(; itr2 != tsd.end() && itr2->first == itr->first; ++itr2) {
(itr->second) += (itr2->second); //accumulate
}
tsd_.push_back(std::make_pair(itr->first, itr->second));
itr = itr2;
}
std::pair<std::pair<Unit, std::map<Unit, std::set<int> > >, graph_type*> output
(std::make_pair(std::make_pair((std::numeric_limits<Unit>::max)(), std::map<Unit, std::set<int> >()), &graph));
typename boolean_op_45<Unit>::template Scan45<CountTouch, touch_45_output_functor> scanline;
for(typename TSD::iterator itr = tsd_.begin(); itr != tsd_.end(); ) {
typename TSD::iterator itr2 = itr;
++itr2;
while(itr2 != tsd_.end() && itr2->first.x() == itr->first.x()) {
++itr2;
}
scanline.scan(output, itr, itr2);
itr = itr2;
}
process_previous_x(output);
}
template <typename iT>
static void populateTouchSetData(TouchSetData& tsd, iT begin, iT end, int nodeCount) {
for( ; begin != end; ++begin) {
Vertex45Compact vertex;
vertex.first = typename Vertex45Compact::first_type(begin->pt.x() * 2, begin->pt.y() * 2);
tsd.push_back(vertex);
for(unsigned int i = 0; i < 4; ++i) {
if(begin->count[i]) {
tsd.back().second[i][nodeCount] += begin->count[i];
}
}
}
}
};
}
}
#endif

View File

@ -0,0 +1,445 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_SET_VIEW_HPP
#define BOOST_POLYGON_POLYGON_90_SET_VIEW_HPP
namespace boost { namespace polygon{
struct operator_provides_storage {};
struct operator_requires_copy {};
template <typename value_type, typename arg_type>
inline void insert_into_view_arg(value_type& dest, const arg_type& arg, orientation_2d orient);
template <typename ltype, typename rtype, typename op_type>
class polygon_90_set_view;
template <typename ltype, typename rtype, typename op_type>
struct polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> > {
typedef typename polygon_90_set_view<ltype, rtype, op_type>::coordinate_type coordinate_type;
typedef typename polygon_90_set_view<ltype, rtype, op_type>::iterator_type iterator_type;
typedef typename polygon_90_set_view<ltype, rtype, op_type>::operator_arg_type operator_arg_type;
static inline iterator_type begin(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set);
static inline iterator_type end(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set);
static inline orientation_2d orient(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set);
static inline bool clean(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set);
static inline bool sorted(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set);
};
template <typename value_type, typename ltype, typename rtype, typename op_type>
struct compute_90_set_value {
static
void value(value_type& output_, const ltype& lvalue_, const rtype& rvalue_, orientation_2d orient_) {
value_type linput_(orient_);
value_type rinput_(orient_);
insert_into_view_arg(linput_, lvalue_, orient_);
insert_into_view_arg(rinput_, rvalue_, orient_);
output_.applyBooleanBinaryOp(linput_.begin(), linput_.end(),
rinput_.begin(), rinput_.end(), boolean_op::BinaryCount<op_type>());
}
};
template <typename value_type, typename lcoord, typename rcoord, typename op_type>
struct compute_90_set_value<value_type, polygon_90_set_data<lcoord>, polygon_90_set_data<rcoord>, op_type> {
static
void value(value_type& output_, const polygon_90_set_data<lcoord>& lvalue_,
const polygon_90_set_data<rcoord>& rvalue_, orientation_2d) {
lvalue_.sort();
rvalue_.sort();
output_.applyBooleanBinaryOp(lvalue_.begin(), lvalue_.end(),
rvalue_.begin(), rvalue_.end(), boolean_op::BinaryCount<op_type>());
}
};
template <typename value_type, typename lcoord, typename rtype, typename op_type>
struct compute_90_set_value<value_type, polygon_90_set_data<lcoord>, rtype, op_type> {
static
void value(value_type& output_, const polygon_90_set_data<lcoord>& lvalue_,
const rtype& rvalue_, orientation_2d orient_) {
value_type rinput_(orient_);
lvalue_.sort();
insert_into_view_arg(rinput_, rvalue_, orient_);
output_.applyBooleanBinaryOp(lvalue_.begin(), lvalue_.end(),
rinput_.begin(), rinput_.end(), boolean_op::BinaryCount<op_type>());
}
};
template <typename value_type, typename ltype, typename rcoord, typename op_type>
struct compute_90_set_value<value_type, ltype, polygon_90_set_data<rcoord>, op_type> {
static
void value(value_type& output_, const ltype& lvalue_,
const polygon_90_set_data<rcoord>& rvalue_, orientation_2d orient_) {
value_type linput_(orient_);
insert_into_view_arg(linput_, lvalue_, orient_);
rvalue_.sort();
output_.applyBooleanBinaryOp(linput_.begin(), linput_.end(),
rvalue_.begin(), rvalue_.end(), boolean_op::BinaryCount<op_type>());
}
};
template <typename ltype, typename rtype, typename op_type>
class polygon_90_set_view {
public:
typedef typename polygon_90_set_traits<ltype>::coordinate_type coordinate_type;
typedef polygon_90_set_data<coordinate_type> value_type;
typedef typename value_type::iterator_type iterator_type;
typedef polygon_90_set_view operator_arg_type;
private:
const ltype& lvalue_;
const rtype& rvalue_;
orientation_2d orient_;
op_type op_;
mutable value_type output_;
mutable bool evaluated_;
polygon_90_set_view& operator=(const polygon_90_set_view&);
public:
polygon_90_set_view(const ltype& lvalue,
const rtype& rvalue,
orientation_2d orient,
op_type op) :
lvalue_(lvalue), rvalue_(rvalue), orient_(orient), op_(op), output_(orient), evaluated_(false) {}
// get iterator to begin vertex data
private:
const value_type& value() const {
if(!evaluated_) {
evaluated_ = true;
compute_90_set_value<value_type, ltype, rtype, op_type>::value(output_, lvalue_, rvalue_, orient_);
}
return output_;
}
public:
iterator_type begin() const { return value().begin(); }
iterator_type end() const { return value().end(); }
orientation_2d orient() const { return orient_; }
bool dirty() const { return false; } //result of a boolean is clean
bool sorted() const { return true; } //result of a boolean is sorted
// template <typename input_iterator_type>
// void set(input_iterator_type input_begin, input_iterator_type input_end,
// orientation_2d orient) const {
// orient_ = orient;
// output_.clear();
// output_.insert(output_.end(), input_begin, input_end);
// std::sort(output_.begin(), output_.end());
// }
void sort() const {} //is always sorted
};
template <typename ltype, typename rtype, typename op_type>
struct geometry_concept<polygon_90_set_view<ltype, rtype, op_type> > {
typedef polygon_90_set_concept type;
};
template <typename ltype, typename rtype, typename op_type>
typename polygon_90_set_view<ltype, rtype, op_type>::iterator_type
polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> >::
begin(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set) {
return polygon_set.begin();
}
template <typename ltype, typename rtype, typename op_type>
typename polygon_90_set_view<ltype, rtype, op_type>::iterator_type
polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> >::
end(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set) {
return polygon_set.end();
}
// template <typename ltype, typename rtype, typename op_type>
// template <typename input_iterator_type>
// void polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> >::
// set(polygon_90_set_view<ltype, rtype, op_type>& polygon_set,
// input_iterator_type input_begin, input_iterator_type input_end,
// orientation_2d orient) {
// polygon_set.set(input_begin, input_end, orient);
// }
template <typename ltype, typename rtype, typename op_type>
orientation_2d polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> >::
orient(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set) {
return polygon_set.orient(); }
template <typename ltype, typename rtype, typename op_type>
bool polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> >::
clean(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set) {
return true; }
template <typename ltype, typename rtype, typename op_type>
bool polygon_90_set_traits<polygon_90_set_view<ltype, rtype, op_type> >::
sorted(const polygon_90_set_view<ltype, rtype, op_type>& polygon_set) {
return true; }
template <typename value_type, typename arg_type>
inline void insert_into_view_arg(value_type& dest, const arg_type& arg, orientation_2d orient) {
typedef typename polygon_90_set_traits<arg_type>::iterator_type literator;
literator itr1, itr2;
itr1 = polygon_90_set_traits<arg_type>::begin(arg);
itr2 = polygon_90_set_traits<arg_type>::end(arg);
dest.insert(itr1, itr2, orient);
dest.sort();
}
template <typename T>
template <typename ltype, typename rtype, typename op_type>
inline polygon_90_set_data<T>& polygon_90_set_data<T>::operator=(const polygon_90_set_view<ltype, rtype, op_type>& that) {
set(that.begin(), that.end(), that.orient());
dirty_ = false;
unsorted_ = false;
return *this;
}
template <typename T>
template <typename ltype, typename rtype, typename op_type>
inline polygon_90_set_data<T>::polygon_90_set_data(const polygon_90_set_view<ltype, rtype, op_type>& that) :
orient_(that.orient()), data_(that.begin(), that.end()), dirty_(false), unsorted_(false) {}
template <typename geometry_type_1, typename geometry_type_2>
struct self_assign_operator_lvalue {
typedef geometry_type_1& type;
};
template <typename type_1, typename type_2>
struct by_value_binary_operator {
typedef type_1 type;
};
template <typename geometry_type_1, typename geometry_type_2, typename op_type>
geometry_type_1& self_assignment_boolean_op(geometry_type_1& lvalue_, const geometry_type_2& rvalue_) {
typedef geometry_type_1 ltype;
typedef geometry_type_2 rtype;
typedef typename polygon_90_set_traits<ltype>::coordinate_type coordinate_type;
typedef polygon_90_set_data<coordinate_type> value_type;
orientation_2d orient_ = polygon_90_set_traits<ltype>::orient(lvalue_);
value_type linput_(orient_);
value_type rinput_(orient_);
value_type output_(orient_);
insert_into_view_arg(linput_, lvalue_, orient_);
insert_into_view_arg(rinput_, rvalue_, orient_);
output_.applyBooleanBinaryOp(linput_.begin(), linput_.end(),
rinput_.begin(), rinput_.end(), boolean_op::BinaryCount<op_type>());
polygon_90_set_mutable_traits<geometry_type_1>::set(lvalue_, output_.begin(), output_.end(), orient_);
return lvalue_;
}
namespace operators {
struct y_ps90_b : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_b,
typename is_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryOr> >::type
operator|(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryOr>
(lvalue, rvalue,
polygon_90_set_traits<geometry_type_1>::orient(lvalue),
boolean_op::BinaryOr());
}
struct y_ps90_p : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if<
typename gtl_and_3< y_ps90_p,
typename gtl_if<typename is_polygon_90_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename is_polygon_90_set_type<geometry_type_2>::type>::type>::type,
polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryOr> >::type
operator+(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryOr>
(lvalue, rvalue,
polygon_90_set_traits<geometry_type_1>::orient(lvalue),
boolean_op::BinaryOr());
}
struct y_ps90_s : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_s,
typename is_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryAnd> >::type
operator*(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryAnd>
(lvalue, rvalue,
polygon_90_set_traits<geometry_type_1>::orient(lvalue),
boolean_op::BinaryAnd());
}
struct y_ps90_a : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_a,
typename is_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryAnd> >::type
operator&(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryAnd>
(lvalue, rvalue,
polygon_90_set_traits<geometry_type_1>::orient(lvalue),
boolean_op::BinaryAnd());
}
struct y_ps90_x : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_x,
typename is_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryXor> >::type
operator^(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryXor>
(lvalue, rvalue,
polygon_90_set_traits<geometry_type_1>::orient(lvalue),
boolean_op::BinaryXor());
}
struct y_ps90_m : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_m,
typename gtl_if<typename is_polygon_90_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename is_polygon_90_set_type<geometry_type_2>::type>::type>::type,
polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryNot> >::type
operator-(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_90_set_view<geometry_type_1, geometry_type_2, boolean_op::BinaryNot>
(lvalue, rvalue,
polygon_90_set_traits<geometry_type_1>::orient(lvalue),
boolean_op::BinaryNot());
}
struct y_ps90_pe : gtl_yes {};
template <typename coordinate_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and< y_ps90_pe, typename is_polygon_90_set_type<geometry_type_2>::type>::type,
polygon_90_set_data<coordinate_type_1> >::type &
operator+=(polygon_90_set_data<coordinate_type_1>& lvalue, const geometry_type_2& rvalue) {
lvalue.insert(polygon_90_set_traits<geometry_type_2>::begin(rvalue), polygon_90_set_traits<geometry_type_2>::end(rvalue),
polygon_90_set_traits<geometry_type_2>::orient(rvalue));
return lvalue;
}
struct y_ps90_be : gtl_yes {};
//
template <typename coordinate_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and< y_ps90_be, typename is_polygon_90_set_type<geometry_type_2>::type>::type,
polygon_90_set_data<coordinate_type_1> >::type &
operator|=(polygon_90_set_data<coordinate_type_1>& lvalue, const geometry_type_2& rvalue) {
return lvalue += rvalue;
}
struct y_ps90_pe2 : gtl_yes {};
//normal self assignment boolean operations
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_pe2, typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator+=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, boolean_op::BinaryOr>(lvalue, rvalue);
}
struct y_ps90_be2 : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps90_be2, typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator|=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, boolean_op::BinaryOr>(lvalue, rvalue);
}
struct y_ps90_se : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps90_se, typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator*=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, boolean_op::BinaryAnd>(lvalue, rvalue);
}
struct y_ps90_ae : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps90_ae, typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator&=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, boolean_op::BinaryAnd>(lvalue, rvalue);
}
struct y_ps90_xe : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3<y_ps90_xe, typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator^=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, boolean_op::BinaryXor>(lvalue, rvalue);
}
struct y_ps90_me : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< y_ps90_me, typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename is_polygon_90_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator-=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, boolean_op::BinaryNot>(lvalue, rvalue);
}
struct y_ps90_rpe : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps90_rpe,
typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type>::type,
geometry_type_1>::type &
operator+=(geometry_type_1& lvalue, coordinate_type_1 rvalue) {
return resize(lvalue, rvalue);
}
struct y_ps90_rme : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps90_rme,
typename is_mutable_polygon_90_set_type<geometry_type_1>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type>::type,
geometry_type_1>::type &
operator-=(geometry_type_1& lvalue, coordinate_type_1 rvalue) {
return resize(lvalue, -rvalue);
}
struct y_ps90_rp : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps90_rp,
typename gtl_if<typename is_mutable_polygon_90_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type>::type>::type,
geometry_type_1>::type
operator+(const geometry_type_1& lvalue, coordinate_type_1 rvalue) {
geometry_type_1 retval(lvalue);
retval += rvalue;
return retval;
}
struct y_ps90_rm : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps90_rm,
typename gtl_if<typename is_mutable_polygon_90_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type>::type>::type,
geometry_type_1>::type
operator-(const geometry_type_1& lvalue, coordinate_type_1 rvalue) {
geometry_type_1 retval(lvalue);
retval -= rvalue;
return retval;
}
}
}
}
#endif

View File

@ -0,0 +1,418 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_TOUCH_HPP
#define BOOST_POLYGON_POLYGON_90_TOUCH_HPP
namespace boost { namespace polygon{
template <typename Unit>
struct touch_90_operation {
typedef interval_data<Unit> Interval;
class TouchScanEvent {
private:
typedef std::map<Unit, std::set<int> > EventData;
EventData eventData_;
public:
// The TouchScanEvent::iterator is a lazy algorithm that accumulates
// polygon ids in a set as it is incremented through the
// scan event data structure.
// The iterator provides a forward iterator semantic only.
class iterator {
private:
typename EventData::const_iterator itr_;
std::pair<Interval, std::set<int> > ivlIds_;
bool incremented_;
public:
inline iterator() : itr_(), ivlIds_(), incremented_(false) {}
inline iterator(typename EventData::const_iterator itr,
Unit prevPos, Unit curPos, const std::set<int>& ivlIds) : itr_(itr), ivlIds_(), incremented_(false) {
ivlIds_.second = ivlIds;
ivlIds_.first = Interval(prevPos, curPos);
}
inline iterator(const iterator& that) : itr_(), ivlIds_(), incremented_(false) { (*this) = that; }
inline iterator& operator=(const iterator& that) {
itr_ = that.itr_;
ivlIds_.first = that.ivlIds_.first;
ivlIds_.second = that.ivlIds_.second;
incremented_ = that.incremented_;
return *this;
};
inline bool operator==(const iterator& that) { return itr_ == that.itr_; }
inline bool operator!=(const iterator& that) { return itr_ != that.itr_; }
inline iterator& operator++() {
//std::cout << "increment\n";
//std::cout << "state\n";
//for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) {
// std::cout << (*itr) << " ";
//} std::cout << std::endl;
//std::cout << "update\n";
for(std::set<int>::const_iterator itr = (*itr_).second.begin();
itr != (*itr_).second.end(); ++itr) {
//std::cout << (*itr) << " ";
std::set<int>::iterator lb = ivlIds_.second.find(*itr);
if(lb != ivlIds_.second.end()) {
ivlIds_.second.erase(lb);
} else {
ivlIds_.second.insert(*itr);
}
}
//std::cout << std::endl;
//std::cout << "new state\n";
//for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) {
// std::cout << (*itr) << " ";
//} std::cout << std::endl;
++itr_;
//ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
incremented_ = true;
return *this;
}
inline const iterator operator++(int){
iterator tmpItr(*this);
++(*this);
return tmpItr;
}
inline std::pair<Interval, std::set<int> >& operator*() {
if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
incremented_ = false;
if(ivlIds_.second.empty())(++(*this));
if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
incremented_ = false;
return ivlIds_; }
};
inline TouchScanEvent() : eventData_() {}
template<class iT>
inline TouchScanEvent(iT begin, iT end) : eventData_() {
for( ; begin != end; ++begin){
insert(*begin);
}
}
inline TouchScanEvent(const TouchScanEvent& that) : eventData_(that.eventData_) {}
inline TouchScanEvent& operator=(const TouchScanEvent& that){
eventData_ = that.eventData_;
return *this;
}
//Insert an interval polygon id into the EventData
inline void insert(const std::pair<Interval, int>& intervalId){
insert(intervalId.first.low(), intervalId.second);
insert(intervalId.first.high(), intervalId.second);
}
//Insert an position and polygon id into EventData
inline void insert(Unit pos, int id) {
typename EventData::iterator lb = eventData_.lower_bound(pos);
if(lb != eventData_.end() && lb->first == pos) {
std::set<int>& mr (lb->second);
std::set<int>::iterator mri = mr.find(id);
if(mri == mr.end()) {
mr.insert(id);
} else {
mr.erase(id);
}
} else {
lb = eventData_.insert(lb, std::pair<Unit, std::set<int> >(pos, std::set<int>()));
(*lb).second.insert(id);
}
}
//merge this scan event with that by inserting its data
inline void insert(const TouchScanEvent& that){
typename EventData::const_iterator itr;
for(itr = that.eventData_.begin(); itr != that.eventData_.end(); ++itr) {
eventData_[(*itr).first].insert(itr->second.begin(), itr->second.end());
}
}
//Get the begin iterator over event data
inline iterator begin() const {
//std::cout << "begin\n";
if(eventData_.empty()) return end();
typename EventData::const_iterator itr = eventData_.begin();
Unit pos = itr->first;
const std::set<int>& idr = itr->second;
++itr;
return iterator(itr, pos, itr->first, idr);
}
//Get the end iterator over event data
inline iterator end() const { return iterator(eventData_.end(), 0, 0, std::set<int>()); }
inline void clear() { eventData_.clear(); }
inline Interval extents() const {
if(eventData_.empty()) return Interval();
return Interval((*(eventData_.begin())).first, (*(eventData_.rbegin())).first);
}
};
//declaration of a map of scan events by coordinate value used to store all the
//polygon data for a single layer input into the scanline algorithm
typedef std::pair<std::map<Unit, TouchScanEvent>, std::map<Unit, TouchScanEvent> > TouchSetData;
class TouchOp {
public:
typedef std::map<Unit, std::set<int> > ScanData;
typedef std::pair<Unit, std::set<int> > ElementType;
protected:
ScanData scanData_;
typename ScanData::iterator nextItr_;
public:
inline TouchOp () : scanData_(), nextItr_() { nextItr_ = scanData_.end(); }
inline TouchOp (const TouchOp& that) : scanData_(that.scanData_), nextItr_() { nextItr_ = scanData_.begin(); }
inline TouchOp& operator=(const TouchOp& that);
//moves scanline forward
inline void advanceScan() { nextItr_ = scanData_.begin(); }
//proceses the given interval and std::set<int> data
//the output data structre is a graph, the indicies in the vector correspond to graph nodes,
//the integers in the set are vector indicies and are the nodes with which that node shares an edge
template <typename graphT>
inline void processInterval(graphT& outputContainer, Interval ivl, const std::set<int>& ids, bool leadingEdge) {
//print();
typename ScanData::iterator lowItr = lookup_(ivl.low());
typename ScanData::iterator highItr = lookup_(ivl.high());
//std::cout << "Interval: " << ivl << std::endl;
//for(std::set<int>::const_iterator itr = ids.begin(); itr != ids.end(); ++itr)
// std::cout << (*itr) << " ";
//std::cout << std::endl;
//add interval to scan data if it is past the end
if(lowItr == scanData_.end()) {
//std::cout << "case0" << std::endl;
lowItr = insert_(ivl.low(), ids);
evaluateBorder_(outputContainer, ids, ids);
highItr = insert_(ivl.high(), std::set<int>());
return;
}
//ensure that highItr points to the end of the ivl
if(highItr == scanData_.end() || (*highItr).first > ivl.high()) {
//std::cout << "case1" << std::endl;
//std::cout << highItr->first << std::endl;
std::set<int> value = std::set<int>();
if(highItr != scanData_.begin()) {
--highItr;
//std::cout << highItr->first << std::endl;
//std::cout << "high set size " << highItr->second.size() << std::endl;
value = highItr->second;
}
nextItr_ = highItr;
highItr = insert_(ivl.high(), value);
} else {
//evaluate border with next higher interval
//std::cout << "case1a" << std::endl;
if(leadingEdge)evaluateBorder_(outputContainer, highItr->second, ids);
}
//split the low interval if needed
if(lowItr->first > ivl.low()) {
//std::cout << "case2" << std::endl;
if(lowItr != scanData_.begin()) {
//std::cout << "case3" << std::endl;
--lowItr;
nextItr_ = lowItr;
//std::cout << lowItr->first << " " << lowItr->second.size() << std::endl;
lowItr = insert_(ivl.low(), lowItr->second);
} else {
//std::cout << "case4" << std::endl;
nextItr_ = lowItr;
lowItr = insert_(ivl.low(), std::set<int>());
}
} else {
//evaluate border with next higher interval
//std::cout << "case2a" << std::endl;
typename ScanData::iterator nextLowerItr = lowItr;
if(leadingEdge && nextLowerItr != scanData_.begin()){
--nextLowerItr;
evaluateBorder_(outputContainer, nextLowerItr->second, ids);
}
}
//std::cout << "low: " << lowItr->first << " high: " << highItr->first << std::endl;
//print();
//process scan data intersecting interval
for(typename ScanData::iterator itr = lowItr; itr != highItr; ){
//std::cout << "case5" << std::endl;
//std::cout << itr->first << std::endl;
std::set<int>& beforeIds = itr->second;
++itr;
evaluateInterval_(outputContainer, beforeIds, ids, leadingEdge);
}
//print();
//merge the bottom interval with the one below if they have the same count
if(lowItr != scanData_.begin()){
//std::cout << "case6" << std::endl;
typename ScanData::iterator belowLowItr = lowItr;
--belowLowItr;
if(belowLowItr->second == lowItr->second) {
//std::cout << "case7" << std::endl;
scanData_.erase(lowItr);
}
}
//merge the top interval with the one above if they have the same count
if(highItr != scanData_.begin()) {
//std::cout << "case8" << std::endl;
typename ScanData::iterator beforeHighItr = highItr;
--beforeHighItr;
if(beforeHighItr->second == highItr->second) {
//std::cout << "case9" << std::endl;
scanData_.erase(highItr);
highItr = beforeHighItr;
++highItr;
}
}
//print();
nextItr_ = highItr;
}
// inline void print() const {
// for(typename ScanData::const_iterator itr = scanData_.begin(); itr != scanData_.end(); ++itr) {
// std::cout << itr->first << ": ";
// for(std::set<int>::const_iterator sitr = itr->second.begin();
// sitr != itr->second.end(); ++sitr){
// std::cout << *sitr << " ";
// }
// std::cout << std::endl;
// }
// }
private:
inline typename ScanData::iterator lookup_(Unit pos){
if(nextItr_ != scanData_.end() && nextItr_->first >= pos) {
return nextItr_;
}
return nextItr_ = scanData_.lower_bound(pos);
}
inline typename ScanData::iterator insert_(Unit pos, const std::set<int>& ids){
//std::cout << "inserting " << ids.size() << " ids at: " << pos << std::endl;
return nextItr_ = scanData_.insert(nextItr_, std::pair<Unit, std::set<int> >(pos, ids));
}
template <typename graphT>
inline void evaluateInterval_(graphT& outputContainer, std::set<int>& ids,
const std::set<int>& changingIds, bool leadingEdge) {
for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){
//std::cout << "evaluateInterval " << (*ciditr) << std::endl;
evaluateId_(outputContainer, ids, *ciditr, leadingEdge);
}
}
template <typename graphT>
inline void evaluateBorder_(graphT& outputContainer, const std::set<int>& ids, const std::set<int>& changingIds) {
for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){
//std::cout << "evaluateBorder " << (*ciditr) << std::endl;
evaluateBorderId_(outputContainer, ids, *ciditr);
}
}
template <typename graphT>
inline void evaluateBorderId_(graphT& outputContainer, const std::set<int>& ids, int changingId) {
for(std::set<int>::const_iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) {
//std::cout << "create edge: " << changingId << " " << *scanItr << std::endl;
if(changingId != *scanItr){
outputContainer[changingId].insert(*scanItr);
outputContainer[*scanItr].insert(changingId);
}
}
}
template <typename graphT>
inline void evaluateId_(graphT& outputContainer, std::set<int>& ids, int changingId, bool leadingEdge) {
//std::cout << "changingId: " << changingId << std::endl;
//for( std::set<int>::iterator itr = ids.begin(); itr != ids.end(); ++itr){
// std::cout << *itr << " ";
//}std::cout << std::endl;
std::set<int>::iterator lb = ids.lower_bound(changingId);
if(lb == ids.end() || (*lb) != changingId) {
if(leadingEdge) {
//std::cout << "insert\n";
//insert and add to output
for(std::set<int>::iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) {
//std::cout << "create edge: " << changingId << " " << *scanItr << std::endl;
if(changingId != *scanItr){
outputContainer[changingId].insert(*scanItr);
outputContainer[*scanItr].insert(changingId);
}
}
ids.insert(changingId);
}
} else {
if(!leadingEdge){
//std::cout << "erase\n";
ids.erase(lb);
}
}
}
};
template <typename graphT>
static inline void processEvent(graphT& outputContainer, TouchOp& op, const TouchScanEvent& data, bool leadingEdge) {
for(typename TouchScanEvent::iterator itr = data.begin(); itr != data.end(); ++itr) {
//std::cout << "processInterval" << std::endl;
op.processInterval(outputContainer, (*itr).first, (*itr).second, leadingEdge);
}
}
template <typename graphT>
static inline void performTouch(graphT& outputContainer, const TouchSetData& data) {
typename std::map<Unit, TouchScanEvent>::const_iterator leftItr = data.first.begin();
typename std::map<Unit, TouchScanEvent>::const_iterator rightItr = data.second.begin();
typename std::map<Unit, TouchScanEvent>::const_iterator leftEnd = data.first.end();
typename std::map<Unit, TouchScanEvent>::const_iterator rightEnd = data.second.end();
TouchOp op;
while(leftItr != leftEnd || rightItr != rightEnd) {
//std::cout << "loop" << std::endl;
op.advanceScan();
//rightItr cannont be at end if leftItr is not at end
if(leftItr != leftEnd && rightItr != rightEnd &&
leftItr->first <= rightItr->first) {
//std::cout << "case1" << std::endl;
//std::cout << leftItr ->first << std::endl;
processEvent(outputContainer, op, leftItr->second, true);
++leftItr;
} else {
//std::cout << "case2" << std::endl;
//std::cout << rightItr ->first << std::endl;
processEvent(outputContainer, op, rightItr->second, false);
++rightItr;
}
}
}
template <class iT>
static inline void populateTouchSetData(TouchSetData& data, iT beginData, iT endData, int id) {
Unit prevPos = ((std::numeric_limits<Unit>::max)());
Unit prevY = prevPos;
int count = 0;
for(iT itr = beginData; itr != endData; ++itr) {
Unit pos = (*itr).first;
if(pos != prevPos) {
prevPos = pos;
prevY = (*itr).second.first;
count = (*itr).second.second;
continue;
}
Unit y = (*itr).second.first;
if(count != 0 && y != prevY) {
std::pair<Interval, int> element(Interval(prevY, y), id);
if(count > 0) {
data.first[pos].insert(element);
} else {
data.second[pos].insert(element);
}
}
prevY = y;
count += (*itr).second.second;
}
}
static inline void populateTouchSetData(TouchSetData& data, const std::vector<std::pair<Unit, std::pair<Unit, int> > >& inputData, int id) {
populateTouchSetData(data, inputData.begin(), inputData.end(), id);
}
};
}
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,207 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_SET_VIEW_HPP
#define BOOST_POLYGON_POLYGON_SET_VIEW_HPP
namespace boost { namespace polygon{
template <typename coordinate_type>
inline void polygon_set_data<coordinate_type>::clean() const {
if(dirty_) {
polygon_45_set_data<coordinate_type> tmp;
if(downcast(tmp) ) {
tmp.clean();
data_.clear();
is_45_ = true;
polygon_set_data<coordinate_type> tmp2;
tmp2.insert(tmp);
data_.swap(tmp2.data_);
dirty_ = false;
sort();
} else {
sort();
arbitrary_boolean_op<coordinate_type> abo;
polygon_set_data<coordinate_type> tmp2;
abo.execute(tmp2, begin(), end(), end(), end(), 0);
data_.swap(tmp2.data_);
is_45_ = tmp2.is_45_;
dirty_ = false;
}
}
}
template <>
inline void polygon_set_data<double>::clean() const {
if(dirty_) {
sort();
arbitrary_boolean_op<double> abo;
polygon_set_data<double> tmp2;
abo.execute(tmp2, begin(), end(), end(), end(), 0);
data_.swap(tmp2.data_);
is_45_ = tmp2.is_45_;
dirty_ = false;
}
}
template <typename value_type, typename arg_type>
inline void insert_into_view_arg(value_type& dest, const arg_type& arg);
template <typename ltype, typename rtype, int op_type>
class polygon_set_view;
template <typename ltype, typename rtype, int op_type>
struct polygon_set_traits<polygon_set_view<ltype, rtype, op_type> > {
typedef typename polygon_set_view<ltype, rtype, op_type>::coordinate_type coordinate_type;
typedef typename polygon_set_view<ltype, rtype, op_type>::iterator_type iterator_type;
typedef typename polygon_set_view<ltype, rtype, op_type>::operator_arg_type operator_arg_type;
static inline iterator_type begin(const polygon_set_view<ltype, rtype, op_type>& polygon_set);
static inline iterator_type end(const polygon_set_view<ltype, rtype, op_type>& polygon_set);
static inline bool clean(const polygon_set_view<ltype, rtype, op_type>& polygon_set);
static inline bool sort(const polygon_set_view<ltype, rtype, op_type>& polygon_set);
};
//template <typename value_type, typename geometry_type_1, typename geometry_type_2, int op_type>
//void execute_boolean_op(value_type& output_, const geometry_type_1& lvalue_, const geometry_type_2& rvalue_,
// double coord) {
// typedef geometry_type_1 ltype;
// typedef geometry_type_2 rtype;
// typedef typename polygon_set_traits<ltype>::coordinate_type coordinate_type;
// value_type linput_;
// value_type rinput_;
// insert_into_view_arg(linput_, lvalue_);
// insert_into_view_arg(rinput_, rvalue_);
// arbitrary_boolean_op<coordinate_type> abo;
// abo.execute(output_, linput_.begin(), linput_.end(),
// rinput_.begin(), rinput_.end(), op_type);
//}
template <typename value_type, typename geometry_type_1, typename geometry_type_2, int op_type>
void execute_boolean_op(value_type& output_, const geometry_type_1& lvalue_, const geometry_type_2& rvalue_) {
typedef geometry_type_1 ltype;
typedef geometry_type_2 rtype;
typedef typename polygon_set_traits<ltype>::coordinate_type coordinate_type;
value_type linput_;
value_type rinput_;
insert_into_view_arg(linput_, lvalue_);
insert_into_view_arg(rinput_, rvalue_);
polygon_45_set_data<coordinate_type> l45, r45, o45;
if(linput_.downcast(l45) && rinput_.downcast(r45)) {
//the op codes are screwed up between 45 and arbitrary
#ifdef BOOST_POLYGON_MSVC
#pragma warning (disable: 4127)
#endif
if(op_type < 2)
l45.template applyAdaptiveBoolean_<op_type>(o45, r45);
else if(op_type == 2)
l45.template applyAdaptiveBoolean_<3>(o45, r45);
else
l45.template applyAdaptiveBoolean_<2>(o45, r45);
#ifdef BOOST_POLYGON_MSVC
#pragma warning (default: 4127)
#endif
output_.insert(o45);
} else {
arbitrary_boolean_op<coordinate_type> abo;
abo.execute(output_, linput_.begin(), linput_.end(),
rinput_.begin(), rinput_.end(), op_type);
}
}
template <typename ltype, typename rtype, int op_type>
class polygon_set_view {
public:
typedef typename polygon_set_traits<ltype>::coordinate_type coordinate_type;
typedef polygon_set_data<coordinate_type> value_type;
typedef typename value_type::iterator_type iterator_type;
typedef polygon_set_view operator_arg_type;
private:
const ltype& lvalue_;
const rtype& rvalue_;
mutable value_type output_;
mutable bool evaluated_;
polygon_set_view& operator=(const polygon_set_view&);
public:
polygon_set_view(const ltype& lvalue,
const rtype& rvalue ) :
lvalue_(lvalue), rvalue_(rvalue), output_(), evaluated_(false) {}
// get iterator to begin vertex data
public:
const value_type& value() const {
if(!evaluated_) {
evaluated_ = true;
execute_boolean_op<value_type, ltype, rtype, op_type>(output_, lvalue_, rvalue_);
}
return output_;
}
public:
iterator_type begin() const { return value().begin(); }
iterator_type end() const { return value().end(); }
bool dirty() const { return false; } //result of a boolean is clean
bool sorted() const { return true; } //result of a boolean is sorted
void sort() const {} //is always sorted
};
template <typename ltype, typename rtype, int op_type>
typename polygon_set_view<ltype, rtype, op_type>::iterator_type
polygon_set_traits<polygon_set_view<ltype, rtype, op_type> >::
begin(const polygon_set_view<ltype, rtype, op_type>& polygon_set) {
return polygon_set.begin();
}
template <typename ltype, typename rtype, int op_type>
typename polygon_set_view<ltype, rtype, op_type>::iterator_type
polygon_set_traits<polygon_set_view<ltype, rtype, op_type> >::
end(const polygon_set_view<ltype, rtype, op_type>& polygon_set) {
return polygon_set.end();
}
template <typename ltype, typename rtype, int op_type>
bool polygon_set_traits<polygon_set_view<ltype, rtype, op_type> >::
clean(const polygon_set_view<ltype, rtype, op_type>& ) {
return true; }
template <typename ltype, typename rtype, int op_type>
bool polygon_set_traits<polygon_set_view<ltype, rtype, op_type> >::
sort(const polygon_set_view<ltype, rtype, op_type>& ) {
return true; }
template <typename value_type, typename arg_type>
inline void insert_into_view_arg(value_type& dest, const arg_type& arg) {
typedef typename polygon_set_traits<arg_type>::iterator_type literator;
literator itr1, itr2;
itr1 = polygon_set_traits<arg_type>::begin(arg);
itr2 = polygon_set_traits<arg_type>::end(arg);
dest.insert(itr1, itr2);
}
template <typename geometry_type_1, typename geometry_type_2, int op_type>
geometry_type_1& self_assignment_boolean_op(geometry_type_1& lvalue_, const geometry_type_2& rvalue_) {
typedef geometry_type_1 ltype;
typedef typename polygon_set_traits<ltype>::coordinate_type coordinate_type;
typedef polygon_set_data<coordinate_type> value_type;
value_type output_;
execute_boolean_op<value_type, geometry_type_1, geometry_type_2, op_type>(output_, lvalue_, rvalue_);
polygon_set_mutable_traits<geometry_type_1>::set(lvalue_, output_.begin(), output_.end());
return lvalue_;
}
// copy constructor
template <typename coordinate_type>
template <typename ltype, typename rtype, int op_type>
polygon_set_data<coordinate_type>::polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that) :
data_(that.value().data_), dirty_(that.value().dirty_), unsorted_(that.value().unsorted_), is_45_(that.value().is_45_) {}
template <typename ltype, typename rtype, int op_type>
struct geometry_concept<polygon_set_view<ltype, rtype, op_type> > { typedef polygon_set_concept type; };
}
}
#endif

