qa/drc_proto: rework common clearance code into base class, start working on hole clearance test refactor

This commit is contained in:
Tomasz Wlostowski 2020-06-19 23:34:19 +02:00
parent b3ce23f0e2
commit 1cabc1bc0f
7 changed files with 823 additions and 649 deletions

View File

@ -40,7 +40,9 @@ add_executable( drc_proto
drc_rule_parser.cpp
drc_rules_proto_keywords.cpp
drc_test_provider.cpp
drc_clearance_test.cpp
drc_test_provider_clearance_base.cpp
drc_test_provider_copper_clearance.cpp
drc_test_provider_hole_clearance.cpp
drc_engine.cpp
../qa_utils/mocks.cpp
../pcbnew_utils/board_file_utils.cpp

View File

@ -39,7 +39,9 @@
test::DRC_ENGINE::DRC_ENGINE( BOARD* aBoard, BOARD_DESIGN_SETTINGS *aSettings ) :
m_board( aBoard ),
m_designSettings ( aSettings )
m_designSettings ( aSettings ),
m_reporter( nullptr ),
m_progressReporter( nullptr )
{
}
@ -109,7 +111,7 @@ void test::DRC_ENGINE::inferImplicitRules()
}
static const int drc_debug_level = 0;
static const int drc_debug_level = 10;
void test::drc_dbg( int level, const char* fmt, ... )
{
@ -128,7 +130,7 @@ void test::drc_dbg( int level, const char* fmt, ... )
bool test::DRC_ENGINE::CompileRules()
{
ReportAux( wxString::Format( "Compiling Rules: " ) );
ReportAux( wxString::Format( "Compiling Rules (%d rules, %d conditions): ", m_rules.size(), m_ruleConditions.size() ) );
for( auto provider : m_testProviders )
{

View File

@ -44,13 +44,13 @@ test::DRC_RULE::~DRC_RULE()
test::DRC_RULE_CONDITION::DRC_RULE_CONDITION()
{
if( m_ucode )
delete m_ucode;
m_ucode = nullptr;
}
test::DRC_RULE_CONDITION::~DRC_RULE_CONDITION()
{
if( m_ucode )
delete m_ucode;
}
bool test::DRC_RULE_CONDITION::EvaluateFor( BOARD_ITEM* aItemA, BOARD_ITEM* aItemB )