View File

@ -0,0 +1,588 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_PROPERTY_MERGE_HPP
#define BOOST_POLYGON_PROPERTY_MERGE_HPP
namespace boost { namespace polygon{
template <typename coordinate_type>
class property_merge_point {
private:
coordinate_type x_, y_;
public:
inline property_merge_point() : x_(), y_() {}
inline property_merge_point(coordinate_type x, coordinate_type y) : x_(x), y_(y) {}
//use builtin assign and copy
inline bool operator==(const property_merge_point& that) const { return x_ == that.x_ && y_ == that.y_; }
inline bool operator!=(const property_merge_point& that) const { return !((*this) == that); }
inline bool operator<(const property_merge_point& that) const {
if(x_ < that.x_) return true;
if(x_ > that.x_) return false;
return y_ < that.y_;
}
inline coordinate_type x() const { return x_; }
inline coordinate_type y() const { return y_; }
inline void x(coordinate_type value) { x_ = value; }
inline void y(coordinate_type value) { y_ = value; }
};
template <typename coordinate_type>
class property_merge_interval {
private:
coordinate_type low_, high_;
public:
inline property_merge_interval() : low_(), high_() {}
inline property_merge_interval(coordinate_type low, coordinate_type high) : low_(low), high_(high) {}
//use builtin assign and copy
inline bool operator==(const property_merge_interval& that) const { return low_ == that.low_ && high_ == that.high_; }
inline bool operator!=(const property_merge_interval& that) const { return !((*this) == that); }
inline bool operator<(const property_merge_interval& that) const {
if(low_ < that.low_) return true;
if(low_ > that.low_) return false;
return high_ < that.high_;
}
inline coordinate_type low() const { return low_; }
inline coordinate_type high() const { return high_; }
inline void low(coordinate_type value) { low_ = value; }
inline void high(coordinate_type value) { high_ = value; }
};
template <typename coordinate_type, typename property_type, typename polygon_set_type, typename keytype = std::set<property_type> >
class merge_scanline {
public:
//definitions
typedef keytype property_set;
typedef std::vector<std::pair<property_type, int> > property_map;
typedef std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > vertex_property;
typedef std::pair<property_merge_point<coordinate_type>, property_map> vertex_data;
typedef std::vector<vertex_property> property_merge_data;
//typedef std::map<property_set, polygon_set_type> Result;
typedef std::map<coordinate_type, property_map> scanline_type;
typedef typename scanline_type::iterator scanline_iterator;
typedef std::pair<property_merge_interval<coordinate_type>, std::pair<property_set, property_set> > edge_property;
typedef std::vector<edge_property> edge_property_vector;
//static public member functions
template <typename iT, typename orientation_2d_type>
static inline void
populate_property_merge_data(property_merge_data& pmd, iT input_begin, iT input_end,
const property_type& property, orientation_2d_type orient) {
for( ; input_begin != input_end; ++input_begin) {
std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > element;
if(orient == HORIZONTAL)
element.first = property_merge_point<coordinate_type>((*input_begin).second.first, (*input_begin).first);
else
element.first = property_merge_point<coordinate_type>((*input_begin).first, (*input_begin).second.first);
element.second.first = property;
element.second.second = (*input_begin).second.second;
pmd.push_back(element);
}
}
//public member functions
merge_scanline() : output(), scanline(), currentVertex(), tmpVector(), previousY(), countFromBelow(), scanlinePosition() {}
merge_scanline(const merge_scanline& that) :
output(that.output),
scanline(that.scanline),
currentVertex(that.currentVertex),
tmpVector(that.tmpVector),
previousY(that.previousY),
countFromBelow(that.countFromBelow),
scanlinePosition(that.scanlinePosition)
{}
merge_scanline& operator=(const merge_scanline& that) {
output = that.output;
scanline = that.scanline;
currentVertex = that.currentVertex;
tmpVector = that.tmpVector;
previousY = that.previousY;
countFromBelow = that.countFromBelow;
scanlinePosition = that.scanlinePosition;
return *this;
}
template <typename result_type>
inline void perform_merge(result_type& result, property_merge_data& data) {
if(data.empty()) return;
//sort
std::sort(data.begin(), data.end(), less_vertex_data<vertex_property>());
//scanline
bool firstIteration = true;
scanlinePosition = scanline.end();
for(std::size_t i = 0; i < data.size(); ++i) {
if(firstIteration) {
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
firstIteration = false;
} else {
if(data[i].first != currentVertex.first) {
if(data[i].first.x() != currentVertex.first.x()) {
processVertex(output);
//std::cout << scanline.size() << " ";
countFromBelow.clear(); //should already be clear
writeOutput(currentVertex.first.x(), result, output);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
//std::cout << assertRedundant(scanline) << "/" << scanline.size() << " ";
} else {
processVertex(output);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
}
} else {
mergeProperty(currentVertex.second, data[i].second);
}
}
}
processVertex(output);
writeOutput(currentVertex.first.x(), result, output);
//std::cout << assertRedundant(scanline) << "/" << scanline.size() << "\n";
//std::cout << scanline.size() << "\n";
}
private:
//private supporting types
template <class T>
class less_vertex_data {
public:
less_vertex_data() {}
bool operator()(const T& lvalue, const T& rvalue) {
if(lvalue.first.x() < rvalue.first.x()) return true;
if(lvalue.first.x() > rvalue.first.x()) return false;
if(lvalue.first.y() < rvalue.first.y()) return true;
return false;
}
};
template <typename T>
struct lessPropertyCount {
lessPropertyCount() {}
bool operator()(const T& a, const T& b) {
return a.first < b.first;
}
};
//private static member functions
static inline void mergeProperty(property_map& lvalue, std::pair<property_type, int>& rvalue) {
typename property_map::iterator itr = std::lower_bound(lvalue.begin(), lvalue.end(), rvalue,
lessPropertyCount<std::pair<property_type, int> >());
if(itr == lvalue.end() ||
(*itr).first != rvalue.first) {
lvalue.insert(itr, rvalue);
} else {
(*itr).second += rvalue.second;
if((*itr).second == 0)
lvalue.erase(itr);
}
// if(assertSorted(lvalue)) {
// std::cout << "in mergeProperty\n";
// exit(0);
// }
}
// static inline bool assertSorted(property_map& pset) {
// bool result = false;
// for(std::size_t i = 1; i < pset.size(); ++i) {
// if(pset[i] < pset[i-1]) {
// std::cout << "Out of Order Error ";
// result = true;
// }
// if(pset[i].first == pset[i-1].first) {
// std::cout << "Duplicate Property Error ";
// result = true;
// }
// if(pset[0].second == 0 || pset[1].second == 0) {
// std::cout << "Empty Property Error ";
// result = true;
// }
// }
// return result;
// }
static inline void setProperty(property_set& pset, property_map& pmap) {
for(typename property_map::iterator itr = pmap.begin(); itr != pmap.end(); ++itr) {
if((*itr).second > 0) {
pset.insert(pset.end(), (*itr).first);
}
}
}
//private data members
edge_property_vector output;
scanline_type scanline;
vertex_data currentVertex;
property_map tmpVector;
coordinate_type previousY;
property_map countFromBelow;
scanline_iterator scanlinePosition;
//private member functions
inline void mergeCount(property_map& lvalue, property_map& rvalue) {
typename property_map::iterator litr = lvalue.begin();
typename property_map::iterator ritr = rvalue.begin();
tmpVector.clear();
while(litr != lvalue.end() && ritr != rvalue.end()) {
if((*litr).first <= (*ritr).first) {
if(!tmpVector.empty() &&
(*litr).first == tmpVector.back().first) {
tmpVector.back().second += (*litr).second;
} else {
tmpVector.push_back(*litr);
}
++litr;
} else if((*ritr).first <= (*litr).first) {
if(!tmpVector.empty() &&
(*ritr).first == tmpVector.back().first) {
tmpVector.back().second += (*ritr).second;
} else {
tmpVector.push_back(*ritr);
}
++ritr;
}
}
while(litr != lvalue.end()) {
if(!tmpVector.empty() &&
(*litr).first == tmpVector.back().first) {
tmpVector.back().second += (*litr).second;
} else {
tmpVector.push_back(*litr);
}
++litr;
}
while(ritr != rvalue.end()) {
if(!tmpVector.empty() &&
(*ritr).first == tmpVector.back().first) {
tmpVector.back().second += (*ritr).second;
} else {
tmpVector.push_back(*ritr);
}
++ritr;
}
lvalue.clear();
for(std::size_t i = 0; i < tmpVector.size(); ++i) {
if(tmpVector[i].second != 0) {
lvalue.push_back(tmpVector[i]);
}
}
// if(assertSorted(lvalue)) {
// std::cout << "in mergeCount\n";
// exit(0);
// }
}
inline void processVertex(edge_property_vector& output) {
if(!countFromBelow.empty()) {
//we are processing an interval of change in scanline state between
//previous vertex position and current vertex position where
//count from below represents the change on the interval
//foreach scanline element from previous to current we
//write the interval on the scanline that is changing
//the old value and the new value to output
property_merge_interval<coordinate_type> currentInterval(previousY, currentVertex.first.y());
coordinate_type currentY = currentInterval.low();
if(scanlinePosition == scanline.end() ||
(*scanlinePosition).first != previousY) {
scanlinePosition = scanline.lower_bound(previousY);
}
scanline_iterator previousScanlinePosition = scanlinePosition;
++scanlinePosition;
while(scanlinePosition != scanline.end()) {
coordinate_type elementY = (*scanlinePosition).first;
if(elementY <= currentInterval.high()) {
property_map& countOnLeft = (*previousScanlinePosition).second;
edge_property element;
output.push_back(element);
output.back().first = property_merge_interval<coordinate_type>((*previousScanlinePosition).first, elementY);
setProperty(output.back().second.first, countOnLeft);
mergeCount(countOnLeft, countFromBelow);
setProperty(output.back().second.second, countOnLeft);
if(output.back().second.first == output.back().second.second) {
output.pop_back(); //it was an internal vertical edge, not to be output
}
else if(output.size() > 1) {
edge_property& secondToLast = output[output.size()-2];
if(secondToLast.first.high() == output.back().first.low() &&
secondToLast.second.first == output.back().second.first &&
secondToLast.second.second == output.back().second.second) {
//merge output onto previous output because properties are
//identical on both sides implying an internal horizontal edge
secondToLast.first.high(output.back().first.high());
output.pop_back();
}
}
if(previousScanlinePosition == scanline.begin()) {
if(countOnLeft.empty()) {
scanline.erase(previousScanlinePosition);
}
} else {
scanline_iterator tmpitr = previousScanlinePosition;
--tmpitr;
if((*tmpitr).second == (*previousScanlinePosition).second)
scanline.erase(previousScanlinePosition);
}
} else if(currentY < currentInterval.high()){
//elementY > currentInterval.high()
//split the interval between previous and current scanline elements
std::pair<coordinate_type, property_map> elementScan;
elementScan.first = currentInterval.high();
elementScan.second = (*previousScanlinePosition).second;
scanlinePosition = scanline.insert(scanlinePosition, elementScan);
continue;
} else {
break;
}
previousScanlinePosition = scanlinePosition;
currentY = previousY = elementY;
++scanlinePosition;
if(scanlinePosition == scanline.end() &&
currentY < currentInterval.high()) {
//insert a new element for top of range
std::pair<coordinate_type, property_map> elementScan;
elementScan.first = currentInterval.high();
scanlinePosition = scanline.insert(scanline.end(), elementScan);
}
}
if(scanlinePosition == scanline.end() &&
currentY < currentInterval.high()) {
//handle case where we iterated to end of the scanline
//we need to insert an element into the scanline at currentY
//with property value coming from below
//and another one at currentInterval.high() with empty property value
mergeCount(scanline[currentY], countFromBelow);
std::pair<coordinate_type, property_map> elementScan;
elementScan.first = currentInterval.high();
scanline.insert(scanline.end(), elementScan);
edge_property element;
output.push_back(element);
output.back().first = property_merge_interval<coordinate_type>(currentY, currentInterval.high());
setProperty(output.back().second.second, countFromBelow);
mergeCount(countFromBelow, currentVertex.second);
} else {
mergeCount(countFromBelow, currentVertex.second);
if(countFromBelow.empty()) {
if(previousScanlinePosition == scanline.begin()) {
if((*previousScanlinePosition).second.empty()) {
scanline.erase(previousScanlinePosition);
//previousScanlinePosition = scanline.end();
//std::cout << "ERASE_A ";
}
} else {
scanline_iterator tmpitr = previousScanlinePosition;
--tmpitr;
if((*tmpitr).second == (*previousScanlinePosition).second) {
scanline.erase(previousScanlinePosition);
//previousScanlinePosition = scanline.end();
//std::cout << "ERASE_B ";
}
}
}
}
} else {
//count from below is empty, we are starting a new interval of change
countFromBelow = currentVertex.second;
scanlinePosition = scanline.lower_bound(currentVertex.first.y());
if(scanlinePosition != scanline.end()) {
if((*scanlinePosition).first != currentVertex.first.y()) {
if(scanlinePosition != scanline.begin()) {
//decrement to get the lower position of the first interval this vertex intersects
--scanlinePosition;
//insert a new element into the scanline for the incoming vertex
property_map& countOnLeft = (*scanlinePosition).second;
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
scanlinePosition = scanline.insert(scanlinePosition, element);
} else {
property_map countOnLeft;
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
scanlinePosition = scanline.insert(scanlinePosition, element);
}
}
} else {
property_map countOnLeft;
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
scanlinePosition = scanline.insert(scanlinePosition, element);
}
}
previousY = currentVertex.first.y();
}
template <typename T>
inline int assertRedundant(T& t) {
if(t.empty()) return 0;
int count = 0;
typename T::iterator itr = t.begin();
if((*itr).second.empty())
++count;
typename T::iterator itr2 = itr;
++itr2;
while(itr2 != t.end()) {
if((*itr).second == (*itr2).second)
++count;
itr = itr2;
++itr2;
}
return count;
}
template <typename T>
inline void performExtract(T& result, property_merge_data& data) {
if(data.empty()) return;
//sort
std::sort(data.begin(), data.end(), less_vertex_data<vertex_property>());
//scanline
bool firstIteration = true;
scanlinePosition = scanline.end();
for(std::size_t i = 0; i < data.size(); ++i) {
if(firstIteration) {
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
firstIteration = false;
} else {
if(data[i].first != currentVertex.first) {
if(data[i].first.x() != currentVertex.first.x()) {
processVertex(output);
//std::cout << scanline.size() << " ";
countFromBelow.clear(); //should already be clear
writeGraph(currentVertex.first.x(), result, output, scanline);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
} else {
processVertex(output);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
}
} else {
mergeProperty(currentVertex.second, data[i].second);
}
}
}
processVertex(output);
writeGraph(currentVertex.first.x(), result, output, scanline);
//std::cout << scanline.size() << "\n";
}
template <typename T>
inline void insertEdges(T& graph, property_set& p1, property_set& p2) {
for(typename property_set::iterator itr = p1.begin(); itr != p1.end(); ++itr) {
for(typename property_set::iterator itr2 = p2.begin(); itr2 != p2.end(); ++itr2) {
if(*itr != *itr2) {
graph[*itr].insert(*itr2);
graph[*itr2].insert(*itr);
}
}
}
}
template <typename T>
inline void propertySetAbove(coordinate_type y, property_set& ps, T& scanline) {
ps.clear();
typename T::iterator itr = scanline.find(y);
if(itr != scanline.end())
setProperty(ps, (*itr).second);
}
template <typename T>
inline void propertySetBelow(coordinate_type y, property_set& ps, T& scanline) {
ps.clear();
typename T::iterator itr = scanline.find(y);
if(itr != scanline.begin()) {
--itr;
setProperty(ps, (*itr).second);
}
}
template <typename T, typename T2>
inline void writeGraph(coordinate_type x, T& graph, edge_property_vector& output, T2& scanline) {
if(output.empty()) return;
edge_property* previousEdgeP = &(output[0]);
bool firstIteration = true;
property_set ps;
for(std::size_t i = 0; i < output.size(); ++i) {
edge_property& previousEdge = *previousEdgeP;
edge_property& edge = output[i];
if(previousEdge.first.high() == edge.first.low()) {
//horizontal edge
insertEdges(graph, edge.second.first, previousEdge.second.first);
//corner 1
insertEdges(graph, edge.second.first, previousEdge.second.second);
//other horizontal edge
insertEdges(graph, edge.second.second, previousEdge.second.second);
//corner 2
insertEdges(graph, edge.second.second, previousEdge.second.first);
} else {
if(!firstIteration){
//look up regions above previous edge
propertySetAbove(previousEdge.first.high(), ps, scanline);
insertEdges(graph, ps, previousEdge.second.first);
insertEdges(graph, ps, previousEdge.second.second);
}
//look up regions below current edge in the scanline
propertySetBelow(edge.first.high(), ps, scanline);
insertEdges(graph, ps, edge.second.first);
insertEdges(graph, ps, edge.second.second);
}
firstIteration = false;
//vertical edge
insertEdges(graph, edge.second.second, edge.second.first);
//shared region to left
insertEdges(graph, edge.second.second, edge.second.second);
//shared region to right
insertEdges(graph, edge.second.first, edge.second.first);
previousEdgeP = &(output[i]);
}
edge_property& previousEdge = *previousEdgeP;
propertySetAbove(previousEdge.first.high(), ps, scanline);
insertEdges(graph, ps, previousEdge.second.first);
insertEdges(graph, ps, previousEdge.second.second);
output.clear();
}
template <typename Result>
inline void writeOutput(coordinate_type x, Result& result, edge_property_vector& output) {
for(std::size_t i = 0; i < output.size(); ++i) {
edge_property& edge = output[i];
//edge.second.first is the property set on the left of the edge
if(!edge.second.first.empty()) {
typename Result::iterator itr = result.find(edge.second.first);
if(itr == result.end()) {
std::pair<property_set, polygon_set_type> element(edge.second.first, polygon_set_type(VERTICAL));
itr = result.insert(result.end(), element);
}
std::pair<interval_data<coordinate_type>, int> element2(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), -1); //right edge of figure
(*itr).second.insert(x, element2);
}
if(!edge.second.second.empty()) {
//edge.second.second is the property set on the right of the edge
typename Result::iterator itr = result.find(edge.second.second);
if(itr == result.end()) {
std::pair<property_set, polygon_set_type> element(edge.second.second, polygon_set_type(VERTICAL));
itr = result.insert(result.end(), element);
}
std::pair<interval_data<coordinate_type>, int> element3(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), 1); //left edge of figure
(*itr).second.insert(x, element3);
}
}
output.clear();
}
};
}
}
#endif

View File

@ -0,0 +1,160 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_PROPERTY_MERGE_45_HPP
#define BOOST_POLYGON_PROPERTY_MERGE_45_HPP
namespace boost { namespace polygon{
template <typename Unit, typename property_type>
struct polygon_45_property_merge {
typedef point_data<Unit> Point;
typedef typename coordinate_traits<Unit>::manhattan_area_type LongUnit;
template <typename property_map>
static inline void merge_property_maps(property_map& mp, const property_map& mp2, bool subtract = false) {
polygon_45_touch<Unit>::merge_property_maps(mp, mp2, subtract);
}
class CountMerge {
public:
inline CountMerge() : counts() {}
//inline CountMerge(int count) { counts[0] = counts[1] = count; }
//inline CountMerge(int count1, int count2) { counts[0] = count1; counts[1] = count2; }
inline CountMerge(const CountMerge& count) : counts(count.counts) {}
inline bool operator==(const CountMerge& count) const { return counts == count.counts; }
inline bool operator!=(const CountMerge& count) const { return !((*this) == count); }
//inline CountMerge& operator=(int count) { counts[0] = counts[1] = count; return *this; }
inline CountMerge& operator=(const CountMerge& count) { counts = count.counts; return *this; }
inline int& operator[](property_type index) {
std::vector<std::pair<int, int> >::iterator itr = lower_bound(counts.begin(), counts.end(), std::make_pair(index, int(0)));
if(itr != counts.end() && itr->first == index) {
return itr->second;
}
itr = counts.insert(itr, std::make_pair(index, int(0)));
return itr->second;
}
// inline int operator[](int index) const {
// std::vector<std::pair<int, int> >::const_iterator itr = counts.begin();
// for( ; itr != counts.end() && itr->first <= index; ++itr) {
// if(itr->first == index) {
// return itr->second;
// }
// }
// return 0;
// }
inline CountMerge& operator+=(const CountMerge& count){
merge_property_maps(counts, count.counts, false);
return *this;
}
inline CountMerge& operator-=(const CountMerge& count){
merge_property_maps(counts, count.counts, true);
return *this;
}
inline CountMerge operator+(const CountMerge& count) const {
return CountMerge(*this)+=count;
}
inline CountMerge operator-(const CountMerge& count) const {
return CountMerge(*this)-=count;
}
inline CountMerge invert() const {
CountMerge retval;
retval -= *this;
return retval;
}
std::vector<std::pair<property_type, int> > counts;
};
//output is a std::map<std::set<property_type>, polygon_45_set_data<Unit> >
struct merge_45_output_functor {
template <typename cT>
void operator()(cT& output, const CountMerge& count1, const CountMerge& count2,
const Point& pt, int rise, direction_1d end) {
typedef typename cT::key_type keytype;
keytype left;
keytype right;
int edgeType = end == LOW ? -1 : 1;
for(typename std::vector<std::pair<property_type, int> >::const_iterator itr = count1.counts.begin();
itr != count1.counts.end(); ++itr) {
left.insert(left.end(), (*itr).first);
}
for(typename std::vector<std::pair<property_type, int> >::const_iterator itr = count2.counts.begin();
itr != count2.counts.end(); ++itr) {
right.insert(right.end(), (*itr).first);
}
if(left == right) return;
if(!left.empty()) {
//std::cout << pt.x() << " " << pt.y() << " " << rise << " " << edgeType << std::endl;
output[left].insert_clean(typename boolean_op_45<Unit>::Vertex45(pt, rise, -edgeType));
}
if(!right.empty()) {
//std::cout << pt.x() << " " << pt.y() << " " << rise << " " << -edgeType << std::endl;
output[right].insert_clean(typename boolean_op_45<Unit>::Vertex45(pt, rise, edgeType));
}
}
};
typedef typename std::pair<Point,
typename boolean_op_45<Unit>::template Scan45CountT<CountMerge> > Vertex45Compact;
typedef std::vector<Vertex45Compact> MergeSetData;
struct lessVertex45Compact {
bool operator()(const Vertex45Compact& l, const Vertex45Compact& r) {
return l.first < r.first;
}
};
template <typename output_type>
static void performMerge(output_type& result, MergeSetData& tsd) {
std::sort(tsd.begin(), tsd.end(), lessVertex45Compact());
typedef std::vector<std::pair<Point, typename boolean_op_45<Unit>::template Scan45CountT<CountMerge> > > TSD;
TSD tsd_;
tsd_.reserve(tsd.size());
for(typename MergeSetData::iterator itr = tsd.begin(); itr != tsd.end(); ) {
typename MergeSetData::iterator itr2 = itr;
++itr2;
for(; itr2 != tsd.end() && itr2->first == itr->first; ++itr2) {
(itr->second) += (itr2->second); //accumulate
}
tsd_.push_back(std::make_pair(itr->first, itr->second));
itr = itr2;
}
typename boolean_op_45<Unit>::template Scan45<CountMerge, merge_45_output_functor> scanline;
for(typename TSD::iterator itr = tsd_.begin(); itr != tsd_.end(); ) {
typename TSD::iterator itr2 = itr;
++itr2;
while(itr2 != tsd_.end() && itr2->first.x() == itr->first.x()) {
++itr2;
}
scanline.scan(result, itr, itr2);
itr = itr2;
}
}
template <typename iT>
static void populateMergeSetData(MergeSetData& tsd, iT begin, iT end, property_type property) {
for( ; begin != end; ++begin) {
Vertex45Compact vertex;
vertex.first = typename Vertex45Compact::first_type(begin->pt.x() * 2, begin->pt.y() * 2);
tsd.push_back(vertex);
for(unsigned int i = 0; i < 4; ++i) {
if(begin->count[i]) {
tsd.back().second[i][property] += begin->count[i];
}
}
}
}
};
}
}
#endif

View File

@ -0,0 +1,267 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_RECTANGLE_FORMATION_HPP
#define BOOST_POLYGON_RECTANGLE_FORMATION_HPP
namespace boost { namespace polygon{
namespace rectangle_formation {
template <class T>
class ScanLineToRects {
public:
typedef T rectangle_type;
typedef typename rectangle_traits<T>::coordinate_type coordinate_type;
typedef rectangle_data<coordinate_type> scan_rect_type;
private:
typedef std::set<scan_rect_type, less_rectangle_concept<scan_rect_type, scan_rect_type> > ScanData;
ScanData scanData_;
bool haveCurrentRect_;
scan_rect_type currentRect_;
orientation_2d orient_;
typename rectangle_traits<T>::coordinate_type currentCoordinate_;
public:
inline ScanLineToRects() : scanData_(), haveCurrentRect_(), currentRect_(), orient_(), currentCoordinate_() {}
inline ScanLineToRects(orientation_2d orient, rectangle_type model) :
scanData_(orientation_2d(orient.to_int() ? VERTICAL : HORIZONTAL)),
haveCurrentRect_(false), currentRect_(), orient_(orient), currentCoordinate_() {
assign(currentRect_, model);
currentCoordinate_ = (std::numeric_limits<coordinate_type>::max)();
}
template <typename CT>
inline ScanLineToRects& processEdge(CT& rectangles, const interval_data<coordinate_type>& edge);
inline ScanLineToRects& nextMajorCoordinate(coordinate_type currentCoordinate) {
if(haveCurrentRect_) {
scanData_.insert(scanData_.end(), currentRect_);
haveCurrentRect_ = false;
}
currentCoordinate_ = currentCoordinate;
return *this;
}
};
template <class CT, class ST, class rectangle_type, typename interval_type, typename coordinate_type> inline CT&
processEdge_(CT& rectangles, ST& scanData, const interval_type& edge,
bool& haveCurrentRect, rectangle_type& currentRect, coordinate_type currentCoordinate, orientation_2d orient)
{
typedef typename CT::value_type result_type;
bool edgeProcessed = false;
if(!scanData.empty()) {
//process all rectangles in the scanData that touch the edge
typename ST::iterator dataIter = scanData.lower_bound(rectangle_type(edge, edge));
//decrement beginIter until its low is less than edge's low
while((dataIter == scanData.end() || (*dataIter).get(orient).get(LOW) > edge.get(LOW)) &&
dataIter != scanData.begin())
{
--dataIter;
}
//process each rectangle until the low end of the rectangle
//is greater than the high end of the edge
while(dataIter != scanData.end() &&
(*dataIter).get(orient).get(LOW) <= edge.get(HIGH))
{
const rectangle_type& rect = *dataIter;
//if the rectangle data intersects the edge at all
if(rect.get(orient).get(HIGH) >= edge.get(LOW)) {
if(contains(rect.get(orient), edge, true)) {
//this is a closing edge
//we need to write out the intersecting rectangle and
//insert between 0 and 2 rectangles into the scanData
//write out rectangle
rectangle_type tmpRect = rect;
if(rect.get(orient.get_perpendicular()).get(LOW) < currentCoordinate) {
//set the high coordinate perpedicular to slicing orientation
//to the current coordinate of the scan event
tmpRect.set(orient.get_perpendicular().get_direction(HIGH),
currentCoordinate);
result_type result;
assign(result, tmpRect);
rectangles.insert(rectangles.end(), result);
}
//erase the rectangle from the scan data
typename ST::iterator nextIter = dataIter;
++nextIter;
scanData.erase(dataIter);
if(tmpRect.get(orient).get(LOW) < edge.get(LOW)) {
//insert a rectangle for the overhang of the bottom
//of the rectangle back into scan data
rectangle_type lowRect(tmpRect);
lowRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
currentCoordinate));
lowRect.set(orient.get_direction(HIGH), edge.get(LOW));
scanData.insert(nextIter, lowRect);
}
if(tmpRect.get(orient).get(HIGH) > edge.get(HIGH)) {
//insert a rectangle for the overhang of the top
//of the rectangle back into scan data
rectangle_type highRect(tmpRect);
highRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
currentCoordinate));
highRect.set(orient.get_direction(LOW), edge.get(HIGH));
scanData.insert(nextIter, highRect);
}
//we are done with this edge
edgeProcessed = true;
break;
} else {
//it must be an opening edge
//assert that rect does not overlap the edge but only touches
//write out rectangle
rectangle_type tmpRect = rect;
//set the high coordinate perpedicular to slicing orientation
//to the current coordinate of the scan event
if(tmpRect.get(orient.get_perpendicular().get_direction(LOW)) < currentCoordinate) {
tmpRect.set(orient.get_perpendicular().get_direction(HIGH),
currentCoordinate);
result_type result;
assign(result, tmpRect);
rectangles.insert(rectangles.end(), result);
}
//erase the rectangle from the scan data
typename ST::iterator nextIter = dataIter;
++nextIter;
scanData.erase(dataIter);
dataIter = nextIter;
if(haveCurrentRect) {
if(currentRect.get(orient).get(HIGH) >= edge.get(LOW)){
if(!edgeProcessed && currentRect.get(orient.get_direction(HIGH)) > edge.get(LOW)){
rectangle_type tmpRect2(currentRect);
tmpRect2.set(orient.get_direction(HIGH), edge.get(LOW));
scanData.insert(nextIter, tmpRect2);
if(currentRect.get(orient.get_direction(HIGH)) > edge.get(HIGH)) {
currentRect.set(orient, interval_data<coordinate_type>(edge.get(HIGH), currentRect.get(orient.get_direction(HIGH))));
} else {
haveCurrentRect = false;
}
} else {
//extend the top of current rect
currentRect.set(orient.get_direction(HIGH),
(std::max)(edge.get(HIGH),
tmpRect.get(orient.get_direction(HIGH))));
}
} else {
//insert current rect into the scanData
scanData.insert(nextIter, currentRect);
//create a new current rect
currentRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
currentCoordinate));
currentRect.set(orient, interval_data<coordinate_type>((std::min)(tmpRect.get(orient).get(LOW),
edge.get(LOW)),
(std::max)(tmpRect.get(orient).get(HIGH),
edge.get(HIGH))));
}
} else {
haveCurrentRect = true;
currentRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
currentCoordinate));
currentRect.set(orient, interval_data<coordinate_type>((std::min)(tmpRect.get(orient).get(LOW),
edge.get(LOW)),
(std::max)(tmpRect.get(orient).get(HIGH),
edge.get(HIGH))));
}
//skip to nextIter position
edgeProcessed = true;
continue;
}
//edgeProcessed = true;
}
++dataIter;
} //end while edge intersects rectangle data
}
if(!edgeProcessed) {
if(haveCurrentRect) {
if(currentRect.get(orient.get_perpendicular().get_direction(HIGH))
== currentCoordinate &&
currentRect.get(orient.get_direction(HIGH)) >= edge.get(LOW))
{
if(currentRect.get(orient.get_direction(HIGH)) > edge.get(LOW)){
rectangle_type tmpRect(currentRect);
tmpRect.set(orient.get_direction(HIGH), edge.get(LOW));
scanData.insert(scanData.end(), tmpRect);
if(currentRect.get(orient.get_direction(HIGH)) > edge.get(HIGH)) {
currentRect.set(orient,
interval_data<coordinate_type>(edge.get(HIGH),
currentRect.get(orient.get_direction(HIGH))));
return rectangles;
} else {
haveCurrentRect = false;
return rectangles;
}
}
//extend current rect
currentRect.set(orient.get_direction(HIGH), edge.get(HIGH));
return rectangles;
}
scanData.insert(scanData.end(), currentRect);
haveCurrentRect = false;
}
rectangle_type tmpRect(currentRect);
tmpRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
currentCoordinate));
tmpRect.set(orient, edge);
scanData.insert(tmpRect);
return rectangles;
}
return rectangles;
}
template <class T>
template <class CT>
inline
ScanLineToRects<T>& ScanLineToRects<T>::processEdge(CT& rectangles, const interval_data<coordinate_type>& edge)
{
processEdge_(rectangles, scanData_, edge, haveCurrentRect_, currentRect_, currentCoordinate_, orient_);
return *this;
}
} //namespace rectangle_formation
template <typename T, typename T2>
struct get_coordinate_type_for_rectangles {
typedef typename polygon_traits<T>::coordinate_type type;
};
template <typename T>
struct get_coordinate_type_for_rectangles<T, rectangle_concept> {
typedef typename rectangle_traits<T>::coordinate_type type;
};
template <typename output_container, typename iterator_type, typename rectangle_concept>
void form_rectangles(output_container& output, iterator_type begin, iterator_type end,
orientation_2d orient, rectangle_concept ) {
typedef typename output_container::value_type rectangle_type;
typedef typename get_coordinate_type_for_rectangles<rectangle_type, typename geometry_concept<rectangle_type>::type>::type Unit;
rectangle_data<Unit> model;
Unit prevPos = (std::numeric_limits<Unit>::max)();
rectangle_formation::ScanLineToRects<rectangle_data<Unit> > scanlineToRects(orient, model);
for(iterator_type itr = begin;
itr != end; ++ itr) {
Unit pos = (*itr).first;
if(pos != prevPos) {
scanlineToRects.nextMajorCoordinate(pos);
prevPos = pos;
}
Unit lowy = (*itr).second.first;
iterator_type tmp_itr = itr;
++itr;
Unit highy = (*itr).second.first;
scanlineToRects.processEdge(output, interval_data<Unit>(lowy, highy));
if(abs((*itr).second.second) > 1) itr = tmp_itr; //next edge begins from this vertex
}
}
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,553 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_TRANSFORM_DETAIL_HPP
#define BOOST_POLYGON_TRANSFORM_DETAIL_HPP
namespace boost { namespace polygon{
// inline std::ostream& operator<< (std::ostream& o, const axis_transformation& r) {
// o << r.atr_;
// return o;
// }
// inline std::istream& operator>> (std::istream& i, axis_transformation& r) {
// int tmp;
// i >> tmp;
// r = axis_transformation((axis_transformation::ATR)tmp);
// return i;
// }
// template <typename scale_factor_type>
// inline std::ostream& operator<< (std::ostream& o, const anisotropic_scale_factor<scale_factor_type>& sc) {
// o << sc.scale_[0] << BOOST_POLYGON_SEP << sc.scale_[1] << GTL_SEP << sc.scale_[2];
// return o;
// }
// template <typename scale_factor_type>
// inline std::istream& operator>> (std::istream& i, anisotropic_scale_factor<scale_factor_type>& sc) {
// i >> sc.scale_[0] >> sc.scale_[1] >> sc.scale_[2];
// return i;
// }
// template <typename coordinate_type>
// inline std::ostream& operator<< (std::ostream& o, const transformation& tr) {
// o << tr.atr_ << BOOST_POLYGON_SEP << tr.p_;
// return o;
// }
// template <typename coordinate_type>
// inline std::istream& operator>> (std::istream& i, transformation& tr) {
// i >> tr.atr_ >> tr.p_;
// return i;
// }
inline axis_transformation::axis_transformation(const orientation_3d& orient) : atr_(NULL_TRANSFORM) {
const ATR tmp[3] = {
UP_EAST_NORTH, //sort by x, then z, then y
EAST_UP_NORTH, //sort by y, then z, then x
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[orient.to_int()];
}
inline axis_transformation::axis_transformation(const orientation_2d& orient) : atr_(NULL_TRANSFORM) {
const ATR tmp[3] = {
NORTH_EAST_UP, //sort by z, then x, then y
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[orient.to_int()];
}
inline axis_transformation::axis_transformation(const direction_3d& dir) : atr_(NULL_TRANSFORM) {
const ATR tmp[6] = {
DOWN_EAST_NORTH, //sort by -x, then z, then y
UP_EAST_NORTH, //sort by x, then z, then y
EAST_DOWN_NORTH, //sort by -y, then z, then x
EAST_UP_NORTH, //sort by y, then z, then x
EAST_NORTH_DOWN, //sort by -z, then y, then x
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[dir.to_int()];
}
inline axis_transformation::axis_transformation(const direction_2d& dir) : atr_(NULL_TRANSFORM) {
const ATR tmp[4] = {
SOUTH_EAST_UP, //sort by z, then x, then y
NORTH_EAST_UP, //sort by z, then x, then y
EAST_SOUTH_UP, //sort by z, then y, then x
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[dir.to_int()];
}
inline axis_transformation& axis_transformation::operator=(const axis_transformation& a) {
atr_ = a.atr_;
return *this;
}
inline axis_transformation& axis_transformation::operator=(const ATR& atr) {
atr_ = atr;
return *this;
}
inline bool axis_transformation::operator==(const axis_transformation& a) const {
return atr_ == a.atr_;
}
inline bool axis_transformation::operator!=(const axis_transformation& a) const {
return !(*this == a);
}
inline bool axis_transformation::operator<(const axis_transformation& a) const {
return atr_ < a.atr_;
}
inline axis_transformation& axis_transformation::operator+=(const axis_transformation& a){
bool abit5 = (a.atr_ & 32) != 0;
bool abit4 = (a.atr_ & 16) != 0;
bool abit3 = (a.atr_ & 8) != 0;
bool abit2 = (a.atr_ & 4) != 0;
bool abit1 = (a.atr_ & 2) != 0;
bool abit0 = (a.atr_ & 1) != 0;
bool bit5 = (atr_ & 32) != 0;
bool bit4 = (atr_ & 16) != 0;
bool bit3 = (atr_ & 8) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
int indexes[2][3] = {
{
((int)((bit5 & bit2) | (bit4 & !bit2)) << 1) +
(int)(bit2 & !bit5),
((int)((bit4 & bit2) | (bit5 & !bit2)) << 1) +
(int)(!bit5 & !bit2),
((int)(!bit4 & !bit5) << 1) +
(int)(bit5)
},
{
((int)((abit5 & abit2) | (abit4 & !abit2)) << 1) +
(int)(abit2 & !abit5),
((int)((abit4 & abit2) | (abit5 & !abit2)) << 1) +
(int)(!abit5 & !abit2),
((int)(!abit4 & !abit5) << 1) +
(int)(abit5)
}
};
int zero_bits[2][3] = {
{bit0, bit1, bit3},
{abit0, abit1, abit3}
};
int nbit3 = zero_bits[0][2] ^ zero_bits[1][indexes[0][2]];
int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]];
int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]];
indexes[0][0] = indexes[1][indexes[0][0]];
indexes[0][1] = indexes[1][indexes[0][1]];
indexes[0][2] = indexes[1][indexes[0][2]];
int nbit5 = (indexes[0][2] == 1);
int nbit4 = (indexes[0][2] == 0);
int nbit2 = (!(nbit5 | nbit4) & (bool)(indexes[0][0] & 1)) | //swap xy
(nbit5 & ((indexes[0][0] & 2) >> 1)) | //z->y x->z
(nbit4 & ((indexes[0][1] & 2) >> 1)); //z->x y->z
atr_ = (ATR)((nbit5 << 5) +
(nbit4 << 4) +
(nbit3 << 3) +
(nbit2 << 2) +
(nbit1 << 1) + nbit0);
return *this;
}
inline axis_transformation axis_transformation::operator+(const axis_transformation& a) const {
axis_transformation retval(*this);
return retval+=a;
}
// populate_axis_array writes the three INDIVIDUAL_AXIS values that the
// ATR enum value of 'this' represent into axis_array
inline void axis_transformation::populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const {
bool bit5 = (atr_ & 32) != 0;
bool bit4 = (atr_ & 16) != 0;
bool bit3 = (atr_ & 8) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
axis_array[2] =
(INDIVIDUAL_AXIS)((((int)(!bit4 & !bit5)) << 2) +
((int)(bit5) << 1) +
bit3);
axis_array[1] =
(INDIVIDUAL_AXIS)((((int)((bit4 & bit2) | (bit5 & !bit2))) << 2)+
((int)(!bit5 & !bit2) << 1) +
bit1);
axis_array[0] =
(INDIVIDUAL_AXIS)((((int)((bit5 & bit2) | (bit4 & !bit2))) << 2) +
((int)(bit2 & !bit5) << 1) +
bit0);
}
// combine_axis_arrays concatenates this_array and that_array overwriting
// the result into this_array
inline void
axis_transformation::combine_axis_arrays (INDIVIDUAL_AXIS this_array[],
const INDIVIDUAL_AXIS that_array[]){
int indexes[3] = {this_array[0] >> 1,
this_array[1] >> 1,
this_array[2] >> 1};
int zero_bits[2][3] = {
{this_array[0] & 1, this_array[1] & 1, this_array[2] & 1},
{that_array[0] & 1, that_array[1] & 1, that_array[2] & 1}
};
this_array[0] = that_array[indexes[0]];
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] & (int)((int)PZ+(int)PY));
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] |
((int)zero_bits[0][0] ^
(int)zero_bits[1][indexes[0]]));
this_array[1] = that_array[indexes[1]];
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] & (int)((int)PZ+(int)PY));
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] |
((int)zero_bits[0][1] ^
(int)zero_bits[1][indexes[1]]));
this_array[2] = that_array[indexes[2]];
this_array[2] = (INDIVIDUAL_AXIS)((int)this_array[2] & (int)((int)PZ+(int)PY));
this_array[2] = (INDIVIDUAL_AXIS)((int)this_array[2] |
((int)zero_bits[0][2] ^
(int)zero_bits[1][indexes[2]]));
}
// write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
// to the ATR enum value and sets 'this' to that value
inline void axis_transformation::write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) {
int bit5 = ((int)this_array[2] & 2) != 0;
int bit4 = !((((int)this_array[2] & 4) != 0) | (((int)this_array[2] & 2) != 0));
int bit3 = ((int)this_array[2] & 1) != 0;
//bit 2 is the tricky bit
int bit2 = ((!(bit5 | bit4)) & (((int)this_array[0] & 2) != 0)) | //swap xy
(bit5 & (((int)this_array[0] & 4) >> 2)) | //z->y x->z
(bit4 & (((int)this_array[1] & 4) >> 2)); //z->x y->z
int bit1 = ((int)this_array[1] & 1);
int bit0 = ((int)this_array[0] & 1);
atr_ = ATR((bit5 << 5) +
(bit4 << 4) +
(bit3 << 3) +
(bit2 << 2) +
(bit1 << 1) + bit0);
}
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
inline axis_transformation&
axis_transformation::set_directions(const direction_2d& horizontalDir,
const direction_2d& verticalDir){
int bit2 = (static_cast<orientation_2d>(horizontalDir).to_int()) != 0;
int bit1 = !(verticalDir.to_int() & 1);
int bit0 = !(horizontalDir.to_int() & 1);
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
return *this;
}
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
inline axis_transformation& axis_transformation::set_directions(const direction_3d& horizontalDir,
const direction_3d& verticalDir,
const direction_3d& proximalDir){
int this_array[3] = {horizontalDir.to_int(),
verticalDir.to_int(),
proximalDir.to_int()};
int bit5 = (this_array[2] & 2) != 0;
int bit4 = !(((this_array[2] & 4) != 0) | ((this_array[2] & 2) != 0));
int bit3 = !((this_array[2] & 1) != 0);
//bit 2 is the tricky bit
int bit2 = (!(bit5 | bit4) & ((this_array[0] & 2) != 0 )) | //swap xy
(bit5 & ((this_array[0] & 4) >> 2)) | //z->y x->z
(bit4 & ((this_array[1] & 4) >> 2)); //z->x y->z
int bit1 = !(this_array[1] & 1);
int bit0 = !(this_array[0] & 1);
atr_ = ATR((bit5 << 5) +
(bit4 << 4) +
(bit3 << 3) +
(bit2 << 2) +
(bit1 << 1) + bit0);
return *this;
}
template <typename coordinate_type_2>
inline void axis_transformation::transform(coordinate_type_2& x, coordinate_type_2& y) const {
int bit2 = (atr_ & 4) != 0;
int bit1 = (atr_ & 2) != 0;
int bit0 = (atr_ & 1) != 0;
x *= -((bit0 << 1) - 1);
y *= -((bit1 << 1) - 1);
predicated_swap(bit2 != 0,x,y);
}
template <typename coordinate_type_2>
inline void axis_transformation::transform(coordinate_type_2& x, coordinate_type_2& y, coordinate_type_2& z) const {
int bit5 = (atr_ & 32) != 0;
int bit4 = (atr_ & 16) != 0;
int bit3 = (atr_ & 8) != 0;
int bit2 = (atr_ & 4) != 0;
int bit1 = (atr_ & 2) != 0;
int bit0 = (atr_ & 1) != 0;
x *= -((bit0 << 1) - 1);
y *= -((bit1 << 1) - 1);
z *= -((bit3 << 1) - 1);
predicated_swap(bit2 != 0, x, y);
predicated_swap(bit5 != 0, y, z);
predicated_swap(bit4 != 0, x, z);
}
inline axis_transformation& axis_transformation::invert_2d() {
int bit2 = ((atr_ & 4) != 0);
int bit1 = ((atr_ & 2) != 0);
int bit0 = ((atr_ & 1) != 0);
//swap bit 0 and bit 1 if bit2 is 1
predicated_swap(bit2 != 0, bit0, bit1);
bit1 = bit1 << 1;
atr_ = (ATR)(atr_ & (32+16+8+4)); //mask away bit0 and bit1
atr_ = (ATR)(atr_ | bit0 | bit1);
return *this;
}
inline axis_transformation axis_transformation::inverse_2d() const {
axis_transformation retval(*this);
return retval.invert_2d();
}
inline axis_transformation& axis_transformation::invert() {
int bit5 = ((atr_ & 32) != 0);
int bit4 = ((atr_ & 16) != 0);
int bit3 = ((atr_ & 8) != 0);
int bit2 = ((atr_ & 4) != 0);
int bit1 = ((atr_ & 2) != 0);
int bit0 = ((atr_ & 1) != 0);
predicated_swap(bit2 != 0, bit4, bit5);
predicated_swap(bit4 != 0, bit0, bit3);
predicated_swap(bit5 != 0, bit1, bit3);
predicated_swap(bit2 != 0, bit0, bit1);
atr_ = (ATR)((bit5 << 5) +
(bit4 << 4) +
(bit3 << 3) +
(bit2 << 2) +
(bit1 << 1) + bit0);
return *this;
}
inline axis_transformation axis_transformation::inverse() const {
axis_transformation retval(*this);
return retval.invert();
}
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::get(orientation_3d orient) const {
return scale_[orient.to_int()];
}
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::set(orientation_3d orient, scale_factor_type value) {
scale_[orient.to_int()] = value;
}
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::x() const { return scale_[HORIZONTAL]; }
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::y() const { return scale_[VERTICAL]; }
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::z() const { return scale_[PROXIMAL]; }
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::x(scale_factor_type value) { scale_[HORIZONTAL] = value; }
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::y(scale_factor_type value) { scale_[VERTICAL] = value; }
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::z(scale_factor_type value) { scale_[PROXIMAL] = value; }
//concatenation operator (convolve scale factors)
template <typename scale_factor_type>
inline anisotropic_scale_factor<scale_factor_type> anisotropic_scale_factor<scale_factor_type>::operator+(const anisotropic_scale_factor<scale_factor_type>& s) const {
anisotropic_scale_factor<scale_factor_type> retval(*this);
return retval+=s;
}
//concatenate this with that
template <typename scale_factor_type>
inline const anisotropic_scale_factor<scale_factor_type>& anisotropic_scale_factor<scale_factor_type>::operator+=(const anisotropic_scale_factor<scale_factor_type>& s){
scale_[0] *= s.scale_[0];
scale_[1] *= s.scale_[1];
scale_[2] *= s.scale_[2];
return *this;
}
//transform
template <typename scale_factor_type>
inline anisotropic_scale_factor<scale_factor_type>& anisotropic_scale_factor<scale_factor_type>::transform(axis_transformation atr){
direction_3d dirs[3];
atr.get_directions(dirs[0],dirs[1],dirs[2]);
scale_factor_type tmp[3] = {scale_[0], scale_[1], scale_[2]};
for(int i = 0; i < 3; ++i){
scale_[orientation_3d(dirs[i]).to_int()] = tmp[i];
}
return *this;
}
template <typename scale_factor_type>
template <typename coordinate_type_2>
inline void anisotropic_scale_factor<scale_factor_type>::scale(coordinate_type_2& x, coordinate_type_2& y) const {
x = scaling_policy<coordinate_type_2>::round((scale_factor_type)x * get(HORIZONTAL));
y = scaling_policy<coordinate_type_2>::round((scale_factor_type)y * get(HORIZONTAL));
}
template <typename scale_factor_type>
template <typename coordinate_type_2>
inline void anisotropic_scale_factor<scale_factor_type>::scale(coordinate_type_2& x, coordinate_type_2& y, coordinate_type_2& z) const {
scale(x, y);
z = scaling_policy<coordinate_type_2>::round((scale_factor_type)z * get(HORIZONTAL));
}
template <typename scale_factor_type>
inline anisotropic_scale_factor<scale_factor_type>& anisotropic_scale_factor<scale_factor_type>::invert() {
x(1/x());
y(1/y());
z(1/z());
return *this;
}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation() : atr_(), p_(0, 0, 0) {;}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation(axis_transformation atr) : atr_(atr), p_(0, 0, 0){;}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0, 0){;}
template <typename coordinate_type>
template <typename point_type>
inline transformation<coordinate_type>::transformation(const point_type& p) : atr_(), p_(0, 0, 0) {
set_translation(p);
}
template <typename coordinate_type>
template <typename point_type>
inline transformation<coordinate_type>::transformation(axis_transformation atr, const point_type& p) :
atr_(atr), p_(0, 0, 0) {
set_translation(p);
}
template <typename coordinate_type>
template <typename point_type>
inline transformation<coordinate_type>::transformation(axis_transformation atr, const point_type& referencePt, const point_type& destinationPt) : atr_(), p_(0, 0, 0) {
transformation<coordinate_type> tmp(referencePt);
transformation<coordinate_type> rotRef(atr);
transformation<coordinate_type> tmpInverse = tmp.inverse();
point_type decon(referencePt);
deconvolve(decon, destinationPt);
transformation<coordinate_type> displacement(decon);
tmp += rotRef;
tmp += tmpInverse;
tmp += displacement;
(*this) = tmp;
}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation(const transformation<coordinate_type>& tr) :
atr_(tr.atr_), p_(tr.p_) {;}
template <typename coordinate_type>
inline bool transformation<coordinate_type>::operator==(const transformation<coordinate_type>& tr) const {
return atr_ == tr.atr_ && p_ == tr.p_;
}
template <typename coordinate_type>
inline bool transformation<coordinate_type>::operator!=(const transformation<coordinate_type>& tr) const {
return !(*this == tr);
}
template <typename coordinate_type>
inline bool transformation<coordinate_type>::operator<(const transformation<coordinate_type>& tr) const {
return atr_ < tr.atr_ || atr_ == tr.atr_ && p_ < tr.p_;
}
template <typename coordinate_type>
inline transformation<coordinate_type> transformation<coordinate_type>::operator+(const transformation<coordinate_type>& tr) const {
transformation<coordinate_type> retval(*this);
return retval+=tr;
}
template <typename coordinate_type>
inline const transformation<coordinate_type>& transformation<coordinate_type>::operator+=(const transformation<coordinate_type>& tr){
//apply the inverse transformation of this to the translation point of that
//and convolve it with this translation point
coordinate_type x, y, z;
transformation<coordinate_type> inv = inverse();
inv.transform(x, y, z);
p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x);
p_.set(VERTICAL, p_.get(VERTICAL) + y);
p_.set(PROXIMAL, p_.get(PROXIMAL) + z);
//concatenate axis transforms
atr_ += tr.atr_;
return *this;
}
template <typename coordinate_type>
inline void transformation<coordinate_type>::set_axis_transformation(const axis_transformation& atr) {
atr_ = atr;
}
template <typename coordinate_type>
template <typename point_type>
inline void transformation<coordinate_type>::get_translation(point_type& p) const {
assign(p, p_);
}
template <typename coordinate_type>
template <typename point_type>
inline void transformation<coordinate_type>::set_translation(const point_type& p) {
assign(p_, p);
}
template <typename coordinate_type>
inline void transformation<coordinate_type>::transform(coordinate_type& x, coordinate_type& y) const {
//subtract each component of new origin point
y -= p_.get(VERTICAL);
x -= p_.get(HORIZONTAL);
atr_.transform(x, y);
}
template <typename coordinate_type>
inline void transformation<coordinate_type>::transform(coordinate_type& x, coordinate_type& y, coordinate_type& z) const {
//subtract each component of new origin point
z -= p_.get(PROXIMAL);
y -= p_.get(VERTICAL);
x -= p_.get(HORIZONTAL);
atr_.transform(x,y,z);
}
// sets the axis_transform portion to its inverse
// transforms the tranlastion portion by that inverse axis_transform
// multiplies the translation portion by -1 to reverse it
template <typename coordinate_type>
inline transformation<coordinate_type>& transformation<coordinate_type>::invert() {
coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL), z = p_.get(PROXIMAL);
atr_.transform(x, y, z);
x *= -1;
y *= -1;
z *= -1;
p_ = point_3d_data<coordinate_type>(x, y, z);
atr_.invert();
return *this;
}
template <typename coordinate_type>
inline transformation<coordinate_type> transformation<coordinate_type>::inverse() const {
transformation<coordinate_type> retval(*this);
return retval.invert();
}
}
}
#endif

View File

@ -0,0 +1,129 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_GMP_OVERRIDE_HPP
#define BOOST_POLYGON_GMP_OVERRIDE_HPP
#include <gmpxx.h>
namespace boost { namespace polygon {
class gmp_int {
private:
inline gmp_int(const mpq_class& input) : v_(input) {}
public:
inline gmp_int() {}
explicit inline gmp_int(long input) : v_(input) {}
inline gmp_int(const gmp_int& input) : v_(input.v_) {}
inline gmp_int& operator=(const gmp_int& that) {
v_ = that.v_;
return (*this);
}
inline gmp_int& operator=(long that) {
v_ = that;
return (*this);
}
inline operator int() const {
std::cout << "cast\n";
mpz_class num = v_.get_num();
mpz_class den = v_.get_den();
num /= den;
return num.get_si();
}
inline double get_d() const {
return v_.get_d();
}
inline int get_num() const {
return v_.get_num().get_si();
}
inline int get_den() const {
return v_.get_den().get_si();
}
inline bool operator==(const gmp_int& that) const {
return v_ == that.v_;
}
inline bool operator!=(const gmp_int& that) const {
return v_ != that.v_;
}
inline bool operator<(const gmp_int& that) const {
bool retval = v_ < that.v_;
return retval;
}
inline bool operator<=(const gmp_int& that) const {
return v_ <= that.v_;
}
inline bool operator>(const gmp_int& that) const {
return v_ > that.v_;
}
inline bool operator>=(const gmp_int& that) const {
return v_ >= that.v_;
}
inline gmp_int operator+(const gmp_int& b) {
return gmp_int((*this).v_ + b.v_);
}
inline gmp_int operator-(const gmp_int& b) {
return gmp_int((*this).v_ - b.v_);
}
inline gmp_int operator*(const gmp_int& b) {
return gmp_int((*this).v_ * b.v_);
}
inline gmp_int operator/(const gmp_int& b) {
return gmp_int((*this).v_ / b.v_);
}
inline gmp_int& operator+=(const gmp_int& b) {
(*this).v_ += b.v_;
return (*this);
}
inline gmp_int& operator-=(const gmp_int& b) {
(*this).v_ -= b.v_;
return (*this);
}
inline gmp_int& operator*=(const gmp_int& b) {
(*this).v_ *= b.v_;
return (*this);
}
inline gmp_int& operator/=(const gmp_int& b) {
(*this).v_ /= b.v_;
return (*this);
}
inline gmp_int& operator++() {
++v_;
return (*this);
}
inline gmp_int& operator--() {
--v_;
return (*this);
}
inline gmp_int operator++(int) {
gmp_int retval(*this);
++(*this);
return retval;
}
inline gmp_int operator--(int) {
gmp_int retval(*this);
--(*this);
return retval;
}
private:
mpq_class v_;
};
template <>
struct high_precision_type<int> {
typedef mpq_class type;
};
template <>
int convert_high_precision_type<int>(const mpq_class& v) {
mpz_class num = v.get_num();
mpz_class den = v.get_den();
num /= den;
return num.get_si();
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,592 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_INTERVAL_CONCEPT_HPP
#define BOOST_POLYGON_INTERVAL_CONCEPT_HPP
#include "isotropy.hpp"
#include "interval_data.hpp"
#include "interval_traits.hpp"
namespace boost { namespace polygon{
struct interval_concept {};
template <typename T>
struct is_interval_concept { typedef gtl_no type; };
template <>
struct is_interval_concept<interval_concept> { typedef gtl_yes type; };
template <typename T>
struct is_mutable_interval_concept { typedef gtl_no type; };
template <>
struct is_mutable_interval_concept<interval_concept> { typedef gtl_yes type; };
template <typename T, typename CT>
struct interval_coordinate_type_by_concept { typedef void type; };
template <typename T>
struct interval_coordinate_type_by_concept<T, gtl_yes> { typedef typename interval_traits<T>::coordinate_type type; };
template <typename T>
struct interval_coordinate_type {
typedef typename interval_coordinate_type_by_concept<
T, typename is_interval_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T, typename CT>
struct interval_difference_type_by_concept { typedef void type; };
template <typename T>
struct interval_difference_type_by_concept<T, gtl_yes> {
typedef typename coordinate_traits<typename interval_traits<T>::coordinate_type>::coordinate_difference type; };
template <typename T>
struct interval_difference_type {
typedef typename interval_difference_type_by_concept<
T, typename is_interval_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T>
typename interval_coordinate_type<T>::type
get(const T& interval, direction_1d dir,
typename enable_if<typename gtl_if<typename is_interval_concept<typename geometry_concept<T>::type>::type>::type>::type * = 0
) {
return interval_traits<T>::get(interval, dir);
}
template <typename T, typename coordinate_type>
void
set(T& interval, direction_1d dir, coordinate_type value,
typename enable_if<typename is_mutable_interval_concept<typename geometry_concept<T>::type>::type>::type * = 0
) {
//this may need to be refined
interval_mutable_traits<T>::set(interval, dir, value);
if(high(interval) < low(interval))
interval_mutable_traits<T>::set(interval, dir.backward(), value);
}
template <typename T, typename T2, typename T3>
T
construct(T2 low_value, T3 high_value,
typename enable_if<typename is_mutable_interval_concept<typename geometry_concept<T>::type>::type>::type * = 0
) {
if(low_value > high_value) std::swap(low_value, high_value);
return interval_mutable_traits<T>::construct(low_value, high_value);
}
template <typename T, typename T2>
T
copy_construct(const T2& interval,
typename enable_if< typename gtl_and<typename is_mutable_interval_concept<typename geometry_concept<T>::type>::type,
typename is_interval_concept<typename geometry_concept<T2>::type>::type>::type>::type * = 0
) {
return construct<T>
(get(interval, LOW ),
get(interval, HIGH));
}
template <typename T1, typename T2>
T1 &
assign(T1& lvalue, const T2& rvalue,
typename enable_if< typename gtl_and< typename is_mutable_interval_concept<typename geometry_concept<T1>::type>::type,
typename is_interval_concept<typename geometry_concept<T2>::type>::type>::type>::type * = 0) {
lvalue = copy_construct<T1>(rvalue);
return lvalue;
}
template <typename T, typename T2>
bool
equivalence(const T& interval1, const T2& interval2,
typename enable_if< typename gtl_and< typename is_interval_concept<typename geometry_concept<T>::type>::type,
typename is_interval_concept<typename geometry_concept<T2>::type>::type>::type>::type * = 0
) {
return get(interval1, LOW) ==
get(interval2, LOW) &&
get(interval1, HIGH) ==
get(interval2, HIGH);
}
struct y_i_contains : gtl_yes {};
template <typename interval_type>
typename enable_if< typename gtl_and< y_i_contains, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type >::type, bool>::type
contains(const interval_type& interval,
typename interval_traits<interval_type>::coordinate_type value,
bool consider_touch = true ) {
if(consider_touch) {
return value <= high(interval) && value >= low(interval);
} else {
return value < high(interval) && value > low(interval);
}
}
template <typename interval_type, typename interval_type_2>
bool
contains(const interval_type& interval,
const interval_type_2& value, bool consider_touch = true,
typename enable_if< typename gtl_and< typename is_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type>::type * = 0
) {
return contains(interval, get(value, LOW), consider_touch) &&
contains(interval, get(value, HIGH), consider_touch);
}
// get the low coordinate
template <typename interval_type>
typename interval_traits<interval_type>::coordinate_type
low(const interval_type& interval,
typename enable_if< typename is_interval_concept<typename geometry_concept<interval_type>::type>::type>::type * = 0
) { return get(interval, LOW); }
// get the high coordinate
template <typename interval_type>
typename interval_traits<interval_type>::coordinate_type
high(const interval_type& interval,
typename enable_if< typename is_interval_concept<typename geometry_concept<interval_type>::type>::type>::type * = 0
) { return get(interval, HIGH); }
// get the center coordinate
template <typename interval_type>
typename interval_traits<interval_type>::coordinate_type
center(const interval_type& interval,
typename enable_if< typename is_interval_concept<typename geometry_concept<interval_type>::type>::type>::type * = 0
) { return (high(interval) + low(interval))/2; }
struct y_i_low : gtl_yes {};
// set the low coordinate to v
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_low, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, void>::type
low(interval_type& interval,
typename interval_traits<interval_type>::coordinate_type v) { set(interval, LOW, v); }
struct y_i_high : gtl_yes {};
// set the high coordinate to v
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_high, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, void>::type
high(interval_type& interval,
typename interval_traits<interval_type>::coordinate_type v) { set(interval, HIGH, v); }
// get the magnitude of the interval
template <typename interval_type>
typename interval_difference_type<interval_type>::type
delta(const interval_type& interval,
typename enable_if< typename is_interval_concept<typename geometry_concept<interval_type>::type>::type>::type * = 0
) {
typedef typename coordinate_traits<typename interval_traits<interval_type>::coordinate_type>::coordinate_difference diffT;
return (diffT)high(interval) - (diffT)low(interval); }
struct y_i_flip : gtl_yes {};
// flip this about coordinate
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_flip, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type &
flip(interval_type& interval,
typename interval_traits<interval_type>::coordinate_type axis = 0) {
typename interval_traits<interval_type>::coordinate_type newLow, newHigh;
newLow = 2 * axis - high(interval);
newHigh = 2 * axis - low(interval);
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_scale_up : gtl_yes {};
// scale interval by factor
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_scale_up, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type &
scale_up(interval_type& interval,
typename coordinate_traits<typename interval_traits<interval_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newHigh = high(interval) * (Unit)factor;
low(interval, low(interval) * (Unit)factor);
high(interval, (newHigh));
return interval;
}
struct y_i_scale_down : gtl_yes {};
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_scale_down, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type &
scale_down(interval_type& interval,
typename coordinate_traits<typename interval_traits<interval_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::coordinate_distance dt;
Unit newHigh = scaling_policy<Unit>::round((dt)(high(interval)) / (dt)factor);
low(interval, scaling_policy<Unit>::round((dt)(low(interval)) / (dt)factor));
high(interval, (newHigh));
return interval;
}
struct y_i_scale : gtl_yes {};
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_scale, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type &
scale(interval_type& interval, double factor) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newHigh = scaling_policy<Unit>::round((double)(high(interval)) * factor);
low(interval, scaling_policy<Unit>::round((double)low(interval)* factor));
high(interval, (newHigh));
return interval;
}
// move interval by delta
template <typename interval_type>
interval_type&
move(interval_type& interval,
typename interval_difference_type<interval_type>::type displacement,
typename enable_if<typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type * = 0
) {
typedef typename interval_traits<interval_type>::coordinate_type ctype;
typedef typename coordinate_traits<ctype>::coordinate_difference Unit;
Unit len = delta(interval);
low(interval, static_cast<ctype>(static_cast<Unit>(low(interval)) + displacement));
high(interval, static_cast<ctype>(static_cast<Unit>(low(interval)) + len));
return interval;
}
struct y_i_convolve : gtl_yes {};
// convolve this with b
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_convolve, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type &
convolve(interval_type& interval,
typename interval_traits<interval_type>::coordinate_type b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newLow = low(interval) + b;
Unit newHigh = high(interval) + b;
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_deconvolve : gtl_yes {};
// deconvolve this with b
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_deconvolve, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type &
deconvolve(interval_type& interval,
typename interval_traits<interval_type>::coordinate_type b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newLow = low(interval) - b;
Unit newHigh = high(interval) - b;
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_convolve2 : gtl_yes {};
// convolve this with b
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_convolve2,
typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
interval_type>::type &
convolve(interval_type& interval,
const interval_type_2& b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newLow = low(interval) + low(b);
Unit newHigh = high(interval) + high(b);
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_deconvolve2 : gtl_yes {};
// deconvolve this with b
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3< y_i_deconvolve2,
typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
interval_type>::type &
deconvolve(interval_type& interval,
const interval_type_2& b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newLow = low(interval) - low(b);
Unit newHigh = high(interval) - high(b);
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_reconvolve : gtl_yes {};
// reflected convolve this with b
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_reconvolve,
typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
interval_type>::type &
reflected_convolve(interval_type& interval,
const interval_type_2& b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newLow = low(interval) - high(b);
Unit newHigh = high(interval) - low(b);
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_redeconvolve : gtl_yes {};
// reflected deconvolve this with b
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3< y_i_redeconvolve,
typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
interval_type>::type &
reflected_deconvolve(interval_type& interval,
const interval_type_2& b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit newLow = low(interval) + high(b);
Unit newHigh = high(interval) + low(b);
low(interval, newLow);
high(interval, newHigh);
return interval;
}
struct y_i_e_dist1 : gtl_yes {};
// distance from a coordinate to an interval
template <typename interval_type>
typename enable_if< typename gtl_and<y_i_e_dist1, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type>::type,
typename interval_difference_type<interval_type>::type>::type
euclidean_distance(const interval_type& interval,
typename interval_traits<interval_type>::coordinate_type position) {
typedef typename coordinate_traits<typename interval_traits<interval_type>::coordinate_type>::coordinate_difference Unit;
Unit dist[3] = {0, (Unit)low(interval) - (Unit)position, (Unit)position - (Unit)high(interval)};
return dist[ (dist[1] > 0) + ((dist[2] > 0) << 1) ];
}
struct y_i_e_dist2 : gtl_yes {};
// distance between two intervals
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_e_dist2, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
typename interval_difference_type<interval_type>::type>::type
euclidean_distance(const interval_type& interval,
const interval_type_2& b) {
typedef typename coordinate_traits<typename interval_traits<interval_type>::coordinate_type>::coordinate_difference Unit;
Unit dist[3] = {0, (Unit)low(interval) - (Unit)high(b), (Unit)low(b) - (Unit)high(interval)};
return dist[ (dist[1] > 0) + ((dist[2] > 0) << 1) ];
}
struct y_i_e_intersects : gtl_yes {};
// check if Interval b intersects `this` Interval
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_e_intersects, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
bool>::type
intersects(const interval_type& interval, const interval_type_2& b,
bool consider_touch = true) {
return consider_touch ?
(low(interval) <= high(b)) & (high(interval) >= low(b)) :
(low(interval) < high(b)) & (high(interval) > low(b));
}
struct y_i_e_bintersect : gtl_yes {};
// check if Interval b partially overlaps `this` Interval
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_e_bintersect, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
bool>::type
boundaries_intersect(const interval_type& interval, const interval_type_2& b,
bool consider_touch = true) {
return (contains(interval, low(b), consider_touch) ||
contains(interval, high(b), consider_touch)) &&
(contains(b, low(interval), consider_touch) ||
contains(b, high(interval), consider_touch));
}
struct y_i_abuts1 : gtl_yes {};
// check if they are end to end
template <typename interval_type, typename interval_type_2>
typename enable_if< typename gtl_and_3<y_i_abuts1, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
bool>::type
abuts(const interval_type& interval, const interval_type_2& b, direction_1d dir) {
return dir.to_int() ? low(b) == high(interval) : low(interval) == high(b);
}
struct y_i_abuts2 : gtl_yes {};
// check if they are end to end
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_abuts2, typename is_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
bool>::type
abuts(const interval_type& interval, const interval_type_2& b) {
return abuts(interval, b, HIGH) || abuts(interval, b, LOW);
}
struct y_i_intersect : gtl_yes {};
// set 'this' interval to the intersection of 'this' and b
template <typename interval_type, typename interval_type_2>
typename enable_if< typename gtl_and_3<y_i_intersect, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
bool>::type
intersect(interval_type& interval, const interval_type_2& b, bool consider_touch = true) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit lowVal = (std::max)(low(interval), low(b));
Unit highVal = (std::min)(high(interval), high(b));
bool valid = consider_touch ?
lowVal <= highVal :
lowVal < highVal;
if(valid) {
low(interval, lowVal);
high(interval, highVal);
}
return valid;
}
struct y_i_g_intersect : gtl_yes {};
// set 'this' interval to the generalized intersection of 'this' and b
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_g_intersect, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
interval_type>::type &
generalized_intersect(interval_type& interval, const interval_type_2& b) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit coords[4] = {low(interval), high(interval), low(b), high(b)};
//consider implementing faster sorting of small fixed length range
std::sort(coords, coords+4);
low(interval, coords[1]);
high(interval, coords[2]);
return interval;
}
struct y_i_bloat : gtl_yes {};
// bloat the Interval
template <typename interval_type>
typename enable_if< typename gtl_and<y_i_bloat, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type,
interval_type>::type &
bloat(interval_type& interval, typename interval_traits<interval_type>::coordinate_type bloating) {
low(interval, low(interval)-bloating);
high(interval, high(interval)+bloating);
return interval;
}
struct y_i_bloat2 : gtl_yes {};
// bloat the specified side of `this` Interval
template <typename interval_type>
typename enable_if< typename gtl_and<y_i_bloat2, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type,
interval_type>::type &
bloat(interval_type& interval, direction_1d dir, typename interval_traits<interval_type>::coordinate_type bloating) {
set(interval, dir, get(interval, dir) + dir.get_sign() * bloating);
return interval;
}
struct y_i_shrink : gtl_yes {};
// shrink the Interval
template <typename interval_type>
typename enable_if< typename gtl_and<y_i_shrink, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type,
interval_type>::type &
shrink(interval_type& interval, typename interval_traits<interval_type>::coordinate_type shrinking) {
return bloat(interval, -shrinking);
}
struct y_i_shrink2 : gtl_yes {};
// shrink the specified side of `this` Interval
template <typename interval_type>
typename enable_if< typename gtl_and<y_i_shrink2, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type,
interval_type>::type &
shrink(interval_type& interval, direction_1d dir, typename interval_traits<interval_type>::coordinate_type shrinking) {
return bloat(interval, dir, -shrinking);
}
// Enlarge `this` Interval to encompass the specified Interval
template <typename interval_type, typename interval_type_2>
bool
encompass(interval_type& interval, const interval_type_2& b,
typename enable_if<
typename gtl_and< typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type>::type * = 0
) {
bool retval = !contains(interval, b, true);
low(interval, (std::min)(low(interval), low(b)));
high(interval, (std::max)(high(interval), high(b)));
return retval;
}
struct y_i_encompass : gtl_yes {};
// Enlarge `this` Interval to encompass the specified Interval
template <typename interval_type>
typename enable_if< typename gtl_and<y_i_encompass, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type,
bool>::type
encompass(interval_type& interval, typename interval_traits<interval_type>::coordinate_type b) {
bool retval = !contains(interval, b, true);
low(interval, (std::min)(low(interval), b));
high(interval, (std::max)(high(interval), b));
return retval;
}
struct y_i_get_half : gtl_yes {};
// gets the half of the interval as an interval
template <typename interval_type>
typename enable_if<typename gtl_and<y_i_get_half, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type>::type, interval_type>::type
get_half(const interval_type& interval, direction_1d d1d) {
typedef typename interval_traits<interval_type>::coordinate_type Unit;
Unit c = (get(interval, LOW) + get(interval, HIGH)) / 2;
return construct<interval_type>((d1d == LOW) ? get(interval, LOW) : c,
(d1d == LOW) ? c : get(interval, HIGH));
}
struct y_i_join_with : gtl_yes {};
// returns true if the 2 intervals exactly touch at one value, like in l1 <= h1 == l2 <= h2
// sets the argument to the joined interval
template <typename interval_type, typename interval_type_2>
typename enable_if<
typename gtl_and_3<y_i_join_with, typename is_mutable_interval_concept<typename geometry_concept<interval_type>::type>::type,
typename is_interval_concept<typename geometry_concept<interval_type_2>::type>::type>::type,
bool>::type
join_with(interval_type& interval, const interval_type_2& b) {
if(abuts(interval, b)) {
encompass(interval, b);
return true;
}
return false;
}
template <class T>
template <class T2>
interval_data<T>& interval_data<T>::operator=(const T2& rvalue) {
assign(*this, rvalue);
return *this;
}
template <typename T>
struct geometry_concept<interval_data<T> > {
typedef interval_concept type;
};
}
}
#endif

View File

@ -0,0 +1,67 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_INTERVAL_DATA_HPP
#define BOOST_POLYGON_INTERVAL_DATA_HPP
#include "isotropy.hpp"
namespace boost { namespace polygon{
template <typename T>
class interval_data {
public:
typedef T coordinate_type;
inline interval_data()
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{}
inline interval_data(coordinate_type low, coordinate_type high)
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{
coords_[LOW] = low; coords_[HIGH] = high;
}
inline interval_data(const interval_data& that)
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{
(*this) = that;
}
inline interval_data& operator=(const interval_data& that) {
coords_[0] = that.coords_[0]; coords_[1] = that.coords_[1]; return *this;
}
template <typename T2>
inline interval_data& operator=(const T2& rvalue);
inline coordinate_type get(direction_1d dir) const {
return coords_[dir.to_int()];
}
inline coordinate_type low() const { return coords_[0]; }
inline coordinate_type high() const { return coords_[1]; }
inline bool operator==(const interval_data& that) const {
return low() == that.low() && high() == that.high(); }
inline bool operator!=(const interval_data& that) const {
return low() != that.low() || high() != that.high(); }
inline bool operator<(const interval_data& that) const {
if(coords_[0] < that.coords_[0]) return true;
if(coords_[0] > that.coords_[0]) return false;
if(coords_[1] < that.coords_[1]) return true;
return false;
}
inline bool operator<=(const interval_data& that) const { return !(that < *this); }
inline bool operator>(const interval_data& that) const { return that < *this; }
inline bool operator>=(const interval_data& that) const { return !((*this) < that); }
inline void set(direction_1d dir, coordinate_type value) {
coords_[dir.to_int()] = value;
}
private:
coordinate_type coords_[2];
};
}
}
#endif

View File

@ -0,0 +1,33 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_INTERVAL_TRAITS_HPP
#define BOOST_POLYGON_INTERVAL_TRAITS_HPP
namespace boost { namespace polygon{
template <typename T>
struct interval_traits {
typedef typename T::coordinate_type coordinate_type;
static inline coordinate_type get(const T& interval, direction_1d dir) {
return interval.get(dir);
}
};
template <typename T>
struct interval_mutable_traits {
static inline void set(T& interval, direction_1d dir, typename interval_traits<T>::coordinate_type value) {
interval.set(dir, value);
}
static inline T construct(typename interval_traits<T>::coordinate_type low_value,
typename interval_traits<T>::coordinate_type high_value) {
return T(low_value, high_value);
}
};
}
}
#endif

View File

@ -0,0 +1,542 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_ISOTROPY_HPP
#define BOOST_POLYGON_ISOTROPY_HPP
//external
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <vector>
#include <deque>
#include <map>
#include <set>
#include <list>
//#include <iostream>
#include <algorithm>
#include <limits>
#include <iterator>
#include <string>
#ifndef BOOST_POLYGON_NO_DEPS
#include <boost/config.hpp>
#ifdef BOOST_MSVC
#define BOOST_POLYGON_MSVC
#endif
#ifdef BOOST_INTEL
#define BOOST_POLYGON_ICC
#endif
#ifdef BOOST_HAS_LONG_LONG
#define BOOST_POLYGON_USE_LONG_LONG
typedef boost::long_long_type polygon_long_long_type;
typedef boost::ulong_long_type polygon_ulong_long_type;
//typedef long long polygon_long_long_type;
//typedef unsigned long long polygon_ulong_long_type;
#endif
#include <boost/mpl/size_t.hpp>
#include <boost/mpl/protect.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/or.hpp>
#else
#ifdef WIN32
#define BOOST_POLYGON_MSVC
#endif
#ifdef __ICC
#define BOOST_POLYGON_ICC
#endif
#define BOOST_POLYGON_USE_LONG_LONG
typedef long long polygon_long_long_type;
typedef unsigned long long polygon_ulong_long_type;
namespace boost {
template <bool B, class T = void>
struct enable_if_c {
typedef T type;
};
template <class T>
struct enable_if_c<false, T> {};
template <class Cond, class T = void>
struct enable_if : public enable_if_c<Cond::value, T> {};
template <bool B, class T>
struct lazy_enable_if_c {
typedef typename T::type type;
};
template <class T>
struct lazy_enable_if_c<false, T> {};
template <class Cond, class T>
struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {};
template <bool B, class T = void>
struct disable_if_c {
typedef T type;
};
template <class T>
struct disable_if_c<true, T> {};
template <class Cond, class T = void>
struct disable_if : public disable_if_c<Cond::value, T> {};
template <bool B, class T>
struct lazy_disable_if_c {
typedef typename T::type type;
};
template <class T>
struct lazy_disable_if_c<true, T> {};
template <class Cond, class T>
struct lazy_disable_if : public lazy_disable_if_c<Cond::value, T> {};
}
#endif
namespace boost { namespace polygon{
enum GEOMETRY_CONCEPT_ID {
COORDINATE_CONCEPT,
INTERVAL_CONCEPT,
POINT_CONCEPT,
POINT_3D_CONCEPT,
RECTANGLE_CONCEPT,
POLYGON_90_CONCEPT,
POLYGON_90_WITH_HOLES_CONCEPT,
POLYGON_45_CONCEPT,
POLYGON_45_WITH_HOLES_CONCEPT,
POLYGON_CONCEPT,
POLYGON_WITH_HOLES_CONCEPT,
POLYGON_90_SET_CONCEPT,
POLYGON_45_SET_CONCEPT,
POLYGON_SET_CONCEPT
};
struct undefined_concept {};
template <typename T>
struct geometry_concept { typedef undefined_concept type; };
template <typename GCT, typename T>
struct view_of {};
template <typename T1, typename T2>
view_of<T1, T2> view_as(const T2& obj) { return view_of<T1, T2>(obj); }
template <typename T>
struct coordinate_traits {};
template <typename T>
struct high_precision_type {
typedef long double type;
};
template <typename T>
T convert_high_precision_type(const typename high_precision_type<T>::type& v) {
return T(v);
}
template <>
struct coordinate_traits<int> {
typedef int coordinate_type;
typedef long double area_type;
#ifdef BOOST_POLYGON_USE_LONG_LONG
typedef polygon_long_long_type manhattan_area_type;
typedef polygon_ulong_long_type unsigned_area_type;
typedef polygon_long_long_type coordinate_difference;
#else
typedef long manhattan_area_type;
typedef unsigned long unsigned_area_type;
typedef long coordinate_difference;
#endif
typedef long double coordinate_distance;
};
#ifdef BOOST_POLYGON_USE_LONG_LONG
template <>
struct coordinate_traits<polygon_long_long_type> {
typedef polygon_long_long_type coordinate_type;
typedef long double area_type;
typedef polygon_long_long_type manhattan_area_type;
typedef polygon_ulong_long_type unsigned_area_type;
typedef polygon_long_long_type coordinate_difference;
typedef long double coordinate_distance;
};
#endif
template <>
struct coordinate_traits<float> {
typedef float coordinate_type;
typedef float area_type;
typedef float manhattan_area_type;
typedef float unsigned_area_type;
typedef float coordinate_difference;
typedef float coordinate_distance;
};
template <>
struct coordinate_traits<double> {
typedef double coordinate_type;
typedef double area_type;
typedef double manhattan_area_type;
typedef double unsigned_area_type;
typedef double coordinate_difference;
typedef double coordinate_distance;
};
template <typename T>
struct scaling_policy {
template <typename T2>
static inline T round(T2 t2) {
return (T)std::floor(t2+0.5);
}
static inline T round(T t2) {
return t2;
}
};
struct coordinate_concept {};
template <>
struct geometry_concept<int> { typedef coordinate_concept type; };
#ifdef BOOST_POLYGON_USE_LONG_LONG
template <>
struct geometry_concept<polygon_long_long_type> { typedef coordinate_concept type; };
#endif
template <>
struct geometry_concept<float> { typedef coordinate_concept type; };
template <>
struct geometry_concept<double> { typedef coordinate_concept type; };
#ifndef BOOST_POLYGON_NO_DEPS
struct gtl_no : mpl::bool_<false> {};
struct gtl_yes : mpl::bool_<true> {};
template <typename T, typename T2>
struct gtl_and : mpl::and_<T, T2> {};
template <typename T, typename T2, typename T3>
struct gtl_and_3 : mpl::and_<T, T2, T3> {};
template <typename T, typename T2, typename T3, typename T4>
struct gtl_and_4 : mpl::and_<T, T2, T3, T4> {};
// template <typename T, typename T2>
// struct gtl_or : mpl::or_<T, T2> {};
// template <typename T, typename T2, typename T3>
// struct gtl_or_3 : mpl::or_<T, T2, T3> {};
// template <typename T, typename T2, typename T3, typename T4>
// struct gtl_or_4 : mpl::or_<T, T2, T3, T4> {};
#else
struct gtl_no { static const bool value = false; };
struct gtl_yes { typedef gtl_yes type;
static const bool value = true; };
template <bool T, bool T2>
struct gtl_and_c { typedef gtl_no type; };
template <>
struct gtl_and_c<true, true> { typedef gtl_yes type; };
template <typename T, typename T2>
struct gtl_and : gtl_and_c<T::value, T2::value> {};
template <typename T, typename T2, typename T3>
struct gtl_and_3 { typedef typename gtl_and<
T, typename gtl_and<T2, T3>::type>::type type; };
template <typename T, typename T2, typename T3, typename T4>
struct gtl_and_4 { typedef typename gtl_and_3<
T, T2, typename gtl_and<T3, T4>::type>::type type; };
#endif
template <typename T, typename T2>
struct gtl_or { typedef gtl_yes type; };
template <typename T>
struct gtl_or<T, T> { typedef T type; };
template <typename T, typename T2, typename T3>
struct gtl_or_3 { typedef typename gtl_or<
T, typename gtl_or<T2, T3>::type>::type type; };
template <typename T, typename T2, typename T3, typename T4>
struct gtl_or_4 { typedef typename gtl_or<
T, typename gtl_or_3<T2, T3, T4>::type>::type type; };
template <typename T>
struct gtl_not { typedef gtl_no type; };
template <>
struct gtl_not<gtl_no> { typedef gtl_yes type; };
template <typename T>
struct gtl_if {
#ifdef WIN32
typedef gtl_no type;
#endif
};
template <>
struct gtl_if<gtl_yes> { typedef gtl_yes type; };
template <typename T, typename T2>
struct gtl_same_type { typedef gtl_no type; };
template <typename T>
struct gtl_same_type<T, T> { typedef gtl_yes type; };
template <typename T, typename T2>
struct gtl_different_type { typedef typename gtl_not<typename gtl_same_type<T, T2>::type>::type type; };
struct manhattan_domain {};
struct forty_five_domain {};
struct general_domain {};
template <typename T>
struct geometry_domain { typedef general_domain type; };
template <typename domain_type, typename coordinate_type>
struct area_type_by_domain { typedef typename coordinate_traits<coordinate_type>::area_type type; };
template <typename coordinate_type>
struct area_type_by_domain<manhattan_domain, coordinate_type> {
typedef typename coordinate_traits<coordinate_type>::manhattan_area_type type; };
struct y_c_edist : gtl_yes {};
template <typename coordinate_type_1, typename coordinate_type_2>
typename enable_if<
typename gtl_and_3<y_c_edist, typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type>::type,
typename coordinate_traits<coordinate_type_1>::coordinate_difference>::type
euclidean_distance(const coordinate_type_1& lvalue, const coordinate_type_2& rvalue) {
typedef typename coordinate_traits<coordinate_type_1>::coordinate_difference Unit;
return (lvalue < rvalue) ? (Unit)rvalue - (Unit)lvalue : (Unit)lvalue - (Unit)rvalue;
}
// predicated_swap swaps a and b if pred is true
// predicated_swap is guarenteed to behave the same as
// if(pred){
// T tmp = a;
// a = b;
// b = tmp;
// }
// but will not generate a branch instruction.
// predicated_swap always creates a temp copy of a, but does not
// create more than one temp copy of an input.
// predicated_swap can be used to optimize away branch instructions in C++
template <class T>
inline bool predicated_swap(const bool& pred,
T& a,
T& b) {
const T tmp = a;
const T* input[2] = {&b, &tmp};
a = *input[!pred];
b = *input[pred];
return pred;
}
enum direction_1d_enum { LOW = 0, HIGH = 1,
LEFT = 0, RIGHT = 1,
CLOCKWISE = 0, COUNTERCLOCKWISE = 1,
REVERSE = 0, FORWARD = 1,
NEGATIVE = 0, POSITIVE = 1 };
enum orientation_2d_enum { HORIZONTAL = 0, VERTICAL = 1 };
enum direction_2d_enum { WEST = 0, EAST = 1, SOUTH = 2, NORTH = 3 };
enum orientation_3d_enum { PROXIMAL = 2 };
enum direction_3d_enum { DOWN = 4, UP = 5 };
enum winding_direction {
clockwise_winding = 0,
counterclockwise_winding = 1,
unknown_winding = 2
};
class direction_2d;
class direction_3d;
class orientation_2d;
class direction_1d {
private:
unsigned int val_;
explicit direction_1d(int d);
public:
inline direction_1d() : val_(LOW) {}
inline direction_1d(const direction_1d& that) : val_(that.val_) {}
inline direction_1d(const direction_1d_enum val) : val_(val) {}
explicit inline direction_1d(const direction_2d& that);
explicit inline direction_1d(const direction_3d& that);
inline direction_1d& operator = (const direction_1d& d) {
val_ = d.val_; return * this; }
inline bool operator==(direction_1d d) const { return (val_ == d.val_); }
inline bool operator!=(direction_1d d) const { return !((*this) == d); }
inline unsigned int to_int(void) const { return val_; }
inline direction_1d& backward() { val_ ^= 1; return *this; }
inline int get_sign() const { return val_ * 2 - 1; }
};
class direction_2d;
class orientation_2d {
private:
unsigned int val_;
explicit inline orientation_2d(int o);
public:
inline orientation_2d() : val_(HORIZONTAL) {}
inline orientation_2d(const orientation_2d& ori) : val_(ori.val_) {}
inline orientation_2d(const orientation_2d_enum val) : val_(val) {}
explicit inline orientation_2d(const direction_2d& that);
inline orientation_2d& operator=(const orientation_2d& ori) {
val_ = ori.val_; return * this; }
inline bool operator==(orientation_2d that) const { return (val_ == that.val_); }
inline bool operator!=(orientation_2d that) const { return (val_ != that.val_); }
inline unsigned int to_int() const { return (val_); }
inline void turn_90() { val_ = val_^ 1; }
inline orientation_2d get_perpendicular() const {
orientation_2d retval = *this;
retval.turn_90();
return retval;
}
inline direction_2d get_direction(direction_1d dir) const;
};
class direction_2d {
private:
int val_;
public:
inline direction_2d() : val_(WEST) {}
inline direction_2d(const direction_2d& that) : val_(that.val_) {}
inline direction_2d(const direction_2d_enum val) : val_(val) {}
inline direction_2d& operator=(const direction_2d& d) {
val_ = d.val_;
return * this;
}
inline ~direction_2d() { }
inline bool operator==(direction_2d d) const { return (val_ == d.val_); }
inline bool operator!=(direction_2d d) const { return !((*this) == d); }
inline bool operator< (direction_2d d) const { return (val_ < d.val_); }
inline bool operator<=(direction_2d d) const { return (val_ <= d.val_); }
inline bool operator> (direction_2d d) const { return (val_ > d.val_); }
inline bool operator>=(direction_2d d) const { return (val_ >= d.val_); }
// Casting to int
inline unsigned int to_int(void) const { return val_; }
inline direction_2d backward() const {
// flip the LSB, toggles 0 - 1 and 2 - 3
return direction_2d(direction_2d_enum(val_ ^ 1));
}
// Returns a direction 90 degree left (LOW) or right(HIGH) to this one
inline direction_2d turn(direction_1d t) const {
return direction_2d(direction_2d_enum(val_ ^ 3 ^ (val_ >> 1) ^ t.to_int()));
}
// Returns a direction 90 degree left to this one
inline direction_2d left() const {return turn(HIGH);}
// Returns a direction 90 degree right to this one
inline direction_2d right() const {return turn(LOW);}
// N, E are positive, S, W are negative
inline bool is_positive() const {return (val_ & 1);}
inline bool is_negative() const {return !is_positive();}
inline int get_sign() const {return ((is_positive()) << 1) -1;}
};
direction_1d::direction_1d(const direction_2d& that) : val_(that.to_int() & 1) {}
orientation_2d::orientation_2d(const direction_2d& that) : val_(that.to_int() >> 1) {}
direction_2d orientation_2d::get_direction(direction_1d dir) const {
return direction_2d(direction_2d_enum((val_ << 1) + dir.to_int()));
}
class orientation_3d {
private:
unsigned int val_;
explicit inline orientation_3d(int o);
public:
inline orientation_3d() : val_((int)HORIZONTAL) {}
inline orientation_3d(const orientation_3d& ori) : val_(ori.val_) {}
inline orientation_3d(orientation_2d ori) : val_(ori.to_int()) {}
inline orientation_3d(const orientation_3d_enum val) : val_(val) {}
explicit inline orientation_3d(const direction_2d& that);
explicit inline orientation_3d(const direction_3d& that);
inline ~orientation_3d() { }
inline orientation_3d& operator=(const orientation_3d& ori) {
val_ = ori.val_; return * this; }
inline bool operator==(orientation_3d that) const { return (val_ == that.val_); }
inline bool operator!=(orientation_3d that) const { return (val_ != that.val_); }
inline unsigned int to_int() const { return (val_); }
inline direction_3d get_direction(direction_1d dir) const;
};
class direction_3d {
private:
int val_;
public:
inline direction_3d() : val_(WEST) {}
inline direction_3d(direction_2d that) : val_(that.to_int()) {}
inline direction_3d(const direction_3d& that) : val_(that.val_) {}
inline direction_3d(const direction_2d_enum val) : val_(val) {}
inline direction_3d(const direction_3d_enum val) : val_(val) {}
inline direction_3d& operator=(direction_3d d) {
val_ = d.val_;
return * this;
}
inline ~direction_3d() { }
inline bool operator==(direction_3d d) const { return (val_ == d.val_); }
inline bool operator!=(direction_3d d) const { return !((*this) == d); }
inline bool operator< (direction_3d d) const { return (val_ < d.val_); }
inline bool operator<=(direction_3d d) const { return (val_ <= d.val_); }
inline bool operator> (direction_3d d) const { return (val_ > d.val_); }
inline bool operator>=(direction_3d d) const { return (val_ >= d.val_); }
// Casting to int
inline unsigned int to_int(void) const { return val_; }
inline direction_3d backward() const {
// flip the LSB, toggles 0 - 1 and 2 - 3 and 4 - 5
return direction_2d(direction_2d_enum(val_ ^ 1));
}
// N, E, U are positive, S, W, D are negative
inline bool is_positive() const {return (val_ & 1);}
inline bool is_negative() const {return !is_positive();}
inline int get_sign() const {return ((is_positive()) << 1) -1;}
};
direction_1d::direction_1d(const direction_3d& that) : val_(that.to_int() & 1) {}
orientation_3d::orientation_3d(const direction_3d& that) : val_(that.to_int() >> 1) {}
orientation_3d::orientation_3d(const direction_2d& that) : val_(that.to_int() >> 1) {}
direction_3d orientation_3d::get_direction(direction_1d dir) const {
return direction_3d(direction_3d_enum((val_ << 1) + dir.to_int()));
}
}
}
#endif

View File

@ -0,0 +1,270 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef GLT_POINT_3D_CONCEPT_HPP
#define GLT_POINT_3D_CONCEPT_HPP
#include "point_concept.hpp"
#include "point_3d_data.hpp"
#include "point_3d_traits.hpp"
namespace boost { namespace polygon{
struct point_3d_concept {};
template <typename T>
struct is_point_3d_concept { typedef gtl_no type; };
template <>
struct is_point_3d_concept<point_3d_concept> { typedef gtl_yes type; };
//template <>
//struct is_point_concept<point_3d_concept> { typedef void type; };
template <typename T>
struct is_mutable_point_3d_concept { typedef gtl_no type; };
template <>
struct is_mutable_point_3d_concept<point_3d_concept> { typedef gtl_yes type; };
template <typename T, typename CT>
struct point_3d_coordinate_type_by_concept { typedef void type; };
template <typename T>
struct point_3d_coordinate_type_by_concept<T, gtl_yes> { typedef typename point_3d_traits<T>::coordinate_type type; };
template <typename T>
struct point_3d_coordinate_type {
typedef typename point_3d_coordinate_type_by_concept<T, typename is_point_3d_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T, typename CT>
struct point_3d_difference_type_by_concept { typedef void type; };
template <typename T>
struct point_3d_difference_type_by_concept<T, gtl_yes> {
typedef typename coordinate_traits<typename point_3d_traits<T>::coordinate_type>::coordinate_difference type; };
template <typename T>
struct point_3d_difference_type {
typedef typename point_3d_difference_type_by_concept<
T, typename is_point_3d_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T, typename CT>
struct point_3d_distance_type_by_concept { typedef void type; };
template <typename T>
struct point_3d_distance_type_by_concept<T, gtl_yes> {
typedef typename coordinate_traits<typename point_3d_traits<T>::coordinate_type>::coordinate_distance type; };
template <typename T>
struct point_3d_distance_type {
typedef typename point_3d_distance_type_by_concept<
T, typename is_point_3d_concept<typename geometry_concept<T>::type>::type>::type type;
};
struct y_p3d_get : gtl_yes {};
template <typename T>
typename enable_if< typename gtl_and<y_p3d_get, typename gtl_if<typename is_point_3d_concept<typename geometry_concept<T>::type>::type>::type>::type,
typename point_3d_coordinate_type<T>::type >::type
get(const T& point, orientation_3d orient) { return point_3d_traits<T>::get(point, orient); }
struct y_p3d_set : gtl_yes {};
template <typename T, typename coordinate_type>
typename enable_if< typename gtl_and<y_p3d_set, typename is_mutable_point_3d_concept<typename geometry_concept<T>::type>::type>::type, void>::type
set(T& point, orientation_3d orient, coordinate_type value) { point_3d_mutable_traits<T>::set(point, orient, value); }
struct y_p3d_set2 : gtl_yes {};
template <typename T, typename coordinate_type>
typename enable_if< typename gtl_and<y_p3d_set2, typename is_mutable_point_3d_concept<typename geometry_concept<T>::type>::type>::type, void>::type
set(T& point, orientation_2d orient, coordinate_type value) { point_3d_mutable_traits<T>::set(point, orient, value); }
struct y_p3d_construct : gtl_yes {};
template <typename T, typename coordinate_type1, typename coordinate_type2, typename coordinate_type3>
typename enable_if< typename gtl_and<y_p3d_construct, typename is_mutable_point_3d_concept<typename geometry_concept<T>::type>::type>::type, T>::type
construct(coordinate_type1 x_value, coordinate_type2 y_value, coordinate_type3 z_value) {
return point_3d_mutable_traits<T>::construct(x_value, y_value, z_value); }
struct y_p3d_assign : gtl_yes {};
template <typename point_3d_type_1, typename point_3d_type_2>
typename enable_if<
typename gtl_and_3<y_p3d_assign, typename is_mutable_point_3d_concept<typename geometry_concept<point_3d_type_1>::type>::type,
typename is_point_3d_concept<typename geometry_concept<point_3d_type_2>::type>::type>::type,
point_3d_type_1>::type &
assign(point_3d_type_1& lvalue, const point_3d_type_2& rvalue) {
set(lvalue, HORIZONTAL, get(rvalue, HORIZONTAL));
set(lvalue, VERTICAL, get(rvalue, VERTICAL));
set(lvalue, PROXIMAL, get(rvalue, PROXIMAL));
return lvalue;
}
struct y_p3d_z : gtl_yes {};
template <typename point_type>
typename enable_if< typename gtl_and<y_p3d_z, typename is_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type,
typename point_3d_traits<point_type>::coordinate_type >::type
z(const point_type& point) { return get(point, PROXIMAL); }
struct y_p3d_x : gtl_yes {};
template <typename point_type, typename coordinate_type>
typename enable_if< typename gtl_and<y_p3d_x, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type, void>::type
x(point_type& point, coordinate_type value) { set(point, HORIZONTAL, value); }
struct y_p3d_y : gtl_yes {};
template <typename point_type, typename coordinate_type>
typename enable_if< typename gtl_and<y_p3d_y, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type, void>::type
y(point_type& point, coordinate_type value) { set(point, VERTICAL, value); }
struct y_p3d_z2 : gtl_yes {};
template <typename point_type, typename coordinate_type>
typename enable_if< typename gtl_and<y_p3d_z2, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type, void>::type
z(point_type& point, coordinate_type value) { set(point, PROXIMAL, value); }
struct y_p3d_equiv : gtl_yes {};
template <typename T, typename T2>
typename enable_if<
typename gtl_and_3<y_p3d_equiv, typename gtl_same_type<point_3d_concept, typename geometry_concept<T>::type>::type,
typename gtl_same_type<point_3d_concept, typename geometry_concept<T2>::type>::type>::type,
bool>::type
equivalence(const T& point1, const T2& point2) {
return x(point1) == x(point2) && y(point1) == y(point2) && z(point1) == z(point2);
}
struct y_p3d_dist : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if< typename gtl_and_3<y_p3d_dist, typename is_point_3d_concept<typename geometry_concept<point_type_1>::type>::type,
typename is_point_3d_concept<typename geometry_concept<point_type_2>::type>::type>::type,
typename point_3d_difference_type<point_type_1>::type>::type
euclidean_distance(const point_type_1& point1, const point_type_2& point2, orientation_3d orient) {
typedef typename coordinate_traits<typename point_3d_traits<point_type_1>::coordinate_type>::coordinate_difference return_type;
return_type return_value =
(return_type)get(point1, orient) - (return_type)get(point2, orient);
return return_value < 0 ? -return_value : return_value;
}
struct y_p3d_man_dist : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if< typename gtl_and_3<y_p3d_man_dist, typename gtl_same_type<point_3d_concept, typename geometry_concept<point_type_1>::type>::type,
typename gtl_same_type<point_3d_concept, typename geometry_concept<point_type_2>::type>::type>::type,
typename point_3d_difference_type<point_type_1>::type>::type
manhattan_distance(const point_type_1& point1, const point_type_2& point2) {
return euclidean_distance(point1, point2, HORIZONTAL) + euclidean_distance(point1, point2, VERTICAL)
+ euclidean_distance(point1, point2, PROXIMAL);
}
struct y_p3d_dist2 : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if< typename gtl_and_3< y_p3d_dist2,
typename gtl_same_type<point_3d_concept, typename geometry_concept<point_type_1>::type>::type,
typename gtl_same_type<point_3d_concept, typename geometry_concept<point_type_2>::type>::type>::type,
typename point_3d_distance_type<point_type_1>::type>::type
euclidean_distance(const point_type_1& point1, const point_type_2& point2) {
typedef typename coordinate_traits<typename point_3d_traits<point_type_1>::coordinate_type>::coordinate_distance return_value;
return_value pdist = (return_value)euclidean_distance(point1, point2, PROXIMAL);
pdist *= pdist;
return sqrt((double)(distance_squared(point1, point2) + pdist));
}
struct y_p3d_convolve : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if< typename gtl_and_3< y_p3d_convolve,
typename is_mutable_point_3d_concept<typename geometry_concept<point_type_1>::type>::type,
typename gtl_same_type<point_3d_concept, typename geometry_concept<point_type_2>::type>::type>::type,
point_type_1>::type &
convolve(point_type_1& lvalue, const point_type_2& rvalue) {
x(lvalue, x(lvalue) + x(rvalue));
y(lvalue, y(lvalue) + y(rvalue));
z(lvalue, z(lvalue) + z(rvalue));
return lvalue;
}
struct y_p3d_deconvolve : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if<
typename gtl_and_3<y_p3d_deconvolve, typename is_mutable_point_3d_concept<typename geometry_concept<point_type_1>::type>::type,
typename gtl_same_type<point_3d_concept, typename geometry_concept<point_type_2>::type>::type>::type,
point_type_1>::type &
deconvolve(point_type_1& lvalue, const point_type_2& rvalue) {
x(lvalue, x(lvalue) - x(rvalue));
y(lvalue, y(lvalue) - y(rvalue));
z(lvalue, z(lvalue) - z(rvalue));
return lvalue;
}
struct y_p3d_scale_up : gtl_yes {};
template <typename point_type>
typename enable_if< typename gtl_and<y_p3d_scale_up, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type,
point_type>::type &
scale_up(point_type& point,
typename coordinate_traits<typename point_3d_traits<point_type>::coordinate_type>::unsigned_area_type factor) {
x(point, x(point) * (typename point_3d_traits<point_type>::coordinate_type)factor);
y(point, y(point) * (typename point_3d_traits<point_type>::coordinate_type)factor);
z(point, z(point) * (typename point_3d_traits<point_type>::coordinate_type)factor);
return point;
}
struct y_p3d_scale_down : gtl_yes {};
template <typename point_type>
typename enable_if< typename gtl_and<y_p3d_scale_down, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type,
point_type>::type &
scale_down(point_type& point,
typename coordinate_traits<typename point_3d_traits<point_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename point_3d_traits<point_type>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::coordinate_distance dt;
x(point, scaling_policy<Unit>::round((dt)(x(point)) / (dt)factor));
y(point, scaling_policy<Unit>::round((dt)(y(point)) / (dt)factor));
z(point, scaling_policy<Unit>::round((dt)(z(point)) / (dt)factor));
return point;
}
struct y_p3d_scale : gtl_yes {};
template <typename point_type, typename scaling_type>
typename enable_if< typename gtl_and<y_p3d_scale, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type,
point_type>::type &
scale(point_type& point,
const scaling_type& scaling) {
typedef typename point_3d_traits<point_type>::coordinate_type Unit;
Unit x_(x(point)), y_(y(point)), z_(z(point));
scaling.scale(x_, y_, z_);
x(point, x_);
y(point, y_);
z(point, z_);
return point;
}
struct y_p3d_transform : gtl_yes {};
template <typename point_type, typename transformation_type>
typename enable_if< typename gtl_and<y_p3d_transform, typename is_mutable_point_3d_concept<typename geometry_concept<point_type>::type>::type>::type,
point_type>::type &
transform(point_type& point, const transformation_type& transformation) {
typedef typename point_3d_traits<point_type>::coordinate_type Unit;
Unit x_(x(point)), y_(y(point)), z_(z(point));
transformation.transform(x_, y_, z_);
x(point, x_);
y(point, y_);
z(point, z_);
return point;
}
template <typename T>
struct geometry_concept<point_3d_data<T> > {
typedef point_3d_concept type;
};
}
}
#endif

View File

@ -0,0 +1,51 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POINT_3D_DATA_HPP
#define BOOST_POLYGON_POINT_3D_DATA_HPP
namespace boost { namespace polygon{
template <typename T>
class point_3d_data {
public:
typedef T coordinate_type;
inline point_3d_data():coords_(){}
inline point_3d_data(coordinate_type x, coordinate_type y):coords_() {
coords_[HORIZONTAL] = x; coords_[VERTICAL] = y; coords_[PROXIMAL] = 0; }
inline point_3d_data(coordinate_type x, coordinate_type y, coordinate_type z)
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{
coords_[HORIZONTAL] = x; coords_[VERTICAL] = y; coords_[PROXIMAL] = z; }
inline point_3d_data(const point_3d_data& that):coords_() { (*this) = that; }
inline point_3d_data& operator=(const point_3d_data& that) {
coords_[0] = that.coords_[0]; coords_[1] = that.coords_[1];
coords_[2] = that.coords_[2]; return *this; }
template <typename T2>
inline point_3d_data& operator=(const T2& rvalue);
inline bool operator==(const point_3d_data& that) const {
return coords_[0] == that.coords_[0] && coords_[1] == that.coords_[1] && coords_[2] == that.coords_[2];
}
inline bool operator!=(const point_3d_data& that) const {
return !((*this) == that);
}
inline coordinate_type get(orientation_2d orient) const {
return coords_[orient.to_int()]; }
inline coordinate_type get(orientation_3d orient) const {
return coords_[orient.to_int()]; }
inline void set(orientation_2d orient, coordinate_type value) {
coords_[orient.to_int()] = value; }
inline void set(orientation_3d orient, coordinate_type value) {
coords_[orient.to_int()] = value; }
private:
coordinate_type coords_[3];
};
}
}
#endif

View File

@ -0,0 +1,35 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POINT_3D_TRAITS_HPP
#define BOOST_POLYGON_POINT_3D_TRAITS_HPP
#include "isotropy.hpp"
namespace boost { namespace polygon{
template <typename T>
struct point_3d_traits {
typedef typename T::coordinate_type coordinate_type;
static inline coordinate_type get(const T& point, orientation_3d orient) {
return point.get(orient); }
};
template <typename T>
struct point_3d_mutable_traits {
static inline void set(T& point, orientation_3d orient, typename point_3d_traits<T>::coordinate_type value) {
point.set(orient, value); }
static inline T construct(typename point_3d_traits<T>::coordinate_type x_value,
typename point_3d_traits<T>::coordinate_type y_value,
typename point_3d_traits<T>::coordinate_type z_value) {
return T(x_value, y_value, z_value); }
};
}
}
#endif

View File

@ -0,0 +1,298 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POINT_CONCEPT_HPP
#define BOOST_POLYGON_POINT_CONCEPT_HPP
#include "isotropy.hpp"
#include "point_data.hpp"
#include "point_traits.hpp"
namespace boost { namespace polygon{
struct point_concept {};
template <typename T>
struct is_point_concept { typedef gtl_no type; };
template <>
struct is_point_concept<point_concept> { typedef gtl_yes type; };
struct point_3d_concept;
template <>
struct is_point_concept<point_3d_concept> { typedef gtl_yes type; };
template <typename T>
struct is_mutable_point_concept { typedef gtl_no type; };
template <>
struct is_mutable_point_concept<point_concept> { typedef gtl_yes type; };
template <typename T, typename CT>
struct point_coordinate_type_by_concept { typedef void type; };
template <typename T>
struct point_coordinate_type_by_concept<T, gtl_yes> { typedef typename point_traits<T>::coordinate_type type; };
template <typename T>
struct point_coordinate_type {
typedef typename point_coordinate_type_by_concept<T, typename is_point_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T, typename CT>
struct point_difference_type_by_concept { typedef void type; };
template <typename T>
struct point_difference_type_by_concept<T, gtl_yes> {
typedef typename coordinate_traits<typename point_traits<T>::coordinate_type>::coordinate_difference type; };
template <typename T>
struct point_difference_type {
typedef typename point_difference_type_by_concept<
T, typename is_point_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T, typename CT>
struct point_distance_type_by_concept { typedef void type; };
template <typename T>
struct point_distance_type_by_concept<T, gtl_yes> {
typedef typename coordinate_traits<typename point_traits<T>::coordinate_type>::coordinate_distance type; };
template <typename T>
struct point_distance_type {
typedef typename point_distance_type_by_concept<
T, typename is_point_concept<typename geometry_concept<T>::type>::type>::type type;
};
template <typename T>
typename point_coordinate_type<T>::type
get(const T& point, orientation_2d orient,
typename enable_if< typename gtl_if<typename is_point_concept<typename geometry_concept<T>::type>::type>::type>::type * = 0
) {
return point_traits<T>::get(point, orient);
}
template <typename T, typename coordinate_type>
void
set(T& point, orientation_2d orient, coordinate_type value,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<T>::type>::type>::type * = 0
) {
point_mutable_traits<T>::set(point, orient, value);
}
template <typename T, typename coordinate_type1, typename coordinate_type2>
T
construct(coordinate_type1 x_value, coordinate_type2 y_value,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<T>::type>::type>::type * = 0
) {
return point_mutable_traits<T>::construct(x_value, y_value);
}
template <typename T1, typename T2>
T1&
assign(T1& lvalue, const T2& rvalue,
typename enable_if< typename gtl_and< typename is_mutable_point_concept<typename geometry_concept<T1>::type>::type,
typename is_point_concept<typename geometry_concept<T2>::type>::type>::type>::type * = 0
) {
set(lvalue, HORIZONTAL, get(rvalue, HORIZONTAL));
set(lvalue, VERTICAL, get(rvalue, VERTICAL));
return lvalue;
}
struct y_p_x : gtl_yes {};
template <typename point_type>
typename enable_if< typename gtl_and<y_p_x, typename is_point_concept<typename geometry_concept<point_type>::type>::type>::type,
typename point_traits<point_type>::coordinate_type >::type
x(const point_type& point) {
return get(point, HORIZONTAL);
}
struct y_p_y : gtl_yes {};
template <typename point_type>
typename enable_if< typename gtl_and<y_p_y, typename is_point_concept<typename geometry_concept<point_type>::type>::type>::type,
typename point_traits<point_type>::coordinate_type >::type
y(const point_type& point) {
return get(point, VERTICAL);
}
struct y_p_sx : gtl_yes {};
template <typename point_type, typename coordinate_type>
typename enable_if<typename gtl_and<y_p_sx, typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type,
void>::type
x(point_type& point, coordinate_type value) {
set(point, HORIZONTAL, value);
}
struct y_p_sy : gtl_yes {};
template <typename point_type, typename coordinate_type>
typename enable_if<typename gtl_and<y_p_sy, typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type,
void>::type
y(point_type& point, coordinate_type value) {
set(point, VERTICAL, value);
}
template <typename T, typename T2>
bool
equivalence(const T& point1, const T2& point2,
typename enable_if< typename gtl_and<typename gtl_same_type<point_concept, typename geometry_concept<T>::type>::type,
typename is_point_concept<typename geometry_concept<T2>::type>::type>::type>::type * = 0
) {
typename point_traits<T>::coordinate_type x1 = x(point1);
typename point_traits<T2>::coordinate_type x2 = get(point2, HORIZONTAL);
typename point_traits<T>::coordinate_type y1 = get(point1, VERTICAL);
typename point_traits<T2>::coordinate_type y2 = y(point2);
return x1 == x2 && y1 == y2;
}
template <typename point_type_1, typename point_type_2>
typename point_difference_type<point_type_1>::type
manhattan_distance(const point_type_1& point1, const point_type_2& point2,
typename enable_if< typename gtl_and<typename gtl_same_type<point_concept, typename geometry_concept<point_type_1>::type>::type,
typename is_point_concept<typename geometry_concept<point_type_2>::type>::type>::type>::type * = 0) {
return euclidean_distance(point1, point2, HORIZONTAL) + euclidean_distance(point1, point2, VERTICAL);
}
struct y_i_ed1 : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if< typename gtl_and_3<y_i_ed1, typename is_point_concept<typename geometry_concept<point_type_1>::type>::type,
typename is_point_concept<typename geometry_concept<point_type_2>::type>::type>::type,
typename point_difference_type<point_type_1>::type>::type
euclidean_distance(const point_type_1& point1, const point_type_2& point2, orientation_2d orient) {
typename coordinate_traits<typename point_traits<point_type_1>::coordinate_type>::coordinate_difference return_value =
get(point1, orient) - get(point2, orient);
return return_value < 0 ? (typename coordinate_traits<typename point_traits<point_type_1>::coordinate_type>::coordinate_difference)-return_value : return_value;
}
struct y_i_ed2 : gtl_yes {};
template <typename point_type_1, typename point_type_2>
typename enable_if< typename gtl_and_3<y_i_ed2, typename gtl_same_type<point_concept, typename geometry_concept<point_type_1>::type>::type,
typename gtl_same_type<point_concept, typename geometry_concept<point_type_2>::type>::type>::type,
typename point_distance_type<point_type_1>::type>::type
euclidean_distance(const point_type_1& point1, const point_type_2& point2) {
typedef typename point_traits<point_type_1>::coordinate_type Unit;
return sqrt((double)(distance_squared(point1, point2)));
}
template <typename point_type_1, typename point_type_2>
typename point_difference_type<point_type_1>::type
distance_squared(const point_type_1& point1, const point_type_2& point2,
typename enable_if< typename gtl_and<typename is_point_concept<typename geometry_concept<point_type_1>::type>::type,
typename is_point_concept<typename geometry_concept<point_type_2>::type>::type>::type>::type * = 0
) {
typedef typename point_traits<point_type_1>::coordinate_type Unit;
typename coordinate_traits<Unit>::coordinate_difference dx = euclidean_distance(point1, point2, HORIZONTAL);
typename coordinate_traits<Unit>::coordinate_difference dy = euclidean_distance(point1, point2, VERTICAL);
dx *= dx;
dy *= dy;
return dx + dy;
}
template <typename point_type_1, typename point_type_2>
point_type_1 &
convolve(point_type_1& lvalue, const point_type_2& rvalue,
typename enable_if< typename gtl_and<typename is_mutable_point_concept<typename geometry_concept<point_type_1>::type>::type,
typename is_point_concept<typename geometry_concept<point_type_2>::type>::type>::type>::type * = 0
) {
x(lvalue, x(lvalue) + x(rvalue));
y(lvalue, y(lvalue) + y(rvalue));
return lvalue;
}
template <typename point_type_1, typename point_type_2>
point_type_1 &
deconvolve(point_type_1& lvalue, const point_type_2& rvalue,
typename enable_if< typename gtl_and<typename is_mutable_point_concept<typename geometry_concept<point_type_1>::type>::type,
typename is_point_concept<typename geometry_concept<point_type_2>::type>::type>::type>::type * = 0
) {
x(lvalue, x(lvalue) - x(rvalue));
y(lvalue, y(lvalue) - y(rvalue));
return lvalue;
}
template <typename point_type, typename coord_type>
point_type &
scale_up(point_type& point, coord_type factor,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type * = 0
) {
typedef typename point_traits<point_type>::coordinate_type Unit;
x(point, x(point) * (Unit)factor);
y(point, y(point) * (Unit)factor);
return point;
}
template <typename point_type, typename coord_type>
point_type &
scale_down(point_type& point, coord_type factor,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type * = 0
) {
typedef typename point_traits<point_type>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::coordinate_distance dt;
x(point, scaling_policy<Unit>::round((dt)((dt)(x(point)) / (dt)factor)));
y(point, scaling_policy<Unit>::round((dt)((dt)(y(point)) / (dt)factor)));
return point;
}
template <typename point_type, typename scaling_type>
point_type &
scale(point_type& point,
const scaling_type& scaling,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type * = 0
) {
typedef typename point_traits<point_type>::coordinate_type Unit;
Unit x_(x(point)), y_(y(point));
scaling.scale(x_, y_);
x(point, x_);
y(point, y_);
return point;
}
template <typename point_type, typename transformation_type>
point_type &
transform(point_type& point, const transformation_type& transformation,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type * = 0
) {
typedef typename point_traits<point_type>::coordinate_type Unit;
Unit x_(x(point)), y_(y(point));
transformation.transform(x_, y_);
x(point, x_);
y(point, y_);
return point;
}
struct y_pt_move : gtl_yes {};
template <typename point_type>
typename enable_if<
typename gtl_and< y_pt_move,
typename is_mutable_point_concept<
typename geometry_concept<point_type>::type>::type>::type,
point_type>::type &
move(point_type& point, orientation_2d orient,
typename point_traits<point_type>::coordinate_type displacement,
typename enable_if<typename is_mutable_point_concept<typename geometry_concept<point_type>::type>::type>::type * = 0
) {
typedef typename point_traits<point_type>::coordinate_type Unit;
Unit v(get(point, orient));
set(point, orient, v + displacement);
return point;
}
template <class T>
template <class T2>
point_data<T>& point_data<T>::operator=(const T2& rvalue) {
assign(*this, rvalue);
return *this;
}
template <typename T>
struct geometry_concept<point_data<T> > {
typedef point_concept type;
};
}
}
#endif

View File

@ -0,0 +1,93 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef GTLPOINT_DATA_HPP
#define GTLPOINT_DATA_HPP
#include "isotropy.hpp"
namespace boost { namespace polygon{
template <typename T>
class point_data {
public:
typedef T coordinate_type;
inline point_data()
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{}
inline point_data(coordinate_type x, coordinate_type y)
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{
coords_[HORIZONTAL] = x; coords_[VERTICAL] = y;
}
inline point_data(const point_data& that)
#ifndef BOOST_POLYGON_MSVC
:coords_()
#endif
{ (*this) = that; }
template <typename other>
point_data(const other& that) : coords_() { (*this) = that; }
inline point_data& operator=(const point_data& that) {
coords_[0] = that.coords_[0]; coords_[1] = that.coords_[1]; return *this;
}
template<typename T1, typename T2>
inline point_data(const T1& x, const T2& y):coords_() {
coords_[HORIZONTAL] = (coordinate_type)x;
coords_[VERTICAL] = (coordinate_type)y;
}
template <typename T2>
inline point_data(const point_data<T2>& rvalue):coords_() {
coords_[HORIZONTAL] = (coordinate_type)(rvalue.x());
coords_[VERTICAL] = (coordinate_type)(rvalue.y());
}
template <typename T2>
inline point_data& operator=(const T2& rvalue);
inline bool operator==(const point_data& that) const {
return coords_[0] == that.coords_[0] && coords_[1] == that.coords_[1];
}
inline bool operator!=(const point_data& that) const {
return !((*this) == that);
}
inline bool operator<(const point_data& that) const {
return coords_[0] < that.coords_[0] ||
(coords_[0] == that.coords_[0] && coords_[1] < that.coords_[1]);
}
inline bool operator<=(const point_data& that) const { return !(that < *this); }
inline bool operator>(const point_data& that) const { return that < *this; }
inline bool operator>=(const point_data& that) const { return !((*this) < that); }
inline coordinate_type get(orientation_2d orient) const {
return coords_[orient.to_int()];
}
inline void set(orientation_2d orient, coordinate_type value) {
coords_[orient.to_int()] = value;
}
inline coordinate_type x() const {
return coords_[HORIZONTAL];
}
inline coordinate_type y() const {
return coords_[VERTICAL];
}
inline point_data& x(coordinate_type value) {
coords_[HORIZONTAL] = value;
return *this;
}
inline point_data& y(coordinate_type value) {
coords_[VERTICAL] = value;
return *this;
}
private:
coordinate_type coords_[2];
};
}
}
#endif

View File

@ -0,0 +1,35 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POINT_TRAITS_HPP
#define BOOST_POLYGON_POINT_TRAITS_HPP
#include "isotropy.hpp"
namespace boost { namespace polygon{
template <typename T>
struct point_traits {
typedef typename T::coordinate_type coordinate_type;
static inline coordinate_type get(const T& point, orientation_2d orient) {
return point.get(orient);
}
};
template <typename T>
struct point_mutable_traits {
static inline void set(T& point, orientation_2d orient, typename point_traits<T>::coordinate_type value) {
point.set(orient, value);
}
static inline T construct(typename point_traits<T>::coordinate_type x_value, typename point_traits<T>::coordinate_type y_value) {
return T(x_value, y_value);
}
};
}
}
#endif

View File

@ -0,0 +1,90 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_HPP
#define BOOST_POLYGON_POLYGON_HPP
#include "isotropy.hpp"
//point
#include "point_data.hpp"
#include "point_traits.hpp"
#include "point_concept.hpp"
//point 3d
#include "point_3d_data.hpp"
#include "point_3d_traits.hpp"
#include "point_3d_concept.hpp"
#include "transform.hpp"
#include "detail/transform_detail.hpp"
//interval
#include "interval_data.hpp"
#include "interval_traits.hpp"
#include "interval_concept.hpp"
//rectangle
#include "rectangle_data.hpp"
#include "rectangle_traits.hpp"
#include "rectangle_concept.hpp"
//algorithms needed by polygon types
#include "detail/iterator_points_to_compact.hpp"
#include "detail/iterator_compact_to_points.hpp"
//polygons
#include "polygon_45_data.hpp"
#include "polygon_data.hpp"
#include "polygon_90_data.hpp"
#include "polygon_90_with_holes_data.hpp"
#include "polygon_45_with_holes_data.hpp"
#include "polygon_with_holes_data.hpp"
#include "polygon_traits.hpp"
//manhattan boolean algorithms
#include "detail/boolean_op.hpp"
#include "detail/polygon_formation.hpp"
#include "detail/rectangle_formation.hpp"
#include "detail/max_cover.hpp"
#include "detail/property_merge.hpp"
#include "detail/polygon_90_touch.hpp"
#include "detail/iterator_geometry_to_set.hpp"
//45 boolean op algorithms
#include "detail/boolean_op_45.hpp"
#include "detail/polygon_45_formation.hpp"
//polygon set data types
#include "polygon_90_set_data.hpp"
//polygon set trait types
#include "polygon_90_set_traits.hpp"
//polygon set concepts
#include "polygon_90_set_concept.hpp"
//boolean operator syntax
#include "detail/polygon_90_set_view.hpp"
//45 boolean op algorithms
#include "detail/polygon_45_touch.hpp"
#include "detail/property_merge_45.hpp"
#include "polygon_45_set_data.hpp"
#include "polygon_45_set_traits.hpp"
#include "polygon_45_set_concept.hpp"
#include "detail/polygon_45_set_view.hpp"
//arbitrary polygon algorithms
#include "detail/polygon_arbitrary_formation.hpp"
#include "polygon_set_data.hpp"
//general scanline
#include "detail/scan_arbitrary.hpp"
#include "polygon_set_traits.hpp"
#include "detail/polygon_set_view.hpp"
#include "polygon_set_concept.hpp"
#endif

View File

@ -0,0 +1,73 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_DATA_HPP
#define BOOST_POLYGON_POLYGON_45_DATA_HPP
#include "isotropy.hpp"
namespace boost { namespace polygon{
struct polygon_45_concept;
template <typename T> class polygon_data;
template <typename T>
class polygon_45_data {
public:
typedef polygon_45_concept geometry_type;
typedef T coordinate_type;
typedef typename std::vector<point_data<coordinate_type> >::const_iterator iterator_type;
typedef typename coordinate_traits<T>::coordinate_distance area_type;
typedef point_data<T> point_type;
inline polygon_45_data() : coords_() {} //do nothing default constructor
template<class iT>
inline polygon_45_data(iT input_begin, iT input_end) : coords_(input_begin, input_end) {}
template<class iT>
inline polygon_45_data& set(iT input_begin, iT input_end) {
coords_.clear(); //just in case there was some old data there
coords_.insert(coords_.end(), input_begin, input_end);
return *this;
}
// copy constructor (since we have dynamic memory)
inline polygon_45_data(const polygon_45_data& that) : coords_(that.coords_) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline polygon_45_data& operator=(const polygon_45_data& that) {
coords_ = that.coords_;
return *this;
}
template <typename T2>
inline polygon_45_data& operator=(const T2& rvalue);
inline bool operator==(const polygon_45_data& that) const {
if(coords_.size() != that.coords_.size()) return false;
for(std::size_t i = 0; i < coords_.size(); ++i) {
if(coords_[i] != that.coords_[i]) return false;
}
return true;
}
inline bool operator!=(const polygon_45_data& that) const { return !((*this) == that); }
// get begin iterator, returns a pointer to a const Unit
inline iterator_type begin() const { return coords_.begin(); }
// get end iterator, returns a pointer to a const Unit
inline iterator_type end() const { return coords_.end(); }
inline std::size_t size() const { return coords_.size(); }
private:
std::vector<point_data<coordinate_type> > coords_;
};
}
}
#endif

View File

@ -0,0 +1,441 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_SET_CONCEPT_HPP
#define BOOST_POLYGON_POLYGON_45_SET_CONCEPT_HPP
#include "polygon_45_set_data.hpp"
#include "polygon_45_set_traits.hpp"
#include "detail/polygon_45_touch.hpp"
namespace boost { namespace polygon{
template <typename T, typename T2>
struct is_either_polygon_45_set_type {
typedef typename gtl_or<typename is_polygon_45_set_type<T>::type, typename is_polygon_45_set_type<T2>::type >::type type;
};
template <typename T>
struct is_polygon_45_or_90_set_type {
typedef typename gtl_or<typename is_polygon_45_set_type<T>::type, typename is_polygon_90_set_type<T>::type >::type type;
};
template <typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_45_or_90_set_type<polygon_set_type>::type>::type,
typename polygon_45_set_traits<polygon_set_type>::iterator_type>::type
begin_45_set_data(const polygon_set_type& polygon_set) {
return polygon_45_set_traits<polygon_set_type>::begin(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_45_or_90_set_type<polygon_set_type>::type>::type,
typename polygon_45_set_traits<polygon_set_type>::iterator_type>::type
end_45_set_data(const polygon_set_type& polygon_set) {
return polygon_45_set_traits<polygon_set_type>::end(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_45_set_type<polygon_set_type>::type>::type,
bool>::type
clean(const polygon_set_type& polygon_set) {
return polygon_45_set_traits<polygon_set_type>::clean(polygon_set);
}
//assign
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if< typename gtl_and< typename gtl_if<typename is_mutable_polygon_45_set_type<polygon_set_type_1>::type>::type,
typename gtl_if<typename is_polygon_45_or_90_set_type<polygon_set_type_2>::type>::type>::type,
polygon_set_type_1>::type &
assign(polygon_set_type_1& lvalue, const polygon_set_type_2& rvalue) {
polygon_45_set_mutable_traits<polygon_set_type_1>::set(lvalue, begin_45_set_data(rvalue), end_45_set_data(rvalue));
return lvalue;
}
//get trapezoids
template <typename output_container_type, typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_45_set_type<polygon_set_type>::type>::type,
void>::type
get_trapezoids(output_container_type& output, const polygon_set_type& polygon_set) {
clean(polygon_set);
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.get_trapezoids(output);
}
//get trapezoids
template <typename output_container_type, typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_45_set_type<polygon_set_type>::type>::type,
void>::type
get_trapezoids(output_container_type& output, const polygon_set_type& polygon_set, orientation_2d slicing_orientation) {
clean(polygon_set);
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.get_trapezoids(output, slicing_orientation);
}
//equivalence
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if< typename gtl_and_3<typename gtl_if<typename is_polygon_45_or_90_set_type<polygon_set_type_1>::type>::type,
typename gtl_if<typename is_polygon_45_or_90_set_type<polygon_set_type_2>::type>::type,
typename gtl_if<typename is_either_polygon_45_set_type<polygon_set_type_1,
polygon_set_type_2>::type>::type>::type,
bool>::type
equivalence(const polygon_set_type_1& lvalue,
const polygon_set_type_2& rvalue) {
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type_1>::coordinate_type> ps1;
assign(ps1, lvalue);
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type_2>::coordinate_type> ps2;
assign(ps2, rvalue);
return ps1 == ps2;
}
//clear
template <typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_mutable_polygon_45_set_type<polygon_set_type>::type>::type,
void>::type
clear(polygon_set_type& polygon_set) {
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type>::coordinate_type> ps;
assign(polygon_set, ps);
}
//empty
template <typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_mutable_polygon_45_set_type<polygon_set_type>::type>::type,
bool>::type
empty(const polygon_set_type& polygon_set) {
if(clean(polygon_set)) return begin_45_set_data(polygon_set) == end_45_set_data(polygon_set);
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.clean();
return ps.empty();
}
//extents
template <typename polygon_set_type, typename rectangle_type>
typename enable_if<
typename gtl_and< typename gtl_if<typename is_mutable_polygon_45_set_type<polygon_set_type>::type>::type,
typename is_mutable_rectangle_concept<typename geometry_concept<rectangle_type>::type>::type>::type,
bool>::type
extents(rectangle_type& extents_rectangle,
const polygon_set_type& polygon_set) {
clean(polygon_set);
polygon_45_set_data<typename polygon_45_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
return ps.extents(extents_rectangle);
}
//area
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::area_type>::type
area(const polygon_set_type& polygon_set) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
typedef polygon_45_with_holes_data<Unit> p_type;
typedef typename coordinate_traits<Unit>::area_type area_type;
std::vector<p_type> polys;
assign(polys, polygon_set);
area_type retval = (area_type)0;
for(std::size_t i = 0; i < polys.size(); ++i) {
retval += area(polys[i]);
}
return retval;
}
//interact
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if <
typename gtl_and< typename gtl_if<typename is_mutable_polygon_45_set_type<polygon_set_type_1>::type>::type,
typename gtl_if<typename is_polygon_45_or_90_set_type<polygon_set_type_2>::type>::type >::type,
polygon_set_type_1>::type&
interact(polygon_set_type_1& polygon_set_1, const polygon_set_type_2& polygon_set_2) {
typedef typename polygon_45_set_traits<polygon_set_type_1>::coordinate_type Unit;
std::vector<polygon_45_data<Unit> > polys;
assign(polys, polygon_set_1);
std::vector<std::set<int> > graph(polys.size()+1, std::set<int>());
connectivity_extraction_45<Unit> ce;
ce.insert(polygon_set_2);
for(std::size_t i = 0; i < polys.size(); ++i){
ce.insert(polys[i]);
}
ce.extract(graph);
clear(polygon_set_1);
polygon_45_set_data<Unit> ps;
for(std::set<int>::iterator itr = graph[0].begin(); itr != graph[0].end(); ++itr){
ps.insert(polys[(*itr)-1]);
}
assign(polygon_set_1, ps);
return polygon_set_1;
}
// //self_intersect
// template <typename polygon_set_type>
// typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type>::type,
// polygon_set_type>::type &
// self_intersect(polygon_set_type& polygon_set) {
// typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
// //TODO
// }
template <typename polygon_set_type, typename coord_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
resize(polygon_set_type& polygon_set, coord_type resizing,
RoundingOption rounding = CLOSEST, CornerOption corner = INTERSECTION) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.resize(resizing, rounding, corner);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
return resize(polygon_set, static_cast<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>(bloating));
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type shrinking) {
return resize(polygon_set, -(typename polygon_45_set_traits<polygon_set_type>::coordinate_type)shrinking);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
grow_and(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
std::vector<polygon_45_data<Unit> > polys;
assign(polys, polygon_set);
clear(polygon_set);
polygon_45_set_data<Unit> ps;
for(std::size_t i = 0; i < polys.size(); ++i) {
polygon_45_set_data<Unit> tmpPs;
tmpPs.insert(polys[i]);
bloat(tmpPs, bloating);
tmpPs.clean(); //apply implicit OR on tmp polygon set
ps.insert(tmpPs);
}
ps.self_intersect();
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale_up(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale_up(factor);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale_down(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale_down(factor);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale(polygon_set_type& polygon_set, double factor) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale(factor);
assign(polygon_set, ps);
return polygon_set;
}
//self_intersect
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
self_intersect(polygon_set_type& polygon_set) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.self_intersect();
assign(polygon_set, ps);
return polygon_set;
}
//self_xor
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
self_xor(polygon_set_type& polygon_set) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.self_xor();
assign(polygon_set, ps);
return polygon_set;
}
//transform
template <typename polygon_set_type, typename transformation_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
transform(polygon_set_type& polygon_set,
const transformation_type& transformation) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_45_set_data<Unit> ps;
assign(ps, polygon_set);
ps.transform(transformation);
assign(polygon_set, ps);
return polygon_set;
}
//keep
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_45_set_type<polygon_set_type>::type,
polygon_set_type>::type &
keep(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::area_type min_area,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::area_type max_area,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_width,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_width,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_height,
typename coordinate_traits<typename polygon_45_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_height) {
typedef typename polygon_45_set_traits<polygon_set_type>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::unsigned_area_type uat;
std::list<polygon_45_data<Unit> > polys;
assign(polys, polygon_set);
typename std::list<polygon_45_data<Unit> >::iterator itr_nxt;
for(typename std::list<polygon_45_data<Unit> >::iterator itr = polys.begin(); itr != polys.end(); itr = itr_nxt){
itr_nxt = itr;
++itr_nxt;
rectangle_data<Unit> bbox;
extents(bbox, *itr);
uat pwidth = delta(bbox, HORIZONTAL);
if(pwidth > min_width && pwidth <= max_width){
uat pheight = delta(bbox, VERTICAL);
if(pheight > min_height && pheight <= max_height){
typename coordinate_traits<Unit>::area_type parea = area(*itr);
if(parea <= max_area && parea >= min_area) {
continue;
}
}
}
polys.erase(itr);
}
assign(polygon_set, polys);
return polygon_set;
}
template <typename T>
struct view_of<polygon_90_set_concept, T> {
typedef typename get_coordinate_type<T, typename geometry_concept<T>::type >::type coordinate_type;
T* tp;
std::vector<polygon_90_with_holes_data<coordinate_type> > polys;
view_of(T& obj) : tp(&obj), polys() {
std::vector<polygon_with_holes_data<coordinate_type> > gpolys;
assign(gpolys, obj);
for(typename std::vector<polygon_with_holes_data<coordinate_type> >::iterator itr = gpolys.begin();
itr != gpolys.end(); ++itr) {
polys.push_back(polygon_90_with_holes_data<coordinate_type>());
assign(polys.back(), view_as<polygon_90_with_holes_concept>(*itr));
}
}
view_of(const T& obj) : tp(), polys() {
std::vector<polygon_with_holes_data<coordinate_type> > gpolys;
assign(gpolys, obj);
for(typename std::vector<polygon_with_holes_data<coordinate_type> >::iterator itr = gpolys.begin();
itr != gpolys.end(); ++itr) {
polys.push_back(polygon_90_with_holes_data<coordinate_type>());
assign(polys.back(), view_as<polygon_90_with_holes_concept>(*itr));
}
}
typedef typename std::vector<polygon_90_with_holes_data<coordinate_type> >::const_iterator iterator_type;
typedef view_of operator_arg_type;
inline iterator_type begin() const {
return polys.begin();
}
inline iterator_type end() const {
return polys.end();
}
inline orientation_2d orient() const { return HORIZONTAL; }
inline bool clean() const { return false; }
inline bool sorted() const { return false; }
inline T& get() { return *tp; }
};
template <typename T>
struct polygon_90_set_traits<view_of<polygon_90_set_concept, T> > {
typedef typename view_of<polygon_90_set_concept, T>::coordinate_type coordinate_type;
typedef typename view_of<polygon_90_set_concept, T>::iterator_type iterator_type;
typedef view_of<polygon_90_set_concept, T> operator_arg_type;
static inline iterator_type begin(const view_of<polygon_90_set_concept, T>& polygon_set) {
return polygon_set.begin();
}
static inline iterator_type end(const view_of<polygon_90_set_concept, T>& polygon_set) {
return polygon_set.end();
}
static inline orientation_2d orient(const view_of<polygon_90_set_concept, T>& polygon_set) {
return polygon_set.orient(); }
static inline bool clean(const view_of<polygon_90_set_concept, T>& polygon_set) {
return polygon_set.clean(); }
static inline bool sorted(const view_of<polygon_90_set_concept, T>& polygon_set) {
return polygon_set.sorted(); }
};
template <typename T>
struct geometry_concept<view_of<polygon_90_set_concept, T> > {
typedef polygon_90_set_concept type;
};
template <typename T>
struct get_coordinate_type<view_of<polygon_90_set_concept, T>, polygon_90_set_concept> {
typedef typename view_of<polygon_90_set_concept, T>::coordinate_type type;
};
template <typename T>
struct get_iterator_type_2<view_of<polygon_90_set_concept, T>, polygon_90_set_concept> {
typedef typename view_of<polygon_90_set_concept, T>::iterator_type type;
static type begin(const view_of<polygon_90_set_concept, T>& t) { return t.begin(); }
static type end(const view_of<polygon_90_set_concept, T>& t) { return t.end(); }
};
}
}
#include "detail/polygon_45_set_view.hpp"
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,146 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_SET_TRAITS_HPP
#define BOOST_POLYGON_POLYGON_45_SET_TRAITS_HPP
namespace boost { namespace polygon{
//default definition of polygon 45 set traits works for any model of polygon 45, polygon 45 with holes or any vector or list thereof
template <typename T>
struct polygon_45_set_traits {
typedef typename get_coordinate_type<T, typename geometry_concept<T>::type >::type coordinate_type;
typedef typename get_iterator_type<T>::type iterator_type;
typedef T operator_arg_type;
static inline iterator_type begin(const T& polygon_set) {
return get_iterator_type<T>::begin(polygon_set);
}
static inline iterator_type end(const T& polygon_set) {
return get_iterator_type<T>::end(polygon_set);
}
static inline bool clean(const T& ) { return false; }
static inline bool sorted(const T& ) { return false; }
};
template <typename T>
struct is_45_polygonal_concept { typedef gtl_no type; };
template <>
struct is_45_polygonal_concept<polygon_45_concept> { typedef gtl_yes type; };
template <>
struct is_45_polygonal_concept<polygon_45_with_holes_concept> { typedef gtl_yes type; };
template <>
struct is_45_polygonal_concept<polygon_45_set_concept> { typedef gtl_yes type; };
template <typename T>
struct is_polygon_45_set_type {
typedef typename is_45_polygonal_concept<typename geometry_concept<T>::type>::type type;
};
template <typename T>
struct is_polygon_45_set_type<std::list<T> > {
typedef typename gtl_or<
typename is_45_polygonal_concept<typename geometry_concept<std::list<T> >::type>::type,
typename is_45_polygonal_concept<typename geometry_concept<typename std::list<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_polygon_45_set_type<std::vector<T> > {
typedef typename gtl_or<
typename is_45_polygonal_concept<typename geometry_concept<std::vector<T> >::type>::type,
typename is_45_polygonal_concept<typename geometry_concept<typename std::vector<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_45_set_type {
typedef typename gtl_same_type<polygon_45_set_concept, typename geometry_concept<T>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_45_set_type<std::list<T> > {
typedef typename gtl_or<
typename gtl_same_type<polygon_45_set_concept, typename geometry_concept<std::list<T> >::type>::type,
typename is_45_polygonal_concept<typename geometry_concept<typename std::list<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_45_set_type<std::vector<T> > {
typedef typename gtl_or<
typename gtl_same_type<polygon_45_set_concept, typename geometry_concept<std::vector<T> >::type>::type,
typename is_45_polygonal_concept<typename geometry_concept<typename std::vector<T>::value_type>::type>::type>::type type;
};
template <typename T>
bool fracture_holes_45_by_concept() { return false; }
template <>
inline bool fracture_holes_45_by_concept<polygon_45_concept>() { return true; }
template <typename T, typename iT>
void get_45_polygons_T(T& t, iT begin, iT end) {
typedef typename polygon_45_set_traits<T>::coordinate_type Unit;
typedef typename geometry_concept<typename T::value_type>::type CType;
typename polygon_45_formation<Unit>::Polygon45Formation pf(fracture_holes_45_by_concept<CType>());
//std::cout << "FORMING POLYGONS\n";
pf.scan(t, begin, end);
}
template <typename T>
struct polygon_45_set_mutable_traits {};
template <typename T>
struct polygon_45_set_mutable_traits<std::list<T> > {
template <typename input_iterator_type>
static inline void set(std::list<T>& polygon_set, input_iterator_type input_begin, input_iterator_type input_end) {
polygon_set.clear();
polygon_45_set_data<typename polygon_45_set_traits<std::list<T> >::coordinate_type> ps;
ps.insert(input_begin, input_end);
ps.sort();
ps.clean();
get_45_polygons_T(polygon_set, ps.begin(), ps.end());
}
};
template <typename T>
struct polygon_45_set_mutable_traits<std::vector<T> > {
template <typename input_iterator_type>
static inline void set(std::vector<T>& polygon_set, input_iterator_type input_begin, input_iterator_type input_end) {
polygon_set.clear();
polygon_45_set_data<typename polygon_45_set_traits<std::list<T> >::coordinate_type> ps;
ps.insert(input_begin, input_end);
ps.sort();
ps.clean();
get_45_polygons_T(polygon_set, ps.begin(), ps.end());
}
};
template <typename T>
struct polygon_45_set_mutable_traits<polygon_45_set_data<T> > {
template <typename input_iterator_type>
static inline void set(polygon_45_set_data<T>& polygon_set,
input_iterator_type input_begin, input_iterator_type input_end) {
polygon_set.set(input_begin, input_end);
}
};
template <typename T>
struct polygon_45_set_traits<polygon_45_set_data<T> > {
typedef typename polygon_45_set_data<T>::coordinate_type coordinate_type;
typedef typename polygon_45_set_data<T>::iterator_type iterator_type;
typedef typename polygon_45_set_data<T>::operator_arg_type operator_arg_type;
static inline iterator_type begin(const polygon_45_set_data<T>& polygon_set) {
return polygon_set.begin();
}
static inline iterator_type end(const polygon_45_set_data<T>& polygon_set) {
return polygon_set.end();
}
static inline bool clean(const polygon_45_set_data<T>& polygon_set) { polygon_set.clean(); return true; }
static inline bool sorted(const polygon_45_set_data<T>& polygon_set) { int untested = 0;polygon_set.sort(); return true; }
};
}
}
#endif

View File

@ -0,0 +1,106 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_WITH_HOLES_DATA_HPP
#define BOOST_POLYGON_POLYGON_45_WITH_HOLES_DATA_HPP
#include "isotropy.hpp"
#include "polygon_45_data.hpp"
namespace boost { namespace polygon{
struct polygon_45_with_holes_concept;
template <typename T>
class polygon_45_with_holes_data {
public:
typedef polygon_45_with_holes_concept geometry_type;
typedef T coordinate_type;
typedef typename polygon_45_data<T>::iterator_type iterator_type;
typedef typename std::list<polygon_45_data<coordinate_type> >::const_iterator iterator_holes_type;
typedef polygon_45_data<coordinate_type> hole_type;
typedef typename coordinate_traits<T>::coordinate_distance area_type;
typedef point_data<T> point_type;
// default constructor of point does not initialize x and y
inline polygon_45_with_holes_data() : self_(), holes_() {} //do nothing default constructor
template<class iT>
inline polygon_45_with_holes_data(iT input_begin, iT input_end) : self_(), holes_() {
set(input_begin, input_end);
}
template<class iT, typename hiT>
inline polygon_45_with_holes_data(iT input_begin, iT input_end, hiT holes_begin, hiT holes_end) : self_(), holes_() {
set(input_begin, input_end);
set_holes(holes_begin, holes_end);
}
template<class iT>
inline polygon_45_with_holes_data& set(iT input_begin, iT input_end) {
self_.set(input_begin, input_end);
return *this;
}
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline polygon_45_with_holes_data& set_holes(iT input_begin, iT input_end) {
holes_.clear(); //just in case there was some old data there
for( ; input_begin != input_end; ++ input_begin) {
holes_.push_back(hole_type());
holes_.back().set((*input_begin).begin(), (*input_begin).end());
}
return *this;
}
// copy constructor (since we have dynamic memory)
inline polygon_45_with_holes_data(const polygon_45_with_holes_data& that) : self_(that.self_),
holes_(that.holes_) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline polygon_45_with_holes_data& operator=(const polygon_45_with_holes_data& that) {
self_ = that.self_;
holes_ = that.holes_;
return *this;
}
template <typename T2>
inline polygon_45_with_holes_data& operator=(const T2& rvalue);
// get begin iterator, returns a pointer to a const coordinate_type
inline const iterator_type begin() const {
return self_.begin();
}
// get end iterator, returns a pointer to a const coordinate_type
inline const iterator_type end() const {
return self_.end();
}
inline std::size_t size() const {
return self_.size();
}
// get begin iterator, returns a pointer to a const polygon
inline const iterator_holes_type begin_holes() const {
return holes_.begin();
}
// get end iterator, returns a pointer to a const polygon
inline const iterator_holes_type end_holes() const {
return holes_.end();
}
inline std::size_t size_holes() const {
return holes_.size();
}
private:
polygon_45_data<coordinate_type> self_;
std::list<hole_type> holes_;
};
}
}
#endif

View File

@ -0,0 +1,80 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_DATA_HPP
#define BOOST_POLYGON_POLYGON_90_DATA_HPP
namespace boost { namespace polygon{
struct polygon_90_concept;
template <typename T>
class polygon_90_data {
public:
typedef polygon_90_concept geometry_type;
typedef T coordinate_type;
typedef typename std::vector<coordinate_type>::const_iterator compact_iterator_type;
typedef iterator_compact_to_points<compact_iterator_type, point_data<coordinate_type> > iterator_type;
typedef typename coordinate_traits<T>::area_type area_type;
inline polygon_90_data() : coords_() {} //do nothing default constructor
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline polygon_90_data& set(iT begin_point, iT end_point) {
return set_compact(iterator_points_to_compact<iT, typename std::iterator_traits<iT>::value_type>(begin_point, end_point),
iterator_points_to_compact<iT, typename std::iterator_traits<iT>::value_type>(end_point, end_point));
}
template<class iT>
inline polygon_90_data& set_compact(iT input_begin, iT input_end) {
coords_.clear(); //just in case there was some old data there
while(input_begin != input_end) {
coords_.insert(coords_.end(), *input_begin);
++input_begin;
}
return *this;
}
// copy constructor (since we have dynamic memory)
inline polygon_90_data(const polygon_90_data& that) : coords_(that.coords_) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline polygon_90_data& operator=(const polygon_90_data& that) {
coords_ = that.coords_;
return *this;
}
template <typename T2>
inline polygon_90_data& operator=(const T2& rvalue);
// assignment operator (since we have dynamic memory do a deep copy)
inline bool operator==(const polygon_90_data& that) const {
return coords_ == that.coords_;
}
// get begin iterator, returns a pointer to a const Unit
inline iterator_type begin() const { return iterator_type(coords_.begin(), coords_.end()); }
// get end iterator, returns a pointer to a const Unit
inline iterator_type end() const { return iterator_type(coords_.end(), coords_.end()); }
// get begin iterator, returns a pointer to a const Unit
inline compact_iterator_type begin_compact() const { return coords_.begin(); }
// get end iterator, returns a pointer to a const Unit
inline compact_iterator_type end_compact() const { return coords_.end(); }
inline std::size_t size() const { return coords_.size(); }
private:
std::vector<coordinate_type> coords_;
};
}
}
#endif

View File

@ -0,0 +1,548 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_SET_CONCEPT_HPP
#define BOOST_POLYGON_POLYGON_90_SET_CONCEPT_HPP
#include "polygon_90_set_data.hpp"
#include "polygon_90_set_traits.hpp"
namespace boost { namespace polygon{
template <typename polygon_set_type>
typename enable_if< typename is_polygon_90_set_type<polygon_set_type>::type,
typename polygon_90_set_traits<polygon_set_type>::iterator_type>::type
begin_90_set_data(const polygon_set_type& polygon_set) {
return polygon_90_set_traits<polygon_set_type>::begin(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename is_polygon_90_set_type<polygon_set_type>::type,
typename polygon_90_set_traits<polygon_set_type>::iterator_type>::type
end_90_set_data(const polygon_set_type& polygon_set) {
return polygon_90_set_traits<polygon_set_type>::end(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename is_polygon_90_set_type<polygon_set_type>::type,
orientation_2d>::type
scanline_orientation(const polygon_set_type& polygon_set) {
return polygon_90_set_traits<polygon_set_type>::orient(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename is_polygon_90_set_type<polygon_set_type>::type,
bool>::type
clean(const polygon_set_type& polygon_set) {
return polygon_90_set_traits<polygon_set_type>::clean(polygon_set);
}
//assign
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if <
typename gtl_and<
typename is_mutable_polygon_90_set_type<polygon_set_type_1>::type,
typename is_polygon_90_set_type<polygon_set_type_2>::type>::type,
polygon_set_type_1>::type &
assign(polygon_set_type_1& lvalue, const polygon_set_type_2& rvalue) {
polygon_90_set_mutable_traits<polygon_set_type_1>::set(lvalue, begin_90_set_data(rvalue), end_90_set_data(rvalue),
scanline_orientation(rvalue));
return lvalue;
}
template <typename T1, typename T2>
struct are_not_both_rectangle_concept { typedef gtl_yes type; };
template <>
struct are_not_both_rectangle_concept<rectangle_concept, rectangle_concept> { typedef gtl_no type; };
//equivalence
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if< typename gtl_and_3<
typename is_polygon_90_set_type<polygon_set_type_1>::type,
typename is_polygon_90_set_type<polygon_set_type_2>::type,
typename are_not_both_rectangle_concept<typename geometry_concept<polygon_set_type_1>::type,
typename geometry_concept<polygon_set_type_2>::type>::type>::type,
bool>::type
equivalence(const polygon_set_type_1& lvalue,
const polygon_set_type_2& rvalue) {
polygon_90_set_data<typename polygon_90_set_traits<polygon_set_type_1>::coordinate_type> ps1;
assign(ps1, lvalue);
polygon_90_set_data<typename polygon_90_set_traits<polygon_set_type_2>::coordinate_type> ps2;
assign(ps2, rvalue);
return ps1 == ps2;
}
//get rectangle tiles (slicing orientation is vertical)
template <typename output_container_type, typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_90_set_type<polygon_set_type>::type>::type,
void>::type
get_rectangles(output_container_type& output, const polygon_set_type& polygon_set) {
clean(polygon_set);
polygon_90_set_data<typename polygon_90_set_traits<polygon_set_type>::coordinate_type> ps(VERTICAL);
assign(ps, polygon_set);
ps.get_rectangles(output);
}
//get rectangle tiles
template <typename output_container_type, typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_polygon_90_set_type<polygon_set_type>::type>::type,
void>::type
get_rectangles(output_container_type& output, const polygon_set_type& polygon_set, orientation_2d slicing_orientation) {
clean(polygon_set);
polygon_90_set_data<typename polygon_90_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.get_rectangles(output, slicing_orientation);
}
//get: min_rectangles max_rectangles
template <typename output_container_type, typename polygon_set_type>
typename enable_if <typename gtl_and<
typename is_polygon_90_set_type<polygon_set_type>::type,
typename gtl_same_type<rectangle_concept,
typename geometry_concept
<typename std::iterator_traits
<typename output_container_type::iterator>::value_type>::type>::type>::type,
void>::type
get_max_rectangles(output_container_type& output, const polygon_set_type& polygon_set) {
std::vector<rectangle_data<typename polygon_90_set_traits<polygon_set_type>::coordinate_type> > rects;
assign(rects, polygon_set);
MaxCover<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::getMaxCover(output, rects, scanline_orientation(polygon_set));
}
//clear
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
void>::type
clear(polygon_set_type& polygon_set) {
polygon_90_set_data<typename polygon_90_set_traits<polygon_set_type>::coordinate_type> ps(scanline_orientation(polygon_set));
assign(polygon_set, ps);
}
//empty
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
bool>::type
empty(const polygon_set_type& polygon_set) {
if(clean(polygon_set)) return begin_90_set_data(polygon_set) == end_90_set_data(polygon_set);
polygon_90_set_data<typename polygon_90_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.clean();
return ps.empty();
}
//extents
template <typename polygon_set_type, typename rectangle_type>
typename enable_if <typename gtl_and< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
typename is_mutable_rectangle_concept<typename geometry_concept<rectangle_type>::type>::type>::type,
bool>::type
extents(rectangle_type& extents_rectangle,
const polygon_set_type& polygon_set) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
return ps.extents(extents_rectangle);
}
//area
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::manhattan_area_type>::type
area(const polygon_set_type& polygon_set) {
typedef rectangle_data<typename polygon_90_set_traits<polygon_set_type>::coordinate_type> rectangle_type;
typedef typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::manhattan_area_type area_type;
std::vector<rectangle_type> rects;
assign(rects, polygon_set);
area_type retval = (area_type)0;
for(std::size_t i = 0; i < rects.size(); ++i) {
retval += (area_type)area(rects[i]);
}
return retval;
}
//interact
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if <typename gtl_and< typename is_mutable_polygon_90_set_type<polygon_set_type_1>::type,
typename is_mutable_polygon_90_set_type<polygon_set_type_2>::type>::type,
polygon_set_type_1>::type&
interact(polygon_set_type_1& polygon_set_1, const polygon_set_type_2& polygon_set_2) {
typedef typename polygon_90_set_traits<polygon_set_type_1>::coordinate_type Unit;
polygon_90_set_data<Unit> ps(scanline_orientation(polygon_set_2));
polygon_90_set_data<Unit> ps2(ps);
ps.insert(polygon_set_1);
ps2.insert(polygon_set_2);
ps.interact(ps2);
assign(polygon_set_1, ps);
return polygon_set_1;
}
//self_intersect
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
self_intersect(polygon_set_type& polygon_set) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.self_intersect();
assign(polygon_set, ps);
return polygon_set;
}
//self_xor
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
self_xor(polygon_set_type& polygon_set) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.self_xor();
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
return bloat(polygon_set, bloating, bloating, bloating, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set, orientation_2d orient,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
if(orient == orientation_2d(HORIZONTAL))
return bloat(polygon_set, bloating, bloating, 0, 0);
return bloat(polygon_set, 0, 0, bloating, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set, orientation_2d orient,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type low_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type high_bloating) {
if(orient == orientation_2d(HORIZONTAL))
return bloat(polygon_set, low_bloating, high_bloating, 0, 0);
return bloat(polygon_set, 0, 0, low_bloating, high_bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set, direction_2d dir,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
if(dir == direction_2d(EAST))
return bloat(polygon_set, 0, bloating, 0, 0);
if(dir == direction_2d(WEST))
return bloat(polygon_set, bloating, 0, 0, 0);
if(dir == direction_2d(SOUTH))
return bloat(polygon_set, 0, 0, bloating, 0);
return bloat(polygon_set, 0, 0, 0, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type west_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type east_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type south_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type north_bloating) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.bloat(west_bloating, east_bloating, south_bloating, north_bloating);
ps.clean();
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type shrinking) {
return shrink(polygon_set, shrinking, shrinking, shrinking, shrinking);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set, orientation_2d orient,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type shrinking) {
if(orient == orientation_2d(HORIZONTAL))
return shrink(polygon_set, shrinking, shrinking, 0, 0);
return shrink(polygon_set, 0, 0, shrinking, shrinking);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set, orientation_2d orient,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type low_shrinking,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type high_shrinking) {
if(orient == orientation_2d(HORIZONTAL))
return shrink(polygon_set, low_shrinking, high_shrinking, 0, 0);
return shrink(polygon_set, 0, 0, low_shrinking, high_shrinking);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set, direction_2d dir,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type shrinking) {
if(dir == direction_2d(EAST))
return shrink(polygon_set, 0, shrinking, 0, 0);
if(dir == direction_2d(WEST))
return shrink(polygon_set, shrinking, 0, 0, 0);
if(dir == direction_2d(SOUTH))
return shrink(polygon_set, 0, 0, shrinking, 0);
return shrink(polygon_set, 0, 0, 0, shrinking);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type west_shrinking,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type east_shrinking,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type south_shrinking,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type north_shrinking) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.shrink(west_shrinking, east_shrinking, south_shrinking, north_shrinking);
ps.clean();
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type, typename coord_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
resize(polygon_set_type& polygon_set, coord_type resizing) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
if(resizing > 0) {
return bloat(polygon_set, resizing);
}
if(resizing < 0) {
return shrink(polygon_set, -resizing);
}
return polygon_set;
}
//positive or negative values allow for any and all directions of sizing
template <typename polygon_set_type, typename coord_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
resize(polygon_set_type& polygon_set, coord_type west, coord_type east, coord_type south, coord_type north) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.resize(west, east, south, north);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
grow_and(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
return grow_and(polygon_set, bloating, bloating, bloating, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
grow_and(polygon_set_type& polygon_set, orientation_2d orient,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
if(orient == orientation_2d(HORIZONTAL))
return grow_and(polygon_set, bloating, bloating, 0, 0);
return grow_and(polygon_set, 0, 0, bloating, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
grow_and(polygon_set_type& polygon_set, orientation_2d orient,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type low_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type high_bloating) {
if(orient == orientation_2d(HORIZONTAL))
return grow_and(polygon_set, low_bloating, high_bloating, 0, 0);
return grow_and(polygon_set, 0, 0, low_bloating, high_bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
grow_and(polygon_set_type& polygon_set, direction_2d dir,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
if(dir == direction_2d(EAST))
return grow_and(polygon_set, 0, bloating, 0, 0);
if(dir == direction_2d(WEST))
return grow_and(polygon_set, bloating, 0, 0, 0);
if(dir == direction_2d(SOUTH))
return grow_and(polygon_set, 0, 0, bloating, 0);
return grow_and(polygon_set, 0, 0, 0, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename gtl_if<typename is_mutable_polygon_90_set_type<polygon_set_type>::type>::type,
polygon_set_type>::type &
grow_and(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type west_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type east_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type south_bloating,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type north_bloating) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
std::vector<polygon_90_data<Unit> > polys;
assign(polys, polygon_set);
clear(polygon_set);
polygon_90_set_data<Unit> ps(scanline_orientation(polygon_set));
for(std::size_t i = 0; i < polys.size(); ++i) {
polygon_90_set_data<Unit> tmpPs(scanline_orientation(polygon_set));
tmpPs.insert(polys[i]);
bloat(tmpPs, west_bloating, east_bloating, south_bloating, north_bloating);
tmpPs.clean(); //apply implicit OR on tmp polygon set
ps.insert(tmpPs);
}
self_intersect(ps);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale_up(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>
::unsigned_area_type factor) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale_up(factor);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale_down(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>
::unsigned_area_type factor) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale_down(factor);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type, typename scaling_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale(polygon_set_type& polygon_set,
const scaling_type& scaling) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale(scaling);
assign(polygon_set, ps);
return polygon_set;
}
//move
template <typename polygon_set_type>
polygon_set_type&
move(polygon_set_type& polygon_set,
orientation_2d orient, typename polygon_90_set_traits<polygon_set_type>::coordinate_type displacement,
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type>::type * = 0) {
if(orient == HORIZONTAL)
return move(polygon_set, displacement, 0);
else
return move(polygon_set, 0, displacement);
}
template <typename polygon_set_type>
polygon_set_type&
move(polygon_set_type& polygon_set, typename polygon_90_set_traits<polygon_set_type>::coordinate_type x_displacement,
typename polygon_90_set_traits<polygon_set_type>::coordinate_type y_displacement,
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type>::type * = 0
) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.move(x_displacement, y_displacement);
ps.clean();
assign(polygon_set, ps);
return polygon_set;
}
//transform
template <typename polygon_set_type, typename transformation_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
transform(polygon_set_type& polygon_set,
const transformation_type& transformation) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
polygon_90_set_data<Unit> ps;
assign(ps, polygon_set);
ps.transform(transformation);
ps.clean();
assign(polygon_set, ps);
return polygon_set;
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
}
//keep
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_90_set_type<polygon_set_type>::type,
polygon_set_type>::type &
keep(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_area,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_area,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_width,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_width,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_height,
typename coordinate_traits<typename polygon_90_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_height) {
typedef typename polygon_90_set_traits<polygon_set_type>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::unsigned_area_type uat;
std::list<polygon_90_data<Unit> > polys;
assign(polys, polygon_set);
clear(polygon_set);
typename std::list<polygon_90_data<Unit> >::iterator itr_nxt;
for(typename std::list<polygon_90_data<Unit> >::iterator itr = polys.begin(); itr != polys.end(); itr = itr_nxt){
itr_nxt = itr;
++itr_nxt;
rectangle_data<Unit> bbox;
extents(bbox, *itr);
uat pwidth = delta(bbox, HORIZONTAL);
if(pwidth > min_width && pwidth <= max_width){
uat pheight = delta(bbox, VERTICAL);
if(pheight > min_height && pheight <= max_height){
uat parea = area(*itr);
if(parea <= max_area && parea >= min_area) {
continue;
}
}
}
polys.erase(itr);
}
assign(polygon_set, polys);
return polygon_set;
}
}
}
#include "detail/polygon_90_set_view.hpp"
#endif

View File

@ -0,0 +1,647 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_SET_DATA_HPP
#define BOOST_POLYGON_POLYGON_90_SET_DATA_HPP
#include "isotropy.hpp"
#include "point_concept.hpp"
#include "point_3d_concept.hpp"
#include "transform.hpp"
#include "interval_concept.hpp"
#include "rectangle_concept.hpp"
#include "detail/iterator_points_to_compact.hpp"
#include "detail/iterator_compact_to_points.hpp"
#include "polygon_traits.hpp"
//manhattan boolean algorithms
#include "detail/boolean_op.hpp"
#include "detail/polygon_formation.hpp"
#include "detail/rectangle_formation.hpp"
#include "detail/max_cover.hpp"
#include "detail/property_merge.hpp"
#include "detail/polygon_90_touch.hpp"
#include "detail/iterator_geometry_to_set.hpp"
namespace boost { namespace polygon{
template <typename ltype, typename rtype, typename op_type>
class polygon_90_set_view;
template <typename T>
class polygon_90_set_data {
public:
typedef T coordinate_type;
typedef std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > > value_type;
typedef typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::const_iterator iterator_type;
typedef polygon_90_set_data operator_arg_type;
// default constructor
inline polygon_90_set_data() : orient_(HORIZONTAL), data_(), dirty_(false), unsorted_(false) {}
// constructor
inline polygon_90_set_data(orientation_2d orient) : orient_(orient), data_(), dirty_(false), unsorted_(false) {}
// constructor from an iterator pair over vertex data
template <typename iT>
inline polygon_90_set_data(orientation_2d orient, iT input_begin, iT input_end) :
orient_(HORIZONTAL), data_(), dirty_(false), unsorted_(false) {
dirty_ = true;
unsorted_ = true;
for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
}
// copy constructor
inline polygon_90_set_data(const polygon_90_set_data& that) :
orient_(that.orient_), data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_) {}
template <typename ltype, typename rtype, typename op_type>
inline polygon_90_set_data(const polygon_90_set_view<ltype, rtype, op_type>& that);
// copy with orientation change constructor
inline polygon_90_set_data(orientation_2d orient, const polygon_90_set_data& that) :
orient_(orient), data_(), dirty_(false), unsorted_(false) {
insert(that, false, that.orient_);
}
// destructor
inline ~polygon_90_set_data() {}
// assignement operator
inline polygon_90_set_data& operator=(const polygon_90_set_data& that) {
if(this == &that) return *this;
orient_ = that.orient_;
data_ = that.data_;
dirty_ = that.dirty_;
unsorted_ = that.unsorted_;
return *this;
}
template <typename ltype, typename rtype, typename op_type>
inline polygon_90_set_data& operator=(const polygon_90_set_view<ltype, rtype, op_type>& that);
template <typename geometry_object>
inline polygon_90_set_data& operator=(const geometry_object& geometry) {
data_.clear();
insert(geometry);
return *this;
}
// insert iterator range
inline void insert(iterator_type input_begin, iterator_type input_end, orientation_2d orient = HORIZONTAL) {
if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
dirty_ = true;
unsorted_ = true;
if(orient == orient_)
data_.insert(data_.end(), input_begin, input_end);
else {
for( ; input_begin != input_end; ++input_begin) {
insert(*input_begin, false, orient);
}
}
}
// insert iterator range
template <typename iT>
inline void insert(iT input_begin, iT input_end, orientation_2d orient = HORIZONTAL) {
if(input_begin == input_end) return;
dirty_ = true;
unsorted_ = true;
for( ; input_begin != input_end; ++input_begin) {
insert(*input_begin, false, orient);
}
}
inline void insert(const polygon_90_set_data& polygon_set) {
insert(polygon_set.begin(), polygon_set.end(), polygon_set.orient());
}
inline void insert(const std::pair<std::pair<point_data<coordinate_type>, point_data<coordinate_type> >, int>& edge, bool is_hole = false,
orientation_2d orient = HORIZONTAL) {
std::pair<coordinate_type, std::pair<coordinate_type, int> > vertex;
vertex.first = edge.first.first.x();
vertex.second.first = edge.first.first.y();
vertex.second.second = edge.second * (is_hole ? -1 : 1);
insert(vertex, false, VERTICAL);
vertex.first = edge.first.second.x();
vertex.second.first = edge.first.second.y();
vertex.second.second *= -1;
insert(vertex, false, VERTICAL);
}
template <typename geometry_type>
inline void insert(const geometry_type& geometry_object, bool is_hole = false, orientation_2d = HORIZONTAL) {
iterator_geometry_to_set<typename geometry_concept<geometry_type>::type, geometry_type>
begin_input(geometry_object, LOW, orient_, is_hole), end_input(geometry_object, HIGH, orient_, is_hole);
insert(begin_input, end_input, orient_);
}
inline void insert(const std::pair<coordinate_type, std::pair<coordinate_type, int> >& vertex, bool is_hole = false,
orientation_2d orient = HORIZONTAL) {
data_.push_back(vertex);
if(orient != orient_) std::swap(data_.back().first, data_.back().second.first);
if(is_hole) data_.back().second.second *= -1;
dirty_ = true;
unsorted_ = true;
}
inline void insert(coordinate_type major_coordinate, const std::pair<interval_data<coordinate_type>, int>& edge) {
std::pair<coordinate_type, std::pair<coordinate_type, int> > vertex;
vertex.first = major_coordinate;
vertex.second.first = edge.first.get(LOW);
vertex.second.second = edge.second;
insert(vertex, false, orient_);
vertex.second.first = edge.first.get(HIGH);
vertex.second.second *= -1;
insert(vertex, false, orient_);
}
template <typename output_container>
inline void get(output_container& output) const {
get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
}
template <typename output_container>
inline void get_polygons(output_container& output) const {
get_dispatch(output, polygon_90_concept());
}
template <typename output_container>
inline void get_rectangles(output_container& output) const {
clean();
form_rectangles(output, data_.begin(), data_.end(), orient_, rectangle_concept());
}
template <typename output_container>
inline void get_rectangles(output_container& output, orientation_2d slicing_orientation) const {
if(slicing_orientation == orient_) {
get_rectangles(output);
} else {
polygon_90_set_data<coordinate_type> ps(*this);
ps.transform(axis_transformation(axis_transformation::SWAP_XY));
output_container result;
ps.get_rectangles(result);
for(typename output_container::iterator itr = result.begin(); itr != result.end(); ++itr) {
::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
}
output.insert(output.end(), result.begin(), result.end());
}
}
// equivalence operator
inline bool operator==(const polygon_90_set_data& p) const {
if(orient_ == p.orient()) {
clean();
p.clean();
return data_ == p.data_;
} else {
return false;
}
}
// inequivalence operator
inline bool operator!=(const polygon_90_set_data& p) const {
return !((*this) == p);
}
// get iterator to begin vertex data
inline iterator_type begin() const {
return data_.begin();
}
// get iterator to end vertex data
inline iterator_type end() const {
return data_.end();
}
const value_type& value() const {
return data_;
}
// clear the contents of the polygon_90_set_data
inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
// find out if Polygon set is empty
inline bool empty() const { clean(); return data_.empty(); }
// get the Polygon set size in vertices
inline std::size_t size() const { clean(); return data_.size(); }
// get the current Polygon set capacity in vertices
inline std::size_t capacity() const { return data_.capacity(); }
// reserve size of polygon set in vertices
inline void reserve(std::size_t size) { return data_.reserve(size); }
// find out if Polygon set is sorted
inline bool sorted() const { return !unsorted_; }
// find out if Polygon set is clean
inline bool dirty() const { return dirty_; }
// get the scanline orientation of the polygon set
inline orientation_2d orient() const { return orient_; }
void clean() const {
sort();
if(dirty_) {
boolean_op::default_arg_workaround<int>::applyBooleanOr(data_);
dirty_ = false;
}
}
void sort() const{
if(unsorted_) {
std::sort(data_.begin(), data_.end());
unsorted_ = false;
}
}
template <typename input_iterator_type>
void set(input_iterator_type input_begin, input_iterator_type input_end, orientation_2d orient) {
data_.clear();
data_.insert(data_.end(), input_begin, input_end);
orient_ = orient;
dirty_ = true;
unsorted_ = true;
}
void set(const value_type& value, orientation_2d orient) {
data_ = value;
orient_ = orient;
dirty_ = true;
unsorted_ = true;
}
//extents
template <typename rectangle_type>
bool
extents(rectangle_type& extents_rectangle) const {
clean();
if(data_.empty()) return false;
if(orient_ == HORIZONTAL)
set_points(extents_rectangle, point_data<coordinate_type>(data_[0].second.first, data_[0].first),
point_data<coordinate_type>(data_[data_.size() - 1].second.first, data_[data_.size() - 1].first));
else
set_points(extents_rectangle, point_data<coordinate_type>(data_[0].first, data_[0].second.first),
point_data<coordinate_type>(data_[data_.size() - 1].first, data_[data_.size() - 1].second.first));
for(std::size_t i = 1; i < data_.size() - 1; ++i) {
if(orient_ == HORIZONTAL)
encompass(extents_rectangle, point_data<coordinate_type>(data_[i].second.first, data_[i].first));
else
encompass(extents_rectangle, point_data<coordinate_type>(data_[i].first, data_[i].second.first));
}
return true;
}
polygon_90_set_data&
bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type west_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type east_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type south_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type north_bloating) {
std::vector<rectangle_data<coordinate_type> > rects;
clean();
rects.reserve(data_.size() / 2);
get(rects);
rectangle_data<coordinate_type> convolutionRectangle(interval_data<coordinate_type>(-((coordinate_type)west_bloating),
(coordinate_type)east_bloating),
interval_data<coordinate_type>(-((coordinate_type)south_bloating),
(coordinate_type)north_bloating));
for(typename std::vector<rectangle_data<coordinate_type> >::iterator itr = rects.begin();
itr != rects.end(); ++itr) {
convolve(*itr, convolutionRectangle);
}
clear();
insert(rects.begin(), rects.end());
return *this;
}
polygon_90_set_data&
shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type west_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type east_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type south_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type north_shrinking) {
rectangle_data<coordinate_type> externalBoundary;
if(!extents(externalBoundary)) return *this;
::boost::polygon::bloat(externalBoundary, 10); //bloat by diferential ammount
//insert a hole that encompasses the data
insert(externalBoundary, true); //note that the set is in a dirty state now
sort(); //does not apply implicit OR operation
std::vector<rectangle_data<coordinate_type> > rects;
rects.reserve(data_.size() / 2);
//begin does not apply implicit or operation, this is a dirty range
form_rectangles(rects, data_.begin(), data_.end(), orient_, rectangle_concept());
clear();
rectangle_data<coordinate_type> convolutionRectangle(interval_data<coordinate_type>(-((coordinate_type)east_shrinking),
(coordinate_type)west_shrinking),
interval_data<coordinate_type>(-((coordinate_type)north_shrinking),
(coordinate_type)south_shrinking));
for(typename std::vector<rectangle_data<coordinate_type> >::iterator itr = rects.begin();
itr != rects.end(); ++itr) {
rectangle_data<coordinate_type>& rect = *itr;
convolve(rect, convolutionRectangle);
//insert rectangle as a hole
insert(rect, true);
}
convolve(externalBoundary, convolutionRectangle);
//insert duplicate of external boundary as solid to cancel out the external hole boundaries
insert(externalBoundary);
clean(); //we have negative values in the set, so we need to apply an OR operation to make it valid input to a boolean
return *this;
}
polygon_90_set_data&
resize(coordinate_type west, coordinate_type east, coordinate_type south, coordinate_type north);
polygon_90_set_data& move(coordinate_type x_delta, coordinate_type y_delta) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
(*itr).first += x_delta;
(*itr).second.first += y_delta;
} else {
(*itr).second.first += x_delta;
(*itr).first += y_delta;
}
}
return *this;
}
// transform set
template <typename transformation_type>
polygon_90_set_data& transform(const transformation_type& transformation) {
direction_2d dir1, dir2;
transformation.get_directions(dir1, dir2);
int sign = dir1.get_sign() * dir2.get_sign();
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
transformation.transform((*itr).first, (*itr).second.first);
} else {
transformation.transform((*itr).second.first, (*itr).first);
}
(*itr).second.second *= sign;
}
if(dir1 != EAST || dir2 != NORTH)
unsorted_ = true; //some mirroring or rotation must have happened
return *this;
}
// scale set
polygon_90_set_data& scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
(*itr).first *= (coordinate_type)factor;
(*itr).second.first *= (coordinate_type)factor;
}
return *this;
}
polygon_90_set_data& scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
typedef typename coordinate_traits<coordinate_type>::coordinate_distance dt;
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
(*itr).first = scaling_policy<coordinate_type>::round((dt)((*itr).first) / (dt)factor);
(*itr).second.first = scaling_policy<coordinate_type>::round((dt)((*itr).second.first) / (dt)factor);
}
unsorted_ = true; //scaling down can make coordinates equal that were not previously equal
return *this;
}
template <typename scaling_type>
polygon_90_set_data& scale(const anisotropic_scale_factor<scaling_type>& scaling) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
scaling.scale((*itr).first, (*itr).second.first);
} else {
scaling.scale((*itr).second.first, (*itr).first);
}
}
unsorted_ = true;
return *this;
}
template <typename scaling_type>
polygon_90_set_data& scale_with(const scaling_type& scaling) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
scaling.scale((*itr).first, (*itr).second.first);
} else {
scaling.scale((*itr).second.first, (*itr).first);
}
}
unsorted_ = true;
return *this;
}
polygon_90_set_data& scale(double factor) {
typedef typename coordinate_traits<coordinate_type>::coordinate_distance dt;
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
(*itr).first = scaling_policy<coordinate_type>::round((dt)((*itr).first) * (dt)factor);
(*itr).second.first = scaling_policy<coordinate_type>::round((dt)((*itr).second.first) * (dt)factor);
}
unsorted_ = true; //scaling make coordinates equal that were not previously equal
return *this;
}
polygon_90_set_data& self_xor() {
sort();
if(dirty_) { //if it is clean it is a no-op
boolean_op::default_arg_workaround<boolean_op::UnaryCount>::applyBooleanOr(data_);
dirty_ = false;
}
return *this;
}
polygon_90_set_data& self_intersect() {
sort();
if(dirty_) { //if it is clean it is a no-op
interval_data<coordinate_type> ivl((std::numeric_limits<coordinate_type>::min)(), (std::numeric_limits<coordinate_type>::max)());
rectangle_data<coordinate_type> rect(ivl, ivl);
insert(rect, true);
clean();
}
return *this;
}
inline polygon_90_set_data& interact(const polygon_90_set_data& that) {
typedef coordinate_type Unit;
if(that.dirty_) that.clean();
typename touch_90_operation<Unit>::TouchSetData tsd;
touch_90_operation<Unit>::populateTouchSetData(tsd, that.data_, 0);
std::vector<polygon_90_data<Unit> > polys;
get(polys);
std::vector<std::set<int> > graph(polys.size()+1, std::set<int>());
for(std::size_t i = 0; i < polys.size(); ++i){
polygon_90_set_data<Unit> psTmp(that.orient_);
psTmp.insert(polys[i]);
psTmp.clean();
touch_90_operation<Unit>::populateTouchSetData(tsd, psTmp.data_, i+1);
}
touch_90_operation<Unit>::performTouch(graph, tsd);
clear();
for(std::set<int>::iterator itr = graph[0].begin(); itr != graph[0].end(); ++itr){
insert(polys[(*itr)-1]);
}
dirty_ = false;
return *this;
}
template <class T2, typename iterator_type_1, typename iterator_type_2>
void applyBooleanBinaryOp(iterator_type_1 itr1, iterator_type_1 itr1_end,
iterator_type_2 itr2, iterator_type_2 itr2_end,
T2 defaultCount) {
data_.clear();
boolean_op::applyBooleanBinaryOp(data_, itr1, itr1_end, itr2, itr2_end, defaultCount);
}
private:
orientation_2d orient_;
mutable value_type data_;
mutable bool dirty_;
mutable bool unsorted_;
private:
//functions
template <typename output_container>
void get_dispatch(output_container& output, rectangle_concept ) const {
clean();
form_rectangles(output, data_.begin(), data_.end(), orient_, rectangle_concept());
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_90_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_90_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_45_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_45_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container, typename concept_type>
void get_fracture(output_container& container, bool fracture_holes, concept_type tag) const {
clean();
::boost::polygon::get_polygons(container, data_.begin(), data_.end(), orient_, fracture_holes, tag);
}
};
template <typename coordinate_type>
polygon_90_set_data<coordinate_type>&
polygon_90_set_data<coordinate_type>::resize(coordinate_type west,
coordinate_type east,
coordinate_type south,
coordinate_type north) {
move(-west, -south);
coordinate_type e_total = west + east;
coordinate_type n_total = south + north;
if((e_total < 0) ^ (n_total < 0)) {
//different signs
if(e_total < 0) {
shrink(0, -e_total, 0, 0);
if(n_total != 0)
return bloat(0, 0, 0, n_total);
else
return (*this);
} else {
shrink(0, 0, 0, -n_total); //shrink first
if(e_total != 0)
return bloat(0, e_total, 0, 0);
else
return (*this);
}
} else {
if(e_total < 0) {
return shrink(0, -e_total, 0, -n_total);
}
return bloat(0, e_total, 0, n_total);
}
}
template <typename coordinate_type, typename property_type>
class property_merge_90 {
private:
std::vector<std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > > pmd_;
public:
inline property_merge_90() : pmd_() {}
inline property_merge_90(const property_merge_90& that) : pmd_(that.pmd_) {}
inline property_merge_90& operator=(const property_merge_90& that) { pmd_ = that.pmd_; return *this; }
inline void insert(const polygon_90_set_data<coordinate_type>& ps, const property_type& property) {
merge_scanline<coordinate_type, property_type, polygon_90_set_data<coordinate_type> >::
populate_property_merge_data(pmd_, ps.begin(), ps.end(), property, ps.orient());
}
template <class GeoObjT>
inline void insert(const GeoObjT& geoObj, const property_type& property) {
polygon_90_set_data<coordinate_type> ps;
ps.insert(geoObj);
insert(ps, property);
}
//merge properties of input geometries and store the resulting geometries of regions
//with unique sets of merged properties to polygons sets in a map keyed by sets of properties
// T = std::map<std::set<property_type>, polygon_90_set_data<coordiante_type> > or
// T = std::map<std::vector<property_type>, polygon_90_set_data<coordiante_type> >
template <typename ResultType>
inline void merge(ResultType& result) {
merge_scanline<coordinate_type, property_type, polygon_90_set_data<coordinate_type>, typename ResultType::key_type> ms;
ms.perform_merge(result, pmd_);
}
};
//ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
//polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
template <typename coordinate_type>
class connectivity_extraction_90 {
private:
typedef typename touch_90_operation<coordinate_type>::TouchSetData tsd;
tsd tsd_;
unsigned int nodeCount_;
public:
inline connectivity_extraction_90() : tsd_(), nodeCount_(0) {}
inline connectivity_extraction_90(const connectivity_extraction_90& that) : tsd_(that.tsd_),
nodeCount_(that.nodeCount_) {}
inline connectivity_extraction_90& operator=(const connectivity_extraction_90& that) {
tsd_ = that.tsd_;
nodeCount_ = that.nodeCount_; {}
return *this;
}
//insert a polygon set graph node, the value returned is the id of the graph node
inline unsigned int insert(const polygon_90_set_data<coordinate_type>& ps) {
ps.clean();
touch_90_operation<coordinate_type>::populateTouchSetData(tsd_, ps.begin(), ps.end(), nodeCount_);
return nodeCount_++;
}
template <class GeoObjT>
inline unsigned int insert(const GeoObjT& geoObj) {
polygon_90_set_data<coordinate_type> ps;
ps.insert(geoObj);
return insert(ps);
}
//extract connectivity and store the edges in the graph
//graph must be indexable by graph node id and the indexed value must be a std::set of
//graph node id
template <class GraphT>
inline void extract(GraphT& graph) {
touch_90_operation<coordinate_type>::performTouch(graph, tsd_);
}
};
}
}
#endif

View File

@ -0,0 +1,362 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_SET_TRAITS_HPP
#define BOOST_POLYGON_POLYGON_90_SET_TRAITS_HPP
namespace boost { namespace polygon{
struct polygon_90_set_concept {};
template <typename T, typename T2>
struct traits_by_concept {};
template <typename T>
struct traits_by_concept<T, coordinate_concept> { typedef coordinate_traits<T> type; };
template <typename T>
struct traits_by_concept<T, interval_concept> { typedef interval_traits<T> type; };
template <typename T>
struct traits_by_concept<T, point_concept> { typedef point_traits<T> type; };
template <typename T>
struct traits_by_concept<T, point_3d_concept> { typedef point_3d_traits<T> type; };
template <typename T>
struct traits_by_concept<T, rectangle_concept> { typedef rectangle_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_90_concept> { typedef polygon_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_90_with_holes_concept> { typedef polygon_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_45_concept> { typedef polygon_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_45_with_holes_concept> { typedef polygon_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_concept> { typedef polygon_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_with_holes_concept> { typedef polygon_traits<T> type; };
struct polygon_45_set_concept;
struct polygon_set_concept;
template <typename T>
struct polygon_90_set_traits;
template <typename T>
struct polygon_45_set_traits;
template <typename T>
struct polygon_set_traits;
template <typename T>
struct traits_by_concept<T, polygon_90_set_concept> { typedef polygon_90_set_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_45_set_concept> { typedef polygon_45_set_traits<T> type; };
template <typename T>
struct traits_by_concept<T, polygon_set_concept> { typedef polygon_set_traits<T> type; };
template <typename T, typename T2>
struct get_coordinate_type {
typedef typename traits_by_concept<T, T2>::type traits_type;
typedef typename traits_type::coordinate_type type;
};
//want to prevent recursive template definition syntax errors, so duplicate get_coordinate_type
template <typename T, typename T2>
struct get_coordinate_type_2 {
typedef typename traits_by_concept<T, T2>::type traits_type;
typedef typename traits_type::coordinate_type type;
};
template <typename T>
struct get_coordinate_type<T, undefined_concept> {
typedef typename get_coordinate_type_2<typename std::iterator_traits
<typename T::iterator>::value_type,
typename geometry_concept<typename std::iterator_traits
<typename T::iterator>::value_type>::type>::type type; };
template <typename T, typename T2>
struct get_iterator_type_2 {
typedef const T* type;
static type begin(const T& t) { return &t; }
static type end(const T& t) { const T* tp = &t; ++tp; return tp; }
};
template <typename T>
struct get_iterator_type {
typedef get_iterator_type_2<T, typename geometry_concept<T>::type> indirect_type;
typedef typename indirect_type::type type;
static type begin(const T& t) { return indirect_type::begin(t); }
static type end(const T& t) { return indirect_type::end(t); }
};
template <typename T>
struct get_iterator_type_2<T, undefined_concept> {
typedef typename T::const_iterator type;
static type begin(const T& t) { return t.begin(); }
static type end(const T& t) { return t.end(); }
};
// //helpers for allowing polygon 45 and containers of polygon 45 to behave interchangably in polygon_45_set_traits
// template <typename T, typename T2>
// struct get_coordinate_type_45 {};
// template <typename T, typename T2>
// struct get_coordinate_type_2_45 {};
// template <typename T>
// struct get_coordinate_type_45<T, void> {
// typedef typename get_coordinate_type_2_45< typename T::value_type, typename geometry_concept<typename T::value_type>::type >::type type; };
// template <typename T>
// struct get_coordinate_type_45<T, polygon_45_concept> { typedef typename polygon_traits<T>::coordinate_type type; };
// template <typename T>
// struct get_coordinate_type_45<T, polygon_45_with_holes_concept> { typedef typename polygon_traits<T>::coordinate_type type; };
// template <typename T>
// struct get_coordinate_type_2_45<T, polygon_45_concept> { typedef typename polygon_traits<T>::coordinate_type type; };
// template <typename T>
// struct get_coordinate_type_2_45<T, polygon_45_with_holes_concept> { typedef typename polygon_traits<T>::coordinate_type type; };
// template <typename T, typename T2>
// struct get_iterator_type_45 {};
// template <typename T>
// struct get_iterator_type_45<T, void> {
// typedef typename T::const_iterator type;
// static type begin(const T& t) { return t.begin(); }
// static type end(const T& t) { return t.end(); }
// };
// template <typename T>
// struct get_iterator_type_45<T, polygon_45_concept> {
// typedef const T* type;
// static type begin(const T& t) { return &t; }
// static type end(const T& t) { const T* tp = &t; ++tp; return tp; }
// };
// template <typename T>
// struct get_iterator_type_45<T, polygon_45_with_holes_concept> {
// typedef const T* type;
// static type begin(const T& t) { return &t; }
// static type end(const T& t) { const T* tp = &t; ++tp; return tp; }
// };
// template <typename T>
// struct get_iterator_type_45<T, polygon_90_set_concept> {
// typedef const T* type;
// static type begin(const T& t) { return &t; }
// static type end(const T& t) { const T* tp = &t; ++tp; return tp; }
// };
template <typename T>
struct polygon_90_set_traits {
typedef typename get_coordinate_type<T, typename geometry_concept<T>::type >::type coordinate_type;
typedef get_iterator_type<T> indirection_type;
typedef typename get_iterator_type<T>::type iterator_type;
typedef T operator_arg_type;
static inline iterator_type begin(const T& polygon_set) {
return indirection_type::begin(polygon_set);
}
static inline iterator_type end(const T& polygon_set) {
return indirection_type::end(polygon_set);
}
static inline orientation_2d orient(const T&) { return HORIZONTAL; }
static inline bool clean(const T&) { return false; }
static inline bool sorted(const T&) { return false; }
};
template <typename T>
struct is_manhattan_polygonal_concept { typedef gtl_no type; };
template <>
struct is_manhattan_polygonal_concept<rectangle_concept> { typedef gtl_yes type; };
template <>
struct is_manhattan_polygonal_concept<polygon_90_concept> { typedef gtl_yes type; };
template <>
struct is_manhattan_polygonal_concept<polygon_90_with_holes_concept> { typedef gtl_yes type; };
template <>
struct is_manhattan_polygonal_concept<polygon_90_set_concept> { typedef gtl_yes type; };
template <typename T>
struct is_polygon_90_set_type {
typedef typename is_manhattan_polygonal_concept<typename geometry_concept<T>::type>::type type;
};
template <typename T>
struct is_polygon_90_set_type<std::list<T> > {
typedef typename gtl_or<
typename is_manhattan_polygonal_concept<typename geometry_concept<std::list<T> >::type>::type,
typename is_manhattan_polygonal_concept<typename geometry_concept<typename std::list<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_polygon_90_set_type<std::vector<T> > {
typedef typename gtl_or<
typename is_manhattan_polygonal_concept<typename geometry_concept<std::vector<T> >::type>::type,
typename is_manhattan_polygonal_concept<typename geometry_concept<typename std::vector<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_90_set_type {
typedef typename gtl_same_type<polygon_90_set_concept, typename geometry_concept<T>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_90_set_type<std::list<T> > {
typedef typename gtl_or<
typename gtl_same_type<polygon_90_set_concept, typename geometry_concept<std::list<T> >::type>::type,
typename is_manhattan_polygonal_concept<typename geometry_concept<typename std::list<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_90_set_type<std::vector<T> > {
typedef typename gtl_or<
typename gtl_same_type<polygon_90_set_concept, typename geometry_concept<std::vector<T> >::type>::type,
typename is_manhattan_polygonal_concept<typename geometry_concept<typename std::vector<T>::value_type>::type>::type>::type type;
};
// //specialization for rectangle, polygon_90 and polygon_90_with_holes types
// template <typename T>
// struct polygon_90_set_traits
// typedef typename geometry_concept<T>::type concept_type;
// typedef typename get_coordinate_type<T, concept_type>::type coordinate_type;
// typedef iterator_geometry_to_set<concept_type, T> iterator_type;
// typedef T operator_arg_type;
// static inline iterator_type begin(const T& polygon_set) {
// return iterator_geometry_to_set<concept_type, T>(polygon_set, LOW, HORIZONTAL);
// }
// static inline iterator_type end(const T& polygon_set) {
// return iterator_geometry_to_set<concept_type, T>(polygon_set, HIGH, HORIZONTAL);
// }
// static inline orientation_2d orient(const T& polygon_set) { return HORIZONTAL; }
// static inline bool clean(const T& polygon_set) { return false; }
// static inline bool sorted(const T& polygon_set) { return false; }
// };
// //specialization for containers of recangle, polygon_90, polygon_90_with_holes
// template <typename T>
// struct polygon_90_set_traits<T, typename is_manhattan_polygonal_concept<typename std::iterator_traits<typename T::iterator>::value_type>::type> {
// typedef typename std::iterator_traits<typename T::iterator>::value_type geometry_type;
// typedef typename geometry_concept<geometry_type>::type concept_type;
// typedef typename get_coordinate_type<geometry_type, concept_type>::type coordinate_type;
// typedef iterator_geometry_range_to_set<concept_type, typename T::const_iterator> iterator_type;
// typedef T operator_arg_type;
// static inline iterator_type begin(const T& polygon_set) {
// return iterator_type(polygon_set.begin(), HORIZONTAL);
// }
// static inline iterator_type end(const T& polygon_set) {
// return iterator_type(polygon_set.end(), HORIZONTAL);
// }
// static inline orientation_2d orient(const T& polygon_set) { return HORIZONTAL; }
// static inline bool clean(const T& polygon_set) { return false; }
// static inline bool sorted(const T& polygon_set) { return false; }
// };
//get dispatch functions
template <typename output_container_type, typename pst>
void get_90_dispatch(output_container_type& output, const pst& ps,
orientation_2d orient, rectangle_concept ) {
form_rectangles(output, ps.begin(), ps.end(), orient, rectangle_concept());
}
template <typename output_container_type, typename pst>
void get_90_dispatch(output_container_type& output, const pst& ps,
orientation_2d orient, polygon_90_concept tag) {
get_polygons(output, ps.begin(), ps.end(), orient, true, tag);
}
template <typename output_container_type, typename pst>
void get_90_dispatch(output_container_type& output, const pst& ps,
orientation_2d orient, polygon_90_with_holes_concept tag) {
get_polygons(output, ps.begin(), ps.end(), orient, false, tag);
}
//by default works with containers of rectangle, polygon or polygon with holes
//must be specialized to work with anything else
template <typename T>
struct polygon_90_set_mutable_traits {};
template <typename T>
struct polygon_90_set_mutable_traits<std::list<T> > {
typedef typename geometry_concept<T>::type concept_type;
template <typename input_iterator_type>
static inline void set(std::list<T>& polygon_set, input_iterator_type input_begin, input_iterator_type input_end, orientation_2d orient) {
polygon_set.clear();
polygon_90_set_data<typename polygon_90_set_traits<std::list<T> >::coordinate_type> ps(orient);
ps.insert(input_begin, input_end, orient);
ps.clean();
get_90_dispatch(polygon_set, ps, orient, concept_type());
}
};
template <typename T>
struct polygon_90_set_mutable_traits<std::vector<T> > {
typedef typename geometry_concept<T>::type concept_type;
template <typename input_iterator_type>
static inline void set(std::vector<T>& polygon_set, input_iterator_type input_begin, input_iterator_type input_end, orientation_2d orient) {
polygon_set.clear();
polygon_90_set_data<typename polygon_90_set_traits<std::list<T> >::coordinate_type> ps(orient);
ps.insert(input_begin, input_end, orient);
ps.clean();
get_90_dispatch(polygon_set, ps, orient, concept_type());
}
};
template <typename T>
struct polygon_90_set_mutable_traits<polygon_90_set_data<T> > {
template <typename input_iterator_type>
static inline void set(polygon_90_set_data<T>& polygon_set,
input_iterator_type input_begin, input_iterator_type input_end,
orientation_2d orient) {
polygon_set.clear();
polygon_set.insert(input_begin, input_end, orient);
}
};
template <typename T>
struct polygon_90_set_traits<polygon_90_set_data<T> > {
typedef typename polygon_90_set_data<T>::coordinate_type coordinate_type;
typedef typename polygon_90_set_data<T>::iterator_type iterator_type;
typedef typename polygon_90_set_data<T>::operator_arg_type operator_arg_type;
static inline iterator_type begin(const polygon_90_set_data<T>& polygon_set) {
return polygon_set.begin();
}
static inline iterator_type end(const polygon_90_set_data<T>& polygon_set) {
return polygon_set.end();
}
static inline orientation_2d orient(const polygon_90_set_data<T>& polygon_set) { return polygon_set.orient(); }
static inline bool clean(const polygon_90_set_data<T>& polygon_set) { polygon_set.clean(); return true; }
static inline bool sorted(const polygon_90_set_data<T>& polygon_set) { polygon_set.sort(); return true; }
};
template <typename T>
struct is_polygon_90_set_concept { };
template <>
struct is_polygon_90_set_concept<polygon_90_set_concept> { typedef gtl_yes type; };
template <>
struct is_polygon_90_set_concept<rectangle_concept> { typedef gtl_yes type; };
template <>
struct is_polygon_90_set_concept<polygon_90_concept> { typedef gtl_yes type; };
template <>
struct is_polygon_90_set_concept<polygon_90_with_holes_concept> { typedef gtl_yes type; };
template <typename T>
struct is_mutable_polygon_90_set_concept { typedef gtl_no type; };
template <>
struct is_mutable_polygon_90_set_concept<polygon_90_set_concept> { typedef gtl_yes type; };
template <typename T>
struct geometry_concept<polygon_90_set_data<T> > { typedef polygon_90_set_concept type; };
//template <typename T>
//typename enable_if<typename is_polygon_90_set_type<T>::type, void>::type
//print_is_polygon_90_set_concept(const T& t) { std::cout << "is polygon 90 set concept\n"; }
//template <typename T>
//typename enable_if<typename is_mutable_polygon_90_set_type<T>::type, void>::type
//print_is_mutable_polygon_90_set_concept(const T& t) { std::cout << "is mutable polygon 90 set concept\n"; }
}
}
#endif

View File

@ -0,0 +1,116 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_WITH_HOLES_DATA_HPP
#define BOOST_POLYGON_POLYGON_90_WITH_HOLES_DATA_HPP
namespace boost { namespace polygon{
#include "isotropy.hpp"
#include "polygon_90_data.hpp"
struct polygon_90_with_holes_concept;
template <typename T>
class polygon_90_with_holes_data {
public:
typedef polygon_90_with_holes_concept geometry_type;
typedef T coordinate_type;
typedef typename polygon_90_data<T>::iterator_type iterator_type;
typedef typename polygon_90_data<T>::compact_iterator_type compact_iterator_type;
typedef typename std::list<polygon_90_data<coordinate_type> >::const_iterator iterator_holes_type;
typedef polygon_90_data<coordinate_type> hole_type;
typedef typename coordinate_traits<T>::area_type area_type;
typedef point_data<T> point_type;
// default constructor of point does not initialize x and y
inline polygon_90_with_holes_data() : self_(), holes_() {} //do nothing default constructor
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline polygon_90_with_holes_data& set(iT input_begin, iT input_end) {
self_.set(input_begin, input_end);
return *this;
}
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline polygon_90_with_holes_data& set_compact(iT input_begin, iT input_end) {
self_.set_compact(input_begin, input_end);
return *this;
}
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline polygon_90_with_holes_data& set_holes(iT input_begin, iT input_end) {
holes_.clear(); //just in case there was some old data there
for( ; input_begin != input_end; ++ input_begin) {
holes_.push_back(hole_type());
holes_.back().set_compact((*input_begin).begin_compact(), (*input_begin).end_compact());
}
return *this;
}
// copy constructor (since we have dynamic memory)
inline polygon_90_with_holes_data(const polygon_90_with_holes_data& that) : self_(that.self_),
holes_(that.holes_) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline polygon_90_with_holes_data& operator=(const polygon_90_with_holes_data& that) {
self_ = that.self_;
holes_ = that.holes_;
return *this;
}
template <typename T2>
inline polygon_90_with_holes_data& operator=(const T2& rvalue);
// get begin iterator, returns a pointer to a const coordinate_type
inline const iterator_type begin() const {
return self_.begin();
}
// get end iterator, returns a pointer to a const coordinate_type
inline const iterator_type end() const {
return self_.end();
}
// get begin iterator, returns a pointer to a const coordinate_type
inline const compact_iterator_type begin_compact() const {
return self_.begin_compact();
}
// get end iterator, returns a pointer to a const coordinate_type
inline const compact_iterator_type end_compact() const {
return self_.end_compact();
}
inline std::size_t size() const {
return self_.size();
}
// get begin iterator, returns a pointer to a const polygon
inline const iterator_holes_type begin_holes() const {
return holes_.begin();
}
// get end iterator, returns a pointer to a const polygon
inline const iterator_holes_type end_holes() const {
return holes_.end();
}
inline std::size_t size_holes() const {
return holes_.size();
}
private:
polygon_90_data<coordinate_type> self_;
std::list<hole_type> holes_;
};
}
}
#endif

View File

@ -0,0 +1,70 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_DATA_HPP
#define BOOST_POLYGON_POLYGON_DATA_HPP
namespace boost { namespace polygon{
struct polygon_concept;
template <typename T>
class polygon_data {
public:
typedef polygon_concept geometry_type;
typedef T coordinate_type;
typedef typename std::vector<point_data<coordinate_type> >::const_iterator iterator_type;
typedef typename coordinate_traits<T>::coordinate_distance area_type;
typedef point_data<T> point_type;
inline polygon_data() : coords_() {} //do nothing default constructor
template<class iT>
inline polygon_data(iT input_begin, iT input_end) : coords_(input_begin, input_end) {}
template<class iT>
inline polygon_data& set(iT input_begin, iT input_end) {
coords_.clear(); //just in case there was some old data there
coords_.insert(coords_.end(), input_begin, input_end);
return *this;
}
// copy constructor (since we have dynamic memory)
inline polygon_data(const polygon_data& that) : coords_(that.coords_) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline polygon_data& operator=(const polygon_data& that) {
coords_ = that.coords_;
return *this;
}
template <typename T2>
inline polygon_data& operator=(const T2& rvalue);
inline bool operator==(const polygon_data& that) const {
if(coords_.size() != that.coords_.size()) return false;
for(std::size_t i = 0; i < coords_.size(); ++i) {
if(coords_[i] != that.coords_[i]) return false;
}
return true;
}
inline bool operator!=(const polygon_data& that) const { return !((*this) == that); }
// get begin iterator, returns a pointer to a const Unit
inline iterator_type begin() const { return coords_.begin(); }
// get end iterator, returns a pointer to a const Unit
inline iterator_type end() const { return coords_.end(); }
inline std::size_t size() const { return coords_.size(); }
private:
std::vector<point_data<coordinate_type> > coords_;
};
}
}
#endif

View File

@ -0,0 +1,557 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_SET_CONCEPT_HPP
#define BOOST_POLYGON_POLYGON_SET_CONCEPT_HPP
#include "polygon_set_data.hpp"
namespace boost { namespace polygon{
template <typename T, typename T2>
struct is_either_polygon_set_type {
typedef typename gtl_or<typename is_polygon_set_type<T>::type, typename is_polygon_set_type<T2>::type >::type type;
};
template <typename T>
struct is_any_polygon_set_type {
typedef typename gtl_or<typename is_polygon_45_or_90_set_type<T>::type, typename is_polygon_set_type<T>::type >::type type;
};
template <typename polygon_set_type>
typename enable_if< typename is_any_polygon_set_type<polygon_set_type>::type,
typename polygon_set_traits<polygon_set_type>::iterator_type>::type
begin_polygon_set_data(const polygon_set_type& polygon_set) {
return polygon_set_traits<polygon_set_type>::begin(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename is_any_polygon_set_type<polygon_set_type>::type,
typename polygon_set_traits<polygon_set_type>::iterator_type>::type
end_polygon_set_data(const polygon_set_type& polygon_set) {
return polygon_set_traits<polygon_set_type>::end(polygon_set);
}
template <typename polygon_set_type>
typename enable_if< typename is_polygon_set_type<polygon_set_type>::type,
bool>::type
clean(const polygon_set_type& polygon_set) {
return polygon_set_traits<polygon_set_type>::clean(polygon_set);
}
//assign
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if< typename gtl_and<
typename is_mutable_polygon_set_type<polygon_set_type_1>::type,
typename is_any_polygon_set_type<polygon_set_type_2>::type>::type,
polygon_set_type_1>::type &
assign(polygon_set_type_1& lvalue, const polygon_set_type_2& rvalue) {
if(clean(rvalue))
polygon_set_mutable_traits<polygon_set_type_1>::set(lvalue, begin_polygon_set_data(rvalue), end_polygon_set_data(rvalue));
else {
polygon_set_data<typename polygon_set_traits<polygon_set_type_2>::coordinate_type> ps;
ps.insert(begin_polygon_set_data(rvalue), end_polygon_set_data(rvalue));
ps.clean();
polygon_set_mutable_traits<polygon_set_type_1>::set(lvalue, ps.begin(), ps.end());
}
return lvalue;
}
//get trapezoids
template <typename output_container_type, typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
void>::type
get_trapezoids(output_container_type& output, const polygon_set_type& polygon_set) {
polygon_set_data<typename polygon_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.get_trapezoids(output);
}
//get trapezoids
template <typename output_container_type, typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
void>::type
get_trapezoids(output_container_type& output, const polygon_set_type& polygon_set,
orientation_2d orient) {
polygon_set_data<typename polygon_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.get_trapezoids(output, orient);
}
//equivalence
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if< typename gtl_and_3 <
typename is_any_polygon_set_type<polygon_set_type_1>::type,
typename is_any_polygon_set_type<polygon_set_type_2>::type,
typename is_either_polygon_set_type<polygon_set_type_1, polygon_set_type_2>::type>::type,
bool>::type
equivalence(const polygon_set_type_1& lvalue,
const polygon_set_type_2& rvalue) {
polygon_set_data<typename polygon_set_traits<polygon_set_type_1>::coordinate_type> ps1;
assign(ps1, lvalue);
polygon_set_data<typename polygon_set_traits<polygon_set_type_2>::coordinate_type> ps2;
assign(ps2, rvalue);
return ps1 == ps2;
}
//clear
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
void>::type
clear(polygon_set_type& polygon_set) {
polygon_set_data<typename polygon_set_traits<polygon_set_type>::coordinate_type> ps;
assign(polygon_set, ps);
}
//empty
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
bool>::type
empty(const polygon_set_type& polygon_set) {
if(clean(polygon_set)) return begin_polygon_set_data(polygon_set) == end_polygon_set_data(polygon_set);
polygon_set_data<typename polygon_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
ps.clean();
return ps.empty();
}
//extents
template <typename polygon_set_type, typename rectangle_type>
typename enable_if< typename gtl_and<
typename is_mutable_polygon_set_type<polygon_set_type>::type,
typename is_mutable_rectangle_concept<typename geometry_concept<rectangle_type>::type>::type>::type,
bool>::type
extents(rectangle_type& extents_rectangle,
const polygon_set_type& polygon_set) {
clean(polygon_set);
polygon_set_data<typename polygon_set_traits<polygon_set_type>::coordinate_type> ps;
assign(ps, polygon_set);
return ps.extents(extents_rectangle);
}
//area
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::area_type>::type
area(const polygon_set_type& polygon_set) {
typedef typename polygon_set_traits<polygon_set_type>::coordinate_type Unit;
typedef polygon_with_holes_data<Unit> p_type;
typedef typename coordinate_traits<Unit>::area_type area_type;
std::vector<p_type> polys;
assign(polys, polygon_set);
area_type retval = (area_type)0;
for(std::size_t i = 0; i < polys.size(); ++i) {
retval += area(polys[i]);
}
return retval;
}
// TODO: Dafna add ngon parameter passing
template <typename polygon_set_type, typename coord_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
resize(polygon_set_type& polygon_set, coord_type resizing, bool corner_fill_arcs = false, int ngon=0) {
typedef typename polygon_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_set_data<Unit> ps;
assign(ps, polygon_set);
ps.resize(resizing, corner_fill_arcs,ngon);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
bloat(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type bloating) {
return resize(polygon_set, bloating);
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
shrink(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type shrinking) {
return resize(polygon_set, -(typename polygon_set_traits<polygon_set_type>::coordinate_type)shrinking);
}
//interact
template <typename polygon_set_type_1, typename polygon_set_type_2>
typename enable_if< typename gtl_and_3 <
typename is_any_polygon_set_type<polygon_set_type_1>::type,
typename is_any_polygon_set_type<polygon_set_type_2>::type,
typename is_either_polygon_set_type<polygon_set_type_1, polygon_set_type_2>::type>::type,
polygon_set_type_1>::type&
interact(polygon_set_type_1& polygon_set_1, const polygon_set_type_2& polygon_set_2) {
polygon_set_data<typename polygon_set_traits<polygon_set_type_1>::coordinate_type> ps1;
assign(ps1, polygon_set_1);
polygon_set_data<typename polygon_set_traits<polygon_set_type_2>::coordinate_type> ps2;
assign(ps2, polygon_set_2);
ps1.interact(ps2);
assign(polygon_set_1, ps1);
return polygon_set_1;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale_up(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename polygon_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale_up(factor);
assign(polygon_set, ps);
return polygon_set;
}
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
scale_down(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type factor) {
typedef typename polygon_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_set_data<Unit> ps;
assign(ps, polygon_set);
ps.scale_down(factor);
assign(polygon_set, ps);
return polygon_set;
}
//transform
template <typename polygon_set_type, typename transformation_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
transform(polygon_set_type& polygon_set,
const transformation_type& transformation) {
typedef typename polygon_set_traits<polygon_set_type>::coordinate_type Unit;
clean(polygon_set);
polygon_set_data<Unit> ps;
assign(ps, polygon_set);
ps.transform(transformation);
assign(polygon_set, ps);
return polygon_set;
}
//keep
template <typename polygon_set_type>
typename enable_if< typename is_mutable_polygon_set_type<polygon_set_type>::type,
polygon_set_type>::type &
keep(polygon_set_type& polygon_set,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::area_type min_area,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::area_type max_area,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_width,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_width,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type min_height,
typename coordinate_traits<typename polygon_set_traits<polygon_set_type>::coordinate_type>::unsigned_area_type max_height) {
typedef typename polygon_set_traits<polygon_set_type>::coordinate_type Unit;
typedef typename coordinate_traits<Unit>::unsigned_area_type uat;
std::list<polygon_with_holes_data<Unit> > polys;
assign(polys, polygon_set);
typename std::list<polygon_with_holes_data<Unit> >::iterator itr_nxt;
for(typename std::list<polygon_with_holes_data<Unit> >::iterator itr = polys.begin(); itr != polys.end(); itr = itr_nxt){
itr_nxt = itr;
++itr_nxt;
rectangle_data<Unit> bbox;
extents(bbox, *itr);
uat pwidth = delta(bbox, HORIZONTAL);
if(pwidth > min_width && pwidth <= max_width){
uat pheight = delta(bbox, VERTICAL);
if(pheight > min_height && pheight <= max_height){
typename coordinate_traits<Unit>::area_type parea = area(*itr);
if(parea <= max_area && parea >= min_area) {
continue;
}
}
}
polys.erase(itr);
}
assign(polygon_set, polys);
return polygon_set;
}
namespace operators {
struct yes_ps_ob : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4 < yes_ps_ob, typename is_any_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type,
typename is_either_polygon_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_set_view<geometry_type_1, geometry_type_2, 0> >::type
operator|(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_set_view<geometry_type_1, geometry_type_2, 0>
(lvalue, rvalue);
}
struct yes_ps_op : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4 < yes_ps_op,
typename gtl_if<typename is_any_polygon_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename is_any_polygon_set_type<geometry_type_2>::type>::type,
typename gtl_if<typename is_either_polygon_set_type<geometry_type_1, geometry_type_2>::type>::type>
::type, polygon_set_view<geometry_type_1, geometry_type_2, 0> >::type
operator+(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_set_view<geometry_type_1, geometry_type_2, 0>
(lvalue, rvalue);
}
struct yes_ps_os : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4 < yes_ps_os,
typename is_any_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type,
typename is_either_polygon_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_set_view<geometry_type_1, geometry_type_2, 1> >::type
operator*(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_set_view<geometry_type_1, geometry_type_2, 1>
(lvalue, rvalue);
}
struct yes_ps_oa : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4 < yes_ps_oa,
typename is_any_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type,
typename is_either_polygon_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_set_view<geometry_type_1, geometry_type_2, 1> >::type
operator&(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_set_view<geometry_type_1, geometry_type_2, 1>
(lvalue, rvalue);
}
struct yes_ps_ox : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4 < yes_ps_ox,
typename is_any_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type,
typename is_either_polygon_set_type<geometry_type_1, geometry_type_2>::type>::type,
polygon_set_view<geometry_type_1, geometry_type_2, 2> >::type
operator^(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_set_view<geometry_type_1, geometry_type_2, 2>
(lvalue, rvalue);
}
struct yes_ps_om : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4 < yes_ps_om,
typename gtl_if<typename is_any_polygon_set_type<geometry_type_1>::type>::type,
typename gtl_if<typename is_any_polygon_set_type<geometry_type_2>::type>::type,
typename gtl_if<typename is_either_polygon_set_type<geometry_type_1, geometry_type_2>::type>::type>
::type, polygon_set_view<geometry_type_1, geometry_type_2, 3> >::type
operator-(const geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return polygon_set_view<geometry_type_1, geometry_type_2, 3>
(lvalue, rvalue);
}
struct yes_ps_ope : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_4< yes_ps_ope, gtl_yes, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator+=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, 0>(lvalue, rvalue);
}
struct yes_ps_obe : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< yes_ps_obe, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator|=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, 0>(lvalue, rvalue);
}
struct yes_ps_ose : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< yes_ps_ose, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator*=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, 1>(lvalue, rvalue);
}
struct yes_ps_oae : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if<
typename gtl_and_3< yes_ps_oae, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator&=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, 1>(lvalue, rvalue);
}
struct yes_ps_oxe : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if< typename gtl_and_3< yes_ps_oxe, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator^=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, 2>(lvalue, rvalue);
}
struct yes_ps_ome : gtl_yes {};
template <typename geometry_type_1, typename geometry_type_2>
typename enable_if<
typename gtl_and_3< yes_ps_ome, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename is_any_polygon_set_type<geometry_type_2>::type>::type,
geometry_type_1>::type &
operator-=(geometry_type_1& lvalue, const geometry_type_2& rvalue) {
return self_assignment_boolean_op<geometry_type_1, geometry_type_2, 3>(lvalue, rvalue);
}
// TODO: Dafna, test these four resizing operators
struct y_ps_rpe : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3< y_ps_rpe, typename is_mutable_polygon_set_type<geometry_type_1>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>::type,
geometry_type_1>::type &
operator+=(geometry_type_1& lvalue, coordinate_type_1 rvalue) {
return resize(lvalue, rvalue);
}
struct y_ps_rme : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps_rme, typename gtl_if<typename is_mutable_polygon_set_type<geometry_type_1>::type>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>::type,
geometry_type_1>::type &
operator-=(geometry_type_1& lvalue, coordinate_type_1 rvalue) {
return resize(lvalue, -rvalue);
}
struct y_ps_rp : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps_rp, typename gtl_if<typename is_mutable_polygon_set_type<geometry_type_1>::type>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>
::type, geometry_type_1>::type
operator+(const geometry_type_1& lvalue, coordinate_type_1 rvalue) {
geometry_type_1 retval(lvalue);
retval += rvalue;
return retval;
}
struct y_ps_rm : gtl_yes {};
template <typename geometry_type_1, typename coordinate_type_1>
typename enable_if< typename gtl_and_3<y_ps_rm, typename gtl_if<typename is_mutable_polygon_set_type<geometry_type_1>::type>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type,
coordinate_concept>::type>
::type, geometry_type_1>::type
operator-(const geometry_type_1& lvalue, coordinate_type_1 rvalue) {
geometry_type_1 retval(lvalue);
retval -= rvalue;
return retval;
}
} //end operators namespace
template <typename T>
struct view_of<polygon_45_set_concept, T> {
typedef typename get_coordinate_type<T, typename geometry_concept<T>::type >::type coordinate_type;
T* tp;
std::vector<polygon_45_with_holes_data<coordinate_type> > polys;
view_of(const T& obj) : tp(), polys() {
std::vector<polygon_with_holes_data<coordinate_type> > gpolys;
assign(gpolys, obj);
for(typename std::vector<polygon_with_holes_data<coordinate_type> >::iterator itr = gpolys.begin();
itr != gpolys.end(); ++itr) {
polys.push_back(polygon_45_with_holes_data<coordinate_type>());
assign(polys.back(), view_as<polygon_45_with_holes_concept>(*itr));
}
}
view_of(T& obj) : tp(&obj), polys() {
std::vector<polygon_with_holes_data<coordinate_type> > gpolys;
assign(gpolys, obj);
for(typename std::vector<polygon_with_holes_data<coordinate_type> >::iterator itr = gpolys.begin();
itr != gpolys.end(); ++itr) {
polys.push_back(polygon_45_with_holes_data<coordinate_type>());
assign(polys.back(), view_as<polygon_45_with_holes_concept>(*itr));
}
}
typedef typename std::vector<polygon_45_with_holes_data<coordinate_type> >::const_iterator iterator_type;
typedef view_of operator_arg_type;
inline iterator_type begin() const {
return polys.begin();
}
inline iterator_type end() const {
return polys.end();
}
inline orientation_2d orient() const { return HORIZONTAL; }
inline bool clean() const { return false; }
inline bool sorted() const { return false; }
inline T& get() { return *tp; }
};
template <typename T>
struct polygon_45_set_traits<view_of<polygon_45_set_concept, T> > {
typedef typename view_of<polygon_45_set_concept, T>::coordinate_type coordinate_type;
typedef typename view_of<polygon_45_set_concept, T>::iterator_type iterator_type;
typedef view_of<polygon_45_set_concept, T> operator_arg_type;
static inline iterator_type begin(const view_of<polygon_45_set_concept, T>& polygon_set) {
return polygon_set.begin();
}
static inline iterator_type end(const view_of<polygon_45_set_concept, T>& polygon_set) {
return polygon_set.end();
}
static inline orientation_2d orient(const view_of<polygon_45_set_concept, T>& polygon_set) {
return polygon_set.orient(); }
static inline bool clean(const view_of<polygon_45_set_concept, T>& polygon_set) {
return polygon_set.clean(); }
static inline bool sorted(const view_of<polygon_45_set_concept, T>& polygon_set) {
return polygon_set.sorted(); }
};
template <typename T>
struct geometry_concept<view_of<polygon_45_set_concept, T> > {
typedef polygon_45_set_concept type;
};
template <typename T>
struct get_coordinate_type<view_of<polygon_45_set_concept, T>, polygon_45_set_concept> {
typedef typename view_of<polygon_45_set_concept, T>::coordinate_type type;
};
template <typename T>
struct get_iterator_type_2<view_of<polygon_45_set_concept, T>, polygon_45_set_concept> {
typedef typename view_of<polygon_45_set_concept, T>::iterator_type type;
static type begin(const view_of<polygon_45_set_concept, T>& t) { return t.begin(); }
static type end(const view_of<polygon_45_set_concept, T>& t) { return t.end(); }
};
}
}
#endif

View File

@ -0,0 +1,860 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_SET_DATA_HPP
#define BOOST_POLYGON_POLYGON_SET_DATA_HPP
#include "polygon_45_set_data.hpp"
#include "polygon_45_set_concept.hpp"
#include "polygon_traits.hpp"
#include "detail/polygon_arbitrary_formation.hpp"
#include <iostream>
namespace boost { namespace polygon {
// utility function to round coordinate types down
// rounds down for both negative and positive numbers
// intended really for integer type T (does not make sense for float)
template <typename T>
static inline T round_down(double val) {
T rounded_val = (T)(val);
if(val < (double)rounded_val)
--rounded_val;
return rounded_val;
}
template <typename T>
static inline point_data<T> round_down(point_data<double> v) {
return point_data<T>(round_down<T>(v.x()),round_down<T>(v.y()));
}
//foward declare view
template <typename ltype, typename rtype, int op_type> class polygon_set_view;
template <typename T>
class polygon_set_data {
public:
typedef T coordinate_type;
typedef point_data<T> point_type;
typedef std::pair<point_type, point_type> edge_type;
typedef std::pair<edge_type, int> element_type;
typedef std::vector<element_type> value_type;
typedef typename value_type::const_iterator iterator_type;
typedef polygon_set_data operator_arg_type;
// default constructor
inline polygon_set_data() : data_(), dirty_(false), unsorted_(false), is_45_(true) {}
// constructor from an iterator pair over edge data
template <typename iT>
inline polygon_set_data(iT input_begin, iT input_end) : data_(), dirty_(false), unsorted_(false), is_45_(true) {
for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
}
// copy constructor
inline polygon_set_data(const polygon_set_data& that) :
data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {}
// copy constructor
template <typename ltype, typename rtype, int op_type>
inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that);
// destructor
inline ~polygon_set_data() {}
// assignement operator
inline polygon_set_data& operator=(const polygon_set_data& that) {
if(this == &that) return *this;
data_ = that.data_;
dirty_ = that.dirty_;
unsorted_ = that.unsorted_;
is_45_ = that.is_45_;
return *this;
}
template <typename ltype, typename rtype, int op_type>
inline polygon_set_data& operator=(const polygon_set_view<ltype, rtype, op_type>& geometry) {
(*this) = geometry.value();
dirty_ = false;
unsorted_ = false;
return *this;
}
template <typename geometry_object>
inline polygon_set_data& operator=(const geometry_object& geometry) {
data_.clear();
insert(geometry);
return *this;
}
// insert iterator range
inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) {
if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
dirty_ = true;
unsorted_ = true;
while(input_begin != input_end) {
insert(*input_begin, is_hole);
++input_begin;
}
}
// insert iterator range
template <typename iT>
inline void insert(iT input_begin, iT input_end, bool is_hole = false) {
if(input_begin == input_end) return;
for(; input_begin != input_end; ++input_begin) {
insert(*input_begin, is_hole);
}
}
template <typename geometry_type>
inline void insert(const geometry_type& geometry_object, bool is_hole = false) {
insert(geometry_object, is_hole, typename geometry_concept<geometry_type>::type());
}
template <typename polygon_type>
inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_concept ) {
bool first_iteration = true;
point_type first_point;
point_type previous_point;
point_type current_point;
direction_1d winding_dir = winding(polygon_object);
int multiplier = winding_dir == COUNTERCLOCKWISE ? 1 : -1;
if(is_hole) multiplier *= -1;
for(typename polygon_traits<polygon_type>::iterator_type itr = begin_points(polygon_object);
itr != end_points(polygon_object); ++itr) {
assign(current_point, *itr);
if(first_iteration) {
first_iteration = false;
first_point = previous_point = current_point;
} else {
if(previous_point != current_point) {
element_type elem(edge_type(previous_point, current_point),
( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
insert_clean(elem);
}
}
previous_point = current_point;
}
current_point = first_point;
if(!first_iteration) {
if(previous_point != current_point) {
element_type elem(edge_type(previous_point, current_point),
( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
insert_clean(elem);
}
dirty_ = true;
unsorted_ = true;
}
}
inline void insert(const polygon_set_data& ps, bool is_hole = false) {
insert(ps.data_.begin(), ps.data_.end(), is_hole);
}
template <typename polygon_45_set_type>
inline void insert(const polygon_45_set_type& ps, bool is_hole, polygon_45_set_concept) {
std::vector<polygon_45_with_holes_data<typename polygon_45_set_traits<polygon_45_set_type>::coordinate_type> > polys;
assign(polys, ps);
insert(polys.begin(), polys.end(), is_hole);
}
template <typename polygon_90_set_type>
inline void insert(const polygon_90_set_type& ps, bool is_hole, polygon_90_set_concept) {
std::vector<polygon_90_with_holes_data<typename polygon_90_set_traits<polygon_90_set_type>::coordinate_type> > polys;
assign(polys, ps);
insert(polys.begin(), polys.end(), is_hole);
}
template <typename polygon_type>
inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_45_concept ) {
insert(polygon_object, is_hole, polygon_concept()); }
template <typename polygon_type>
inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_90_concept ) {
insert(polygon_object, is_hole, polygon_concept()); }
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_concept());
for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
begin_holes(polygon_with_holes_object);
itr != end_holes(polygon_with_holes_object); ++itr) {
insert(*itr, !is_hole, polygon_concept());
}
}
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_45_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_90_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
template <typename rectangle_type>
inline void insert(const rectangle_type& rectangle_object, bool is_hole, rectangle_concept ) {
polygon_90_data<coordinate_type> poly;
assign(poly, rectangle_object);
insert(poly, is_hole, polygon_concept());
}
inline void insert_clean(const element_type& edge, bool is_hole = false) {
if( ! scanline_base<coordinate_type>::is_45_degree(edge.first) &&
! scanline_base<coordinate_type>::is_horizontal(edge.first) &&
! scanline_base<coordinate_type>::is_vertical(edge.first) ) is_45_ = false;
data_.push_back(edge);
if(data_.back().first.second < data_.back().first.first) {
std::swap(data_.back().first.second, data_.back().first.first);
data_.back().second *= -1;
}
if(is_hole)
data_.back().second *= -1;
}
inline void insert(const element_type& edge, bool is_hole = false) {
insert_clean(edge, is_hole);
dirty_ = true;
unsorted_ = true;
}
template <class iT>
inline void insert_vertex_sequence(iT begin_vertex, iT end_vertex, direction_1d winding, bool is_hole) {
polygon_data<coordinate_type> poly;
poly.set(begin_vertex, end_vertex);
insert(poly, is_hole);
}
template <typename output_container>
inline void get(output_container& output) const {
get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
}
// append to the container cT with polygons of three or four verticies
// slicing orientation is vertical
template <class cT>
void get_trapezoids(cT& container) const {
clean();
trapezoid_arbitrary_formation<coordinate_type> pf;
typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
std::vector<vertex_half_edge> data;
for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
}
std::sort(data.begin(), data.end());
pf.scan(container, data.begin(), data.end());
//std::cout << "DONE FORMING POLYGONS\n";
}
// append to the container cT with polygons of three or four verticies
template <class cT>
void get_trapezoids(cT& container, orientation_2d slicing_orientation) const {
if(slicing_orientation == VERTICAL) {
get_trapezoids(container);
} else {
polygon_set_data<T> ps(*this);
ps.transform(axis_transformation(axis_transformation::SWAP_XY));
cT result;
ps.get_trapezoids(result);
for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) {
::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
}
container.insert(container.end(), result.begin(), result.end());
}
}
// equivalence operator
inline bool operator==(const polygon_set_data& p) const {
clean();
p.clean();
return data_ == p.data_;
}
// inequivalence operator
inline bool operator!=(const polygon_set_data& p) const {
return !((*this) == p);
}
// get iterator to begin vertex data
inline iterator_type begin() const {
return data_.begin();
}
// get iterator to end vertex data
inline iterator_type end() const {
return data_.end();
}
const value_type& value() const {
return data_;
}
// clear the contents of the polygon_set_data
inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
// find out if Polygon set is empty
inline bool empty() const { return data_.empty(); }
// get the Polygon set size in vertices
inline std::size_t size() const { clean(); return data_.size(); }
// get the current Polygon set capacity in vertices
inline std::size_t capacity() const { return data_.capacity(); }
// reserve size of polygon set in vertices
inline void reserve(std::size_t size) { return data_.reserve(size); }
// find out if Polygon set is sorted
inline bool sorted() const { return !unsorted_; }
// find out if Polygon set is clean
inline bool dirty() const { return dirty_; }
void clean() const;
void sort() const{
if(unsorted_) {
std::sort(data_.begin(), data_.end());
unsorted_ = false;
}
}
template <typename input_iterator_type>
void set(input_iterator_type input_begin, input_iterator_type input_end) {
clear();
insert(input_begin, input_end);
dirty_ = true;
unsorted_ = true;
}
void set(const value_type& value) {
data_ = value;
dirty_ = true;
unsorted_ = true;
}
template <typename rectangle_type>
bool extents(rectangle_type& rect) {
clean();
if(empty()) return false;
bool first_iteration = true;
for(iterator_type itr = begin();
itr != end(); ++itr) {
rectangle_type edge_box;
set_points(edge_box, (*itr).first.first, (*itr).first.second);
if(first_iteration)
rect = edge_box;
else
encompass(rect, edge_box);
first_iteration = false;
}
return true;
}
inline polygon_set_data&
resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0) {
if(resizing == 0) return *this;
std::list<polygon_with_holes_data<coordinate_type> > pl;
get(pl);
clear();
for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = pl.begin(); itr != pl.end(); ++itr) {
insert_with_resize(*itr, resizing, corner_fill_arc, num_circle_segments);
}
clean();
return *this;
}
template <typename transform_type>
inline polygon_set_data&
transform(const transform_type& tr) {
std::vector<polygon_with_holes_data<T> > polys;
get(polys);
clear();
for(std::size_t i = 0 ; i < polys.size(); ++i) {
::boost::polygon::transform(polys[i], tr);
insert(polys[i]);
}
unsorted_ = true;
dirty_ = true;
return *this;
}
inline polygon_set_data&
scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
::boost::polygon::scale_up((*itr).first.first, factor);
::boost::polygon::scale_up((*itr).first.second, factor);
}
return *this;
}
inline polygon_set_data&
scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
::boost::polygon::scale_down((*itr).first.first, factor);
::boost::polygon::scale_down((*itr).first.second, factor);
}
unsorted_ = true;
dirty_ = true;
return *this;
}
template <typename scaling_type>
inline polygon_set_data& scale(polygon_set_data& polygon_set,
const scaling_type& scaling) {
for(typename value_type::iterator itr = begin(); itr != end(); ++itr) {
::boost::polygon::scale((*itr).first.first, scaling);
::boost::polygon::scale((*itr).first.second, scaling);
}
unsorted_ = true;
dirty_ = true;
return *this;
}
// TODO:: should be private
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc=false, unsigned int num_circle_segments=0, bool hole = false) {
return insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, typename geometry_concept<geometry_type>::type());
}
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
polygon_with_holes_concept tag) {
insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept());
for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
begin_holes(poly); itr != end_holes(poly);
++itr) {
insert_with_resize_dispatch(*itr, resizing, corner_fill_arc, num_circle_segments, !hole, polygon_concept());
}
return *this;
}
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
polygon_concept tag) {
if (resizing==0)
return *this;
// one dimensional used to store CCW/CW flag
//direction_1d wdir = winding(poly);
// LOW==CLOCKWISE just faster to type
// so > 0 is CCW
//int multiplier = wdir == LOW ? -1 : 1;
//std::cout<<" multiplier : "<<multiplier<<std::endl;
//if(hole) resizing *= -1;
direction_1d resize_wdir = resizing>0?COUNTERCLOCKWISE:CLOCKWISE;
typedef typename polygon_data<T>::iterator_type piterator;
piterator first, second, third, end, real_end;
real_end = end_points(poly);
third = begin_points(poly);
first = third;
if(first == real_end) return *this;
++third;
if(third == real_end) return *this;
second = end = third;
++third;
if(third == real_end) return *this;
// for 1st corner
std::vector<point_data<T> > first_pts;
std::vector<point_data<T> > all_pts;
direction_1d first_wdir = CLOCKWISE;
// for all corners
polygon_set_data<T> sizingSet;
bool sizing_sign = resizing>0;
bool prev_concave = true;
point_data<T> prev_point;
//insert minkofski shapes on edges and corners
do { // REAL WORK IS HERE
//first, second and third point to points in correct CCW order
// check if convex or concave case
point_data<coordinate_type> normal1( second->y()-first->y(), first->x()-second->x());
point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x());
double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y();
bool convex = direction>0;
bool treat_as_concave = convex ^ sizing_sign ;
point_data<double> v;
assign(v, normal1);
double s2 = (v.x()*v.x()+v.y()*v.y());
double s = sqrt(s2)/resizing;
v = point_data<double>(v.x()/s,v.y()/s);
point_data<T> curr_prev;
if (prev_concave)
//TODO missing round_down()
curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y());
else
curr_prev = prev_point;
// around concave corners - insert rectangle
// if previous corner is concave it's point info may be ignored
if ( treat_as_concave) {
std::vector<point_data<T> > pts;
pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y()));
pts.push_back(*second);
pts.push_back(*first);
pts.push_back(point_data<T>(curr_prev));
if (first_pts.size()){
sizingSet.insert_vertex_sequence(pts.begin(),pts.end(), resize_wdir,false);
}else {
first_pts=pts;
first_wdir = resize_wdir;
}
} else {
// add either intersection_quad or pie_shape, based on corner_fill_arc option
// for convex corner (convexity depends on sign of resizing, whether we shrink or grow)
std::vector< std::vector<point_data<T> > > pts;
direction_1d winding;
winding = convex?COUNTERCLOCKWISE:CLOCKWISE;
if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing
, num_circle_segments, corner_fill_arc))
{
if (first_pts.size()) {
for (unsigned i=0; i<pts.size(); i++) {
sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
}
} else {
first_pts = pts[0];
first_wdir = resize_wdir;
for (unsigned i=1; i<pts.size(); i++) {
sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
}
}
prev_point = curr_prev;
} else {
treat_as_concave = true;
}
}
prev_concave = treat_as_concave;
first = second;
second = third;
++third;
if(third == real_end) {
third = begin_points(poly);
if(*second == *third) {
++third; //skip first point if it is duplicate of last point
}
}
} while(second != end);
// handle insertion of first point
if (!prev_concave) {
first_pts[first_pts.size()-1]=prev_point;
}
sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false);
polygon_set_data<coordinate_type> tmp;
//insert original shape
tmp.insert(poly, false, polygon_concept());
if( ((resizing < 0) ^ hole) ) tmp -= sizingSet;
else tmp += sizingSet;
//tmp.clean();
insert(tmp, hole);
return (*this);
}
inline polygon_set_data&
interact(const polygon_set_data& that);
inline bool downcast(polygon_45_set_data<coordinate_type>& result) const {
if(!is_45_) return false;
for(iterator_type itr = begin(); itr != end(); ++itr) {
const element_type& elem = *itr;
int count = elem.second;
int rise = 1; //up sloping 45
if(scanline_base<coordinate_type>::is_horizontal(elem.first)) rise = 0;
else if(scanline_base<coordinate_type>::is_vertical(elem.first)) rise = 2;
else {
if(!scanline_base<coordinate_type>::is_45_degree(elem.first)) {
is_45_ = false;
return false; //consider throwing because is_45_ has be be wrong
}
if(elem.first.first.y() > elem.first.second.y()) rise = -1; //down sloping 45
}
typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex(elem.first.first, rise, count);
result.insert(vertex);
typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex2(elem.first.second, rise, -count);
result.insert(vertex2);
}
return true;
}
inline GEOMETRY_CONCEPT_ID concept_downcast() const {
typedef typename coordinate_traits<coordinate_type>::coordinate_difference delta_type;
bool is_45 = false;
for(iterator_type itr = begin(); itr != end(); ++itr) {
const element_type& elem = *itr;
delta_type h_delta = euclidean_distance(elem.first.first, elem.first.second, HORIZONTAL);
delta_type v_delta = euclidean_distance(elem.first.first, elem.first.second, VERTICAL);
if(h_delta != 0 || v_delta != 0) {
//neither delta is zero and the edge is not MANHATTAN
if(v_delta != h_delta && v_delta != -h_delta) return POLYGON_SET_CONCEPT;
else is_45 = true;
}
}
if(is_45) return POLYGON_45_SET_CONCEPT;
return POLYGON_90_SET_CONCEPT;
}
private:
mutable value_type data_;
mutable bool dirty_;
mutable bool unsorted_;
mutable bool is_45_;
private:
//functions
template <typename output_container>
void get_dispatch(output_container& output, polygon_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container, typename concept_type>
void get_fracture(output_container& container, bool fracture_holes, concept_type ) const {
clean();
polygon_arbitrary_formation<coordinate_type> pf(fracture_holes);
typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
std::vector<vertex_half_edge> data;
for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
}
std::sort(data.begin(), data.end());
pf.scan(container, data.begin(), data.end());
}
};
struct polygon_set_concept;
template <typename T>
struct geometry_concept<polygon_set_data<T> > {
typedef polygon_set_concept type;
};
template <typename T>
inline double compute_area(point_data<T>& a, point_data<T>& b, point_data<T>& c) {
return (double)(b.x()-a.x())*(double)(c.y()-a.y())- (double)(c.x()-a.x())*(double)(b.y()-a.y());
}
template <typename T>
inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
point_data<T>& curr_prev, bool ignore_prev_point,
point_data< T> start, point_data<T> middle, point_data< T> end,
double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) {
// handle the case of adding an intersection point
point_data<double> dn1( middle.y()-start.y(), start.x()-middle.x());
double size = sizing_distance/sqrt( dn1.x()*dn1.x()+dn1.y()*dn1.y());
dn1 = point_data<double>( dn1.x()*size, dn1.y()* size);
point_data<double> dn2( end.y()-middle.y(), middle.x()-end.x());
size = sizing_distance/sqrt( dn2.x()*dn2.x()+dn2.y()*dn2.y());
dn2 = point_data<double>( dn2.x()*size, dn2.y()* size);
point_data<double> start_offset((start.x()+dn1.x()),(start.y()+dn1.y()));
point_data<double> mid1_offset((middle.x()+dn1.x()),(middle.y()+dn1.y()));
point_data<double> end_offset((end.x()+dn2.x()),(end.y()+dn2.y()));
point_data<double> mid2_offset((middle.x()+dn2.x()),(middle.y()+dn2.y()));
if (ignore_prev_point)
curr_prev = round_down<T>(start_offset);
if (corner_fill_arc) {
std::vector<point_data< T> > return_points1;
return_points.push_back(return_points1);
std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
return_points_back.push_back(round_down<T>(mid1_offset));
return_points_back.push_back(middle);
return_points_back.push_back(start);
return_points_back.push_back(curr_prev);
point_data<double> dmid(middle.x(),middle.y());
return_points.push_back(return_points1);
int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments);
curr_prev = round_down<T>(mid2_offset);
return num;
}
std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset);
std::pair<point_data<double>,point_data<double> > he2(mid2_offset ,end_offset);
typedef typename high_precision_type<double>::type high_precision;
point_data<T> intersect;
typename scanline_base<T>::compute_intersection_pack pack;
bool res = pack.compute_intersection(intersect,he1,he2,true);
if( res ) {
std::vector<point_data< T> > return_points1;
return_points.push_back(return_points1);
std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
return_points_back.push_back(intersect);
return_points_back.push_back(middle);
return_points_back.push_back(start);
return_points_back.push_back(curr_prev);
/*double d1= */compute_area(intersect,middle,start);
/*double d2= */compute_area(start,curr_prev,intersect);
curr_prev = intersect;
return return_points.size();
}
return 0;
}
// this routine should take in start and end point s.t. end point is CCW from start
// it sould make a pie slice polygon that is an intersection of that arc
// with an ngon segments approximation of the circle centered at center with radius r
// point start is gauaranteed to be on the segmentation
// returnPoints will start with the first point after start
// returnPoints vector may be empty
template <typename T>
inline int make_arc(std::vector<point_data< T> >& return_points,
point_data< double> start, point_data< double> end,
point_data< double> center, double r, unsigned int num_circle_segments) {
const double our_pi=3.1415926535897932384626433832795028841971;
// derive start and end angles
double ps = atan2(start.y()-center.y(), start.x()-center.x());
double pe = atan2(end.y()-center.y(), end.x()-center.x());
if (ps < 0.0)
ps += 2.0 * our_pi;
if (pe <= 0.0)
pe += 2.0 * our_pi;
if (ps >= 2.0 * M_PI)
ps -= 2.0 * our_pi;
while (pe <= ps)
pe += 2.0 * our_pi;
double delta_angle = (2.0 * our_pi) / (double)num_circle_segments;
if ( start==end) // full circle?
{
ps = delta_angle*0.5;
pe = ps + our_pi * 2.0;
double x,y;
x = center.x() + r * cos(ps);
y = center.y() + r * sin(ps);
start = point_data<double>(x,y);
end = start;
}
return_points.push_back(round_down<T>(center));
return_points.push_back(round_down<T>(start));
int i=0;
double curr_angle = ps+delta_angle;
while( curr_angle < pe - 0.01 && i < 2 * (int)num_circle_segments) {
i++;
double x = center.x() + r * cos( curr_angle);
double y = center.y() + r * sin( curr_angle);
return_points.push_back( round_down<T>((point_data<double>(x,y))));
curr_angle+=delta_angle;
}
return_points.push_back(round_down<T>(end));
return return_points.size();
}
}// close namespace
}// close name space
#include "detail/scan_arbitrary.hpp"
namespace boost { namespace polygon {
//ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
//polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
template <typename coordinate_type>
class connectivity_extraction{
private:
typedef arbitrary_connectivity_extraction<coordinate_type, int> ce;
ce ce_;
unsigned int nodeCount_;
public:
inline connectivity_extraction() : ce_(), nodeCount_(0) {}
inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_),
nodeCount_(that.nodeCount_) {}
inline connectivity_extraction& operator=(const connectivity_extraction& that) {
ce_ = that.ce_;
nodeCount_ = that.nodeCount_; {}
return *this;
}
//insert a polygon set graph node, the value returned is the id of the graph node
inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) {
ps.clean();
ce_.populateTouchSetData(ps.begin(), ps.end(), nodeCount_);
return nodeCount_++;
}
template <class GeoObjT>
inline unsigned int insert(const GeoObjT& geoObj) {
polygon_set_data<coordinate_type> ps;
ps.insert(geoObj);
return insert(ps);
}
//extract connectivity and store the edges in the graph
//graph must be indexable by graph node id and the indexed value must be a std::set of
//graph node id
template <class GraphT>
inline void extract(GraphT& graph) {
ce_.execute(graph);
}
};
template <typename T>
polygon_set_data<T>&
polygon_set_data<T>::interact(const polygon_set_data<T>& that) {
connectivity_extraction<coordinate_type> ce;
std::vector<polygon_with_holes_data<T> > polys;
get(polys);
clear();
for(std::size_t i = 0; i < polys.size(); ++i) {
ce.insert(polys[i]);
}
int id = ce.insert(that);
std::vector<std::set<int> > graph(id+1);
ce.extract(graph);
for(std::set<int>::iterator itr = graph[id].begin();
itr != graph[id].end(); ++itr) {
insert(polys[*itr]);
}
return *this;
}
}
}
#include "polygon_set_traits.hpp"
#include "detail/polygon_set_view.hpp"
#include "polygon_set_concept.hpp"
#endif

View File

@ -0,0 +1,130 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_SET_TRAITS_HPP
#define BOOST_POLYGON_POLYGON_SET_TRAITS_HPP
namespace boost { namespace polygon{
struct polygon_set_concept {};
//default definition of polygon set traits works for any model of polygon , polygon with holes or any vector or list thereof
template <typename T>
struct polygon_set_traits {
typedef typename get_coordinate_type<T, typename geometry_concept<T>::type >::type coordinate_type;
typedef typename get_iterator_type<T>::type iterator_type;
typedef T operator_arg_type;
static inline iterator_type begin(const T& polygon_set) {
return get_iterator_type<T>::begin(polygon_set);
}
static inline iterator_type end(const T& polygon_set) {
return get_iterator_type<T>::end(polygon_set);
}
static inline bool clean(const T& ) { return false; }
static inline bool sorted(const T& ) { return false; }
};
template <typename T>
struct is_polygonal_concept { typedef gtl_no type; };
template <>
struct is_polygonal_concept<polygon_concept> { typedef gtl_yes type; };
template <>
struct is_polygonal_concept<polygon_with_holes_concept> { typedef gtl_yes type; };
template <>
struct is_polygonal_concept<polygon_set_concept> { typedef gtl_yes type; };
template <typename T>
struct is_polygon_set_type {
typedef typename is_polygonal_concept<typename geometry_concept<T>::type>::type type;
};
template <typename T>
struct is_polygon_set_type<std::list<T> > {
typedef typename gtl_or<
typename is_polygonal_concept<typename geometry_concept<std::list<T> >::type>::type,
typename is_polygonal_concept<typename geometry_concept<typename std::list<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_polygon_set_type<std::vector<T> > {
typedef typename gtl_or<
typename is_polygonal_concept<typename geometry_concept<std::vector<T> >::type>::type,
typename is_polygonal_concept<typename geometry_concept<typename std::vector<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_set_type {
typedef typename gtl_same_type<polygon_set_concept, typename geometry_concept<T>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_set_type<std::list<T> > {
typedef typename gtl_or<
typename gtl_same_type<polygon_set_concept, typename geometry_concept<std::list<T> >::type>::type,
typename is_polygonal_concept<typename geometry_concept<typename std::list<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct is_mutable_polygon_set_type<std::vector<T> > {
typedef typename gtl_or<
typename gtl_same_type<polygon_set_concept, typename geometry_concept<std::vector<T> >::type>::type,
typename is_polygonal_concept<typename geometry_concept<typename std::vector<T>::value_type>::type>::type>::type type;
};
template <typename T>
struct polygon_set_mutable_traits {};
template <typename T>
struct polygon_set_mutable_traits<std::list<T> > {
template <typename input_iterator_type>
static inline void set(std::list<T>& polygon_set, input_iterator_type input_begin, input_iterator_type input_end) {
polygon_set.clear();
polygon_set_data<typename polygon_set_traits<std::list<T> >::coordinate_type> ps;
ps.insert(input_begin, input_end);
ps.get(polygon_set);
}
};
template <typename T>
struct polygon_set_mutable_traits<std::vector<T> > {
template <typename input_iterator_type>
static inline void set(std::vector<T>& polygon_set, input_iterator_type input_begin, input_iterator_type input_end) {
polygon_set.clear();
polygon_set_data<typename polygon_set_traits<std::list<T> >::coordinate_type> ps;
ps.insert(input_begin, input_end);
ps.get(polygon_set);
}
};
template <typename T>
struct polygon_set_mutable_traits<polygon_set_data<T> > {
template <typename input_iterator_type>
static inline void set(polygon_set_data<T>& polygon_set,
input_iterator_type input_begin, input_iterator_type input_end) {
polygon_set.set(input_begin, input_end);
}
};
template <typename T>
struct polygon_set_traits<polygon_set_data<T> > {
typedef typename polygon_set_data<T>::coordinate_type coordinate_type;
typedef typename polygon_set_data<T>::iterator_type iterator_type;
typedef typename polygon_set_data<T>::operator_arg_type operator_arg_type;
static inline iterator_type begin(const polygon_set_data<T>& polygon_set) {
return polygon_set.begin();
}
static inline iterator_type end(const polygon_set_data<T>& polygon_set) {
return polygon_set.end();
}
static inline bool clean(const polygon_set_data<T>& polygon_set) { polygon_set.clean(); return true; }
static inline bool sorted(const polygon_set_data<T>& polygon_set) { int untested = 0;polygon_set.sort(); return true; }
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,108 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_WITH_HOLES_DATA_HPP
#define BOOST_POLYGON_POLYGON_WITH_HOLES_DATA_HPP
#include "isotropy.hpp"
#include "polygon_data.hpp"
namespace boost { namespace polygon{
struct polygon_with_holes_concept;
template <typename T>
class polygon_with_holes_data {
public:
typedef polygon_with_holes_concept geometry_type;
typedef T coordinate_type;
typedef typename polygon_data<T>::iterator_type iterator_type;
typedef typename std::list<polygon_data<coordinate_type> >::const_iterator iterator_holes_type;
typedef polygon_data<coordinate_type> hole_type;
typedef typename coordinate_traits<T>::coordinate_distance area_type;
typedef point_data<T> point_type;
// default constructor of point does not initialize x and y
inline polygon_with_holes_data() : self_(), holes_() {} //do nothing default constructor
template<class iT>
inline polygon_with_holes_data(iT input_begin, iT input_end) : self_(), holes_() {
set(input_begin, input_end);
}
template<class iT, typename hiT>
inline polygon_with_holes_data(iT input_begin, iT input_end, hiT holes_begin, hiT holes_end) : self_(), holes_() {
set(input_begin, input_end);
set_holes(holes_begin, holes_end);
}
template<class iT>
inline polygon_with_holes_data& set(iT input_begin, iT input_end) {
self_.set(input_begin, input_end);
return *this;
}
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline polygon_with_holes_data& set_holes(iT input_begin, iT input_end) {
holes_.clear(); //just in case there was some old data there
for( ; input_begin != input_end; ++ input_begin) {
holes_.push_back(hole_type());
holes_.back().set((*input_begin).begin(), (*input_begin).end());
}
return *this;
}
// copy constructor (since we have dynamic memory)
inline polygon_with_holes_data(const polygon_with_holes_data& that) : self_(that.self_),
holes_(that.holes_) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline polygon_with_holes_data& operator=(const polygon_with_holes_data& that) {
self_ = that.self_;
holes_ = that.holes_;
return *this;
}
template <typename T2>
inline polygon_with_holes_data& operator=(const T2& rvalue);
// get begin iterator, returns a pointer to a const coordinate_type
inline const iterator_type begin() const {
return self_.begin();
}
// get end iterator, returns a pointer to a const coordinate_type
inline const iterator_type end() const {
return self_.end();
}
inline std::size_t size() const {
return self_.size();
}
// get begin iterator, returns a pointer to a const polygon
inline const iterator_holes_type begin_holes() const {
return holes_.begin();
}
// get end iterator, returns a pointer to a const polygon
inline const iterator_holes_type end_holes() const {
return holes_.end();
}
inline std::size_t size_holes() const {
return holes_.size();
}
private:
polygon_data<coordinate_type> self_;
std::list<hole_type> holes_;
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,64 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_RECTANGLE_DATA_HPP
#define BOOST_POLYGON_RECTANGLE_DATA_HPP
#include "isotropy.hpp"
//interval
#include "interval_data.hpp"
namespace boost { namespace polygon{
template <typename T>
class rectangle_data {
public:
typedef T coordinate_type;
typedef interval_data<T> interval_type;
inline rectangle_data():ranges_() {}
inline rectangle_data(T xl, T yl, T xh, T yh):ranges_() {
if(xl > xh) std::swap(xl, xh);
if(yl > yh) std::swap(yl, yh);
ranges_[HORIZONTAL] = interval_data<T>(xl, xh);
ranges_[VERTICAL] = interval_data<T>(yl, yh);
}
template <typename interval_type_1, typename interval_type_2>
inline rectangle_data(const interval_type_1& hrange,
const interval_type_2& vrange):ranges_() {
set(HORIZONTAL, hrange); set(VERTICAL, vrange); }
inline rectangle_data(const rectangle_data& that):ranges_() { (*this) = that; }
inline rectangle_data& operator=(const rectangle_data& that) {
ranges_[0] = that.ranges_[0]; ranges_[1] = that.ranges_[1]; return *this;
}
template <typename T2>
inline rectangle_data& operator=(const T2& rvalue);
template <typename T2>
inline bool operator==(const T2& rvalue) const;
template <typename T2>
inline bool operator!=(const T2& rvalue) const { return !((*this) == rvalue); }
inline interval_data<coordinate_type> get(orientation_2d orient) const {
return ranges_[orient.to_int()]; }
inline coordinate_type get(direction_2d dir) const {
return ranges_[orientation_2d(dir).to_int()].get(direction_1d(dir));
}
inline void set(direction_2d dir, coordinate_type value) {
return ranges_[orientation_2d(dir).to_int()].set(direction_1d(dir), value);
}
template <typename interval_type_1>
inline void set(orientation_2d orient, const interval_type_1& interval);
private:
interval_data<coordinate_type> ranges_[2];
};
}
}
#endif

View File

@ -0,0 +1,38 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_RECTANGLE_TRAITS_HPP
#define BOOST_POLYGON_RECTANGLE_TRAITS_HPP
namespace boost { namespace polygon{
template <typename T, typename enable = gtl_yes>
struct rectangle_traits {};
template <typename T>
struct rectangle_traits<T, gtl_no> {};
template <typename T>
struct rectangle_traits<T, typename gtl_same_type<typename T::interval_type, typename T::interval_type>::type> {
typedef typename T::coordinate_type coordinate_type;
typedef typename T::interval_type interval_type;
static inline interval_type get(const T& rectangle, orientation_2d orient) {
return rectangle.get(orient); }
};
template <typename T>
struct rectangle_mutable_traits {
template <typename T2>
static inline void set(T& rectangle, orientation_2d orient, const T2& interval) {
rectangle.set(orient, interval); }
template <typename T2, typename T3>
static inline T construct(const T2& interval_horizontal,
const T3& interval_vertical) {
return T(interval_horizontal, interval_vertical); }
};
}
}
#endif

View File

@ -0,0 +1,501 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_TRANSFORM_HPP
#define BOOST_POLYGON_TRANSFORM_HPP
#include "isotropy.hpp"
#include "point_3d_concept.hpp"
namespace boost { namespace polygon{
// Transformation of Coordinate Systems
// Enum meaning:
// Select which direction_3d to change the positive direction of each
// axis in the old coordinate system to map it to the new coordiante system.
// The first direction_3d listed for each enum is the direction to map the
// positive horizontal direction to.
// The second direction_3d listed for each enum is the direction to map the
// positive vertical direction to.
// The third direction_3d listed for each enum is the direction to map the
// positive proximal direction to.
// The zero position bit (LSB) indicates whether the horizontal axis flips
// when transformed.
// The 1st postion bit indicates whether the vertical axis flips when
// transformed.
// The 2nd position bit indicates whether the horizontal and vertical axis
// swap positions when transformed.
// Note that the first eight values are the complete set of 2D transforms.
// The 3rd position bit indicates whether the proximal axis flips when
// transformed.
// The 4th position bit indicates whether the proximal and horizontal axis are
// swapped when transformed. It changes the meaning of the 2nd position bit
// to mean that the horizontal and vertical axis are swapped in their new
// positions, naturally.
// The 5th position bit (MSB) indicates whether the proximal and vertical axis
// are swapped when transformed. It is mutually exclusive with the 4th postion
// bit, making the maximum legal value 48 (decimal). It similarly changes the
// meaning of the 2nd position bit to mean that the horizontal and vertical are
// swapped in their new positions.
// Enum Values:
// 000000 EAST NORTH UP
// 000001 WEST NORTH UP
// 000010 EAST SOUTH UP
// 000011 WEST SOUTH UP
// 000100 NORTH EAST UP
// 000101 SOUTH EAST UP
// 000110 NORTH WEST UP
// 000111 SOUTH WEST UP
// 001000 EAST NORTH DOWN
// 001001 WEST NORTH DOWN
// 001010 EAST SOUTH DOWN
// 001011 WEST SOUTH DOWN
// 001100 NORTH EAST DOWN
// 001101 SOUTH EAST DOWN
// 001110 NORTH WEST DOWN
// 001111 SOUTH WEST DOWN
// 010000 UP NORTH EAST
// 010001 DOWN NORTH EAST
// 010010 UP SOUTH EAST
// 010011 DOWN SOUTH EAST
// 010100 NORTH UP EAST
// 010101 SOUTH UP EAST
// 010110 NORTH DOWN EAST
// 010111 SOUTH DOWN EAST
// 011000 UP NORTH WEST
// 011001 DOWN NORTH WEST
// 011010 UP SOUTH WEST
// 011011 DOWN SOUTH WEST
// 011100 NORTH UP WEST
// 011101 SOUTH UP WEST
// 011110 NORTH DOWN WEST
// 011111 SOUTH DOWN WEST
// 100000 EAST UP NORTH
// 100001 WEST UP NORTH
// 100010 EAST DOWN NORTH
// 100011 WEST DOWN NORTH
// 100100 UP EAST NORTH
// 100101 DOWN EAST NORTH
// 100110 UP WEST NORTH
// 100111 DOWN WEST NORTH
// 101000 EAST UP SOUTH
// 101001 WEST UP SOUTH
// 101010 EAST DOWN SOUTH
// 101011 WEST DOWN SOUTH
// 101100 UP EAST SOUTH
// 101101 DOWN EAST SOUTH
// 101110 UP WEST SOUTH
// 101111 DOWN WEST SOUTH
class axis_transformation {
public:
// Enum Names and values
// NULL_TRANSFORM = 0, BEGIN_TRANSFORM = 0,
// ENU = 0, EAST_NORTH_UP = 0, EN = 0, EAST_NORTH = 0,
// WNU = 1, WEST_NORTH_UP = 1, WN = 1, WEST_NORTH = 1, FLIP_X = 1,
// ESU = 2, EAST_SOUTH_UP = 2, ES = 2, EAST_SOUTH = 2, FLIP_Y = 2,
// WSU = 3, WEST_SOUTH_UP = 3, WS = 3, WEST_SOUTH = 3,
// NEU = 4, NORTH_EAST_UP = 4, NE = 4, NORTH_EAST = 4, SWAP_XY = 4,
// SEU = 5, SOUTH_EAST_UP = 5, SE = 5, SOUTH_EAST = 5,
// NWU = 6, NORTH_WEST_UP = 6, NW = 6, NORTH_WEST = 6,
// SWU = 7, SOUTH_WEST_UP = 7, SW = 7, SOUTH_WEST = 7,
// END_2D_TRANSFORM = 7,
// END = 8, EAST_NORTH_DOWN = 8,
// WND = 9, WEST_NORTH_DOWN = 9,
// ESD = 10, EAST_SOUTH_DOWN = 10,
// WSD = 11, WEST_SOUTH_DOWN = 11,
// NED = 12, NORTH_EAST_DOWN = 12,
// SED = 13, SOUTH_EAST_DOWN = 13,
// NWD = 14, NORTH_WEST_DOWN = 14,
// SWD = 15, SOUTH_WEST_DOWN = 15,
// UNE = 16, UP_NORTH_EAST = 16,
// DNE = 17, DOWN_NORTH_EAST = 17,
// USE = 18, UP_SOUTH_EAST = 18,
// DSE = 19, DOWN_SOUTH_EAST = 19,
// NUE = 20, NORTH_UP_EAST = 20,
// SUE = 21, SOUTH_UP_EAST = 21,
// NDE = 22, NORTH_DOWN_EAST = 22,
// SDE = 23, SOUTH_DOWN_EAST = 23,
// UNW = 24, UP_NORTH_WEST = 24,
// DNW = 25, DOWN_NORTH_WEST = 25,
// USW = 26, UP_SOUTH_WEST = 26,
// DSW = 27, DOWN_SOUTH_WEST = 27,
// NUW = 28, NORTH_UP_WEST = 28,
// SUW = 29, SOUTH_UP_WEST = 29,
// NDW = 30, NORTH_DOWN_WEST = 30,
// SDW = 31, SOUTH_DOWN_WEST = 31,
// EUN = 32, EAST_UP_NORTH = 32,
// WUN = 33, WEST_UP_NORTH = 33,
// EDN = 34, EAST_DOWN_NORTH = 34,
// WDN = 35, WEST_DOWN_NORTH = 35,
// UEN = 36, UP_EAST_NORTH = 36,
// DEN = 37, DOWN_EAST_NORTH = 37,
// UWN = 38, UP_WEST_NORTH = 38,
// DWN = 39, DOWN_WEST_NORTH = 39,
// EUS = 40, EAST_UP_SOUTH = 40,
// WUS = 41, WEST_UP_SOUTH = 41,
// EDS = 42, EAST_DOWN_SOUTH = 42,
// WDS = 43, WEST_DOWN_SOUTH = 43,
// UES = 44, UP_EAST_SOUTH = 44,
// DES = 45, DOWN_EAST_SOUTH = 45,
// UWS = 46, UP_WEST_SOUTH = 46,
// DWS = 47, DOWN_WEST_SOUTH = 47, END_TRANSFORM = 47
enum ATR {
NULL_TRANSFORM = 0, BEGIN_TRANSFORM = 0,
ENU = 0, EAST_NORTH_UP = 0, EN = 0, EAST_NORTH = 0,
WNU = 1, WEST_NORTH_UP = 1, WN = 1, WEST_NORTH = 1, FLIP_X = 1,
ESU = 2, EAST_SOUTH_UP = 2, ES = 2, EAST_SOUTH = 2, FLIP_Y = 2,
WSU = 3, WEST_SOUTH_UP = 3, WS = 3, WEST_SOUTH = 3, FLIP_XY = 3,
NEU = 4, NORTH_EAST_UP = 4, NE = 4, NORTH_EAST = 4, SWAP_XY = 4,
SEU = 5, SOUTH_EAST_UP = 5, SE = 5, SOUTH_EAST = 5, ROTATE_LEFT = 5,
NWU = 6, NORTH_WEST_UP = 6, NW = 6, NORTH_WEST = 6, ROTATE_RIGHT = 6,
SWU = 7, SOUTH_WEST_UP = 7, SW = 7, SOUTH_WEST = 7, FLIP_SWAP_XY = 7, END_2D_TRANSFORM = 7,
END = 8, EAST_NORTH_DOWN = 8, FLIP_Z = 8,
WND = 9, WEST_NORTH_DOWN = 9,
ESD = 10, EAST_SOUTH_DOWN = 10,
WSD = 11, WEST_SOUTH_DOWN = 11,
NED = 12, NORTH_EAST_DOWN = 12,
SED = 13, SOUTH_EAST_DOWN = 13,
NWD = 14, NORTH_WEST_DOWN = 14,
SWD = 15, SOUTH_WEST_DOWN = 15,
UNE = 16, UP_NORTH_EAST = 16,
DNE = 17, DOWN_NORTH_EAST = 17,
USE = 18, UP_SOUTH_EAST = 18,
DSE = 19, DOWN_SOUTH_EAST = 19,
NUE = 20, NORTH_UP_EAST = 20,
SUE = 21, SOUTH_UP_EAST = 21,
NDE = 22, NORTH_DOWN_EAST = 22,
SDE = 23, SOUTH_DOWN_EAST = 23,
UNW = 24, UP_NORTH_WEST = 24,
DNW = 25, DOWN_NORTH_WEST = 25,
USW = 26, UP_SOUTH_WEST = 26,
DSW = 27, DOWN_SOUTH_WEST = 27,
NUW = 28, NORTH_UP_WEST = 28,
SUW = 29, SOUTH_UP_WEST = 29,
NDW = 30, NORTH_DOWN_WEST = 30,
SDW = 31, SOUTH_DOWN_WEST = 31,
EUN = 32, EAST_UP_NORTH = 32,
WUN = 33, WEST_UP_NORTH = 33,
EDN = 34, EAST_DOWN_NORTH = 34,
WDN = 35, WEST_DOWN_NORTH = 35,
UEN = 36, UP_EAST_NORTH = 36,
DEN = 37, DOWN_EAST_NORTH = 37,
UWN = 38, UP_WEST_NORTH = 38,
DWN = 39, DOWN_WEST_NORTH = 39,
EUS = 40, EAST_UP_SOUTH = 40,
WUS = 41, WEST_UP_SOUTH = 41,
EDS = 42, EAST_DOWN_SOUTH = 42,
WDS = 43, WEST_DOWN_SOUTH = 43,
UES = 44, UP_EAST_SOUTH = 44,
DES = 45, DOWN_EAST_SOUTH = 45,
UWS = 46, UP_WEST_SOUTH = 46,
DWS = 47, DOWN_WEST_SOUTH = 47, END_TRANSFORM = 47
};
// Individual axis enum values indicate which axis an implicit individual
// axis will be mapped to.
// The value of the enum paired with an axis provides the information
// about what the axis will transform to.
// Three individual axis values, one for each axis, are equivalent to one
// ATR enum value, but easier to work with because they are independent.
// Converting to and from the individual axis values from the ATR value
// is a convenient way to implement tranformation related functionality.
// Enum meanings:
// PX: map to positive x axis
// NX: map to negative x axis
// PY: map to positive y axis
// NY: map to negative y axis
// PZ: map to positive z axis
// NZ: map to negative z axis
enum INDIVIDUAL_AXIS {
PX = 0,
NX = 1,
PY = 2,
NY = 3,
PZ = 4,
NZ = 5
};
inline axis_transformation() : atr_(NULL_TRANSFORM) {}
inline axis_transformation(ATR atr) : atr_(atr) {}
inline axis_transformation(const axis_transformation& atr) : atr_(atr.atr_) {}
explicit axis_transformation(const orientation_3d& orient);
explicit axis_transformation(const direction_3d& dir);
explicit axis_transformation(const orientation_2d& orient);
explicit axis_transformation(const direction_2d& dir);
// assignment operator
axis_transformation& operator=(const axis_transformation& a);
// assignment operator
axis_transformation& operator=(const ATR& atr);
// equivalence operator
bool operator==(const axis_transformation& a) const;
// inequivalence operator
bool operator!=(const axis_transformation& a) const;
// ordering
bool operator<(const axis_transformation& a) const;
// concatenation operator
axis_transformation operator+(const axis_transformation& a) const;
// concatenate this with that
axis_transformation& operator+=(const axis_transformation& a);
// populate_axis_array writes the three INDIVIDUAL_AXIS values that the
// ATR enum value of 'this' represent into axis_array
void populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const;
// it is recommended that the directions stored in an array
// in the caller code for easier isotropic access by orientation value
inline void get_directions(direction_2d& horizontal_dir,
direction_2d& vertical_dir) const {
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
vertical_dir = direction_2d((direction_2d_enum)(((int)(!bit2) << 1) + !bit1));
horizontal_dir = direction_2d((direction_2d_enum)(((int)(bit2) << 1) + !bit0));
}
// it is recommended that the directions stored in an array
// in the caller code for easier isotropic access by orientation value
inline void get_directions(direction_3d& horizontal_dir,
direction_3d& vertical_dir,
direction_3d& proximal_dir) const {
bool bit5 = (atr_ & 32) != 0;
bool bit4 = (atr_ & 16) != 0;
bool bit3 = (atr_ & 8) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
proximal_dir = direction_3d((direction_2d_enum)((((int)(!bit4 & !bit5)) << 2) +
((int)(bit5) << 1) +
!bit3));
vertical_dir = direction_3d((direction_2d_enum)((((int)((bit4 & bit2) | (bit5 & !bit2))) << 2)+
((int)(!bit5 & !bit2) << 1) +
!bit1));
horizontal_dir = direction_3d((direction_2d_enum)((((int)((bit5 & bit2) |
(bit4 & !bit2))) << 2) +
((int)(bit2 & !bit5) << 1) +
!bit0));
}
// combine_axis_arrays concatenates this_array and that_array overwriting
// the result into this_array
static void combine_axis_arrays (INDIVIDUAL_AXIS this_array[],
const INDIVIDUAL_AXIS that_array[]);
// write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
// to the ATR enum value and sets 'this' to that value
void write_back_axis_array(const INDIVIDUAL_AXIS this_array[]);
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
axis_transformation& set_directions(const direction_2d& horizontal_dir,
const direction_2d& vertical_dir);
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
axis_transformation& set_directions(const direction_3d& horizontal_dir,
const direction_3d& vertical_dir,
const direction_3d& proximal_dir);
// transform the two coordinates by reference using the 2D portion of this
template <typename coordinate_type>
void transform(coordinate_type& x, coordinate_type& y) const;
// transform the three coordinates by reference
template <typename coordinate_type>
void transform(coordinate_type& x, coordinate_type& y, coordinate_type& z) const;
// invert the 2D portion of this
axis_transformation& invert_2d();
// get the inverse of the 2D portion of this
axis_transformation inverse_2d() const;
// invert this axis_transformation
axis_transformation& invert();
// get the inverse axis_transformation of this
axis_transformation inverse() const;
//friend std::ostream& operator<< (std::ostream& o, const axis_transformation& r);
//friend std::istream& operator>> (std::istream& i, axis_transformation& r);
private:
ATR atr_;
};
// Scaling object to be used to store the scale factor for each axis
// For use by the transformation object, in that context the scale factor
// is the amount that each axis scales by when transformed.
// If the horizontal value of the Scale is 10 that means the horizontal
// axis of the input is multiplied by 10 when the transformation is applied.
template <typename scale_factor_type>
class anisotropic_scale_factor {
public:
inline anisotropic_scale_factor()
#ifndef BOOST_POLYGON_MSVC
: scale_()
#endif
{
scale_[0] = 1;
scale_[1] = 1;
scale_[2] = 1;
}
inline anisotropic_scale_factor(scale_factor_type xscale, scale_factor_type yscale)
#ifndef BOOST_POLYGON_MSVC
: scale_()
#endif
{
scale_[0] = xscale;
scale_[1] = yscale;
scale_[2] = 1;
}
inline anisotropic_scale_factor(scale_factor_type xscale, scale_factor_type yscale, scale_factor_type zscale)
#ifndef BOOST_POLYGON_MSVC
: scale_()
#endif
{
scale_[0] = xscale;
scale_[1] = yscale;
scale_[2] = zscale;
}
// get a component of the anisotropic_scale_factor by orientation
scale_factor_type get(orientation_3d orient) const;
scale_factor_type get(orientation_2d orient) const { return get(orientation_3d(orient)); }
// set a component of the anisotropic_scale_factor by orientation
void set(orientation_3d orient, scale_factor_type value);
void set(orientation_2d orient, scale_factor_type value) { set(orientation_3d(orient), value); }
scale_factor_type x() const;
scale_factor_type y() const;
scale_factor_type z() const;
void x(scale_factor_type value);
void y(scale_factor_type value);
void z(scale_factor_type value);
// concatination operator (convolve scale factors)
anisotropic_scale_factor operator+(const anisotropic_scale_factor& s) const;
// concatinate this with that
const anisotropic_scale_factor& operator+=(const anisotropic_scale_factor& s);
// transform this scale with an axis_transform
anisotropic_scale_factor& transform(axis_transformation atr);
// scale the two coordinates
template <typename coordinate_type>
void scale(coordinate_type& x, coordinate_type& y) const;
// scale the three coordinates
template <typename coordinate_type>
void scale(coordinate_type& x, coordinate_type& y, coordinate_type& z) const;
// invert this scale factor to give the reverse scale factor
anisotropic_scale_factor& invert();
private:
scale_factor_type scale_[3];
//friend std::ostream& operator<< (std::ostream& o, const Scale& r);
//friend std::istream& operator>> (std::istream& i, Scale& r);
};
// Transformation object, stores and provides services for transformations
// Transformation object stores an axistransformation, a scale factor and a translation.
// The tranlation is the position of the origin of the new system of coordinates in the old system.
// The scale scales the coordinates before they are transformed.
template <typename coordinate_type>
class transformation {
public:
transformation();
transformation(axis_transformation atr);
transformation(axis_transformation::ATR atr);
template <typename point_type>
transformation(const point_type& p);
template <typename point_type>
transformation(axis_transformation atr, const point_type& p);
template <typename point_type>
transformation(axis_transformation atr, const point_type& referencePt, const point_type& destinationPt);
transformation(const transformation& tr);
// equivalence operator
bool operator==(const transformation& tr) const;
// inequivalence operator
bool operator!=(const transformation& tr) const;
// ordering
bool operator<(const transformation& tr) const;
// concatenation operator
transformation operator+(const transformation& tr) const;
// concatenate this with that
const transformation& operator+=(const transformation& tr);
// get the axis_transformation portion of this
inline axis_transformation get_axis_transformation() const {return atr_;}
// set the axis_transformation portion of this
void set_axis_transformation(const axis_transformation& atr);
// get the translation portion of this as a point3d
template <typename point_type>
void get_translation(point_type& translation) const;
// set the translation portion of this with a point3d
template <typename point_type>
void set_translation(const point_type& p);
// apply the 2D portion of this transformation to the two coordinates given
void transform(coordinate_type& x, coordinate_type& y) const;
// apply this transformation to the three coordinates given
void transform(coordinate_type& x, coordinate_type& y, coordinate_type& z) const;
// invert this transformation
transformation& invert();
// get the inverse of this transformation
transformation inverse() const;
inline void get_directions(direction_2d& horizontal_dir,
direction_2d& vertical_dir) const {
return atr_.get_directions(horizontal_dir, vertical_dir); }
inline void get_directions(direction_3d& horizontal_dir,
direction_3d& vertical_dir,
direction_3d& proximal_dir) const {
return atr_.get_directions(horizontal_dir, vertical_dir, proximal_dir); }
private:
axis_transformation atr_;
point_3d_data<coordinate_type> p_;
template <typename point_type>
void construct_dispatch(axis_transformation atr, point_type p, point_concept tag);
template <typename point_type>
void construct_dispatch(axis_transformation atr, point_type p, point_3d_concept tag);
template <typename point_type>
void construct_dispatch(axis_transformation atr, point_type rp, point_type dp, point_concept tag);
template <typename point_type>
void construct_dispatch(axis_transformation atr, point_type rp, point_type dp, point_3d_concept tag);
//friend std::ostream& operator<< (std::ostream& o, const transformation& tr);
//friend std::istream& operator>> (std::istream& i, transformation& tr);
};
}
}
#include "detail/transform_detail.hpp"
#endif

Some files were not shown because too many files have changed in this diff Show More