View File

@ -0,0 +1,469 @@
#include <common.h>
#include <class_board.h>
#include <class_drawsegment.h>
#include <class_pad.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/polygon_test_point_inside.h>
#include <geometry/seg.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_rect.h>
#include <drc_proto/drc_engine.h>
#include <drc_proto/drc_test_provider_clearance_base.h>
#include <drc_proto/drc_item.h>
#include <drc_proto/drc_rule.h>
const int UI_EPSILON = Mils2iu( 5 );
wxPoint test::DRC_TEST_PROVIDER_CLEARANCE_BASE::getLocation( TRACK* aTrack, ZONE_CONTAINER* aConflictZone )
{
SHAPE_POLY_SET* conflictOutline;
if( aConflictZone->IsFilled() )
conflictOutline = const_cast<SHAPE_POLY_SET*>( &aConflictZone->GetFilledPolysList() );
else
conflictOutline = aConflictZone->Outline();
wxPoint pt1 = aTrack->GetPosition();
wxPoint pt2 = aTrack->GetEnd();
// If the mid-point is in the zone, then that's a fine place for the marker
if( conflictOutline->SquaredDistance( ( pt1 + pt2 ) / 2 ) == 0 )
return ( pt1 + pt2 ) / 2;
// Otherwise do a binary search for a "good enough" marker location
else
{
while( GetLineLength( pt1, pt2 ) > UI_EPSILON )
{
if( conflictOutline->SquaredDistance( pt1 ) < conflictOutline->SquaredDistance( pt2 ) )
pt2 = ( pt1 + pt2 ) / 2;
else
pt1 = ( pt1 + pt2 ) / 2;
}
// Once we're within UI_EPSILON pt1 and pt2 are "equivalent"
return pt1;
}
}
wxPoint test::DRC_TEST_PROVIDER_CLEARANCE_BASE::getLocation( TRACK* aTrack, const SEG& aConflictSeg )
{
wxPoint pt1 = aTrack->GetPosition();
wxPoint pt2 = aTrack->GetEnd();
// Do a binary search along the track for a "good enough" marker location
while( GetLineLength( pt1, pt2 ) > UI_EPSILON )
{
if( aConflictSeg.SquaredDistance( pt1 ) < aConflictSeg.SquaredDistance( pt2 ) )
pt2 = ( pt1 + pt2 ) / 2;
else
pt1 = ( pt1 + pt2 ) / 2;
}
// Once we're within UI_EPSILON pt1 and pt2 are "equivalent"
return pt1;
}
/*
* Test if distance between a segment and a pad is > minClearance. Return the actual
* distance if it is less.
*/
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::checkClearanceSegmToPad( const SEG& refSeg, int refSegWidth, const D_PAD* pad,
int minClearance, int* aActualDist )
{
if( ( pad->GetShape() == PAD_SHAPE_CIRCLE || pad->GetShape() == PAD_SHAPE_OVAL ) )
{
/* Treat an oval pad as a line segment along the hole's major axis,
* shortened by half its minor axis.
* A circular pad is just a degenerate case of an oval hole.
*/
wxPoint padStart, padEnd;
int padWidth;
pad->GetOblongGeometry( pad->GetSize(), &padStart, &padEnd, &padWidth );
padStart += pad->ShapePos();
padEnd += pad->ShapePos();
SEG padSeg( padStart, padEnd );
int widths = ( padWidth + refSegWidth ) / 2;
int center2centerAllowed = minClearance + widths;
// Avoid square-roots if possible (for performance)
SEG::ecoord center2center_squared = refSeg.SquaredDistance( padSeg );
if( center2center_squared < SEG::Square( center2centerAllowed ) )
{
*aActualDist = std::max( 0.0, sqrt( center2center_squared ) - widths );
return false;
}
}
else if( ( pad->GetShape() == PAD_SHAPE_RECT || pad->GetShape() == PAD_SHAPE_ROUNDRECT )
&& ( (int) pad->GetOrientation() % 900 == 0 ) )
{
EDA_RECT padBBox = pad->GetBoundingBox();
int widths = refSegWidth / 2;
// Note a ROUNDRECT pad with a corner radius = r can be treated as a smaller
// RECT (size - 2*r) with a clearance increased by r
if( pad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
padBBox.Inflate( - pad->GetRoundRectCornerRadius() );
widths += pad->GetRoundRectCornerRadius();
}
SHAPE_RECT padShape( padBBox.GetPosition(), padBBox.GetWidth(), padBBox.GetHeight() );
int actual;
if( padShape.DoCollide( refSeg, minClearance + widths, &actual ) )
{
*aActualDist = std::max( 0, actual - widths );
return false;
}
}
else // Convert the rest to polygons
{
SHAPE_POLY_SET polyset;
BOARD* board = pad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
pad->TransformShapeWithClearanceToPolygon( polyset, 0, maxError );
const SHAPE_LINE_CHAIN& refpoly = polyset.COutline( 0 );
int widths = refSegWidth / 2;
int actual;
if( !poly2segmentDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
(wxPoint) refSeg.A, (wxPoint) refSeg.B,
minClearance + widths, &actual ) )
{
*aActualDist = std::max( 0, actual - widths );
return false;
}
}
return true;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad, int aMinClearance, int* aActual )
{
// relativePadPos is the aPad shape position relative to the aRefPad shape position
wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
int center2center = KiROUND( EuclideanNorm( relativePadPos ) );
// Quick test: Clearance is OK if the bounding circles are further away than aMinClearance
if( center2center - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius() >= aMinClearance )
return true;
/* Here, pads are near and DRC depends on the pad shapes. We must compare distance using
* a fine shape analysis.
* Because a circle or oval shape is the easier shape to test, swap pads to have aRefPad be
* a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. If aRefPad = TRAPEZOID and aPad = RECT, also swap.
*/
bool swap_pads;
swap_pads = false;
// swap pads to make comparisons easier
// Note also a ROUNDRECT pad with a corner radius = r can be considered as
// a smaller RECT (size - 2*r) with a clearance increased by r
// priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other
if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
{
// pad ref shape is here oval, rect, roundrect, chamfered rect, trapezoid or custom
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
swap_pads = true;
break;
case PAD_SHAPE_OVAL:
swap_pads = true;
break;
case PAD_SHAPE_RECT:
case PAD_SHAPE_ROUNDRECT:
if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
swap_pads = true;
break;
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_CUSTOM:
break;
}
}
if( swap_pads )
{
std::swap( aRefPad, aPad );
relativePadPos = -relativePadPos;
}
bool diag = true;
if( ( aRefPad->GetShape() == PAD_SHAPE_CIRCLE || aRefPad->GetShape() == PAD_SHAPE_OVAL ) )
{
/* Treat an oval pad as a line segment along the hole's major axis,
* shortened by half its minor axis.
* A circular pad is just a degenerate case of an oval hole.
*/
wxPoint refPadStart, refPadEnd;
int refPadWidth;
aRefPad->GetOblongGeometry( aRefPad->GetSize(), &refPadStart, &refPadEnd, &refPadWidth );
refPadStart += aRefPad->ShapePos();
refPadEnd += aRefPad->ShapePos();
SEG refPadSeg( refPadStart, refPadEnd );
diag = checkClearanceSegmToPad( refPadSeg, refPadWidth, aPad, aMinClearance, aActual );
}
else
{
int dist_extra = 0;
// corners of aRefPad (used only for rect/roundrect/trap pad)
wxPoint polyref[4];
// corners of aRefPad (used only for custom pad)
SHAPE_POLY_SET polysetref;
if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aRefPad->GetRoundRectCornerRadius();
dist_extra = padRadius;
GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ), aRefPad->GetSize(),
aRefPad->GetOrientation() );
}
else if( aRefPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT )
{
BOARD* board = aRefPad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// The reference pad can be rotated. Calculate the rotated coordinates.
// (note, the ref pad position is the origin of coordinates for this drc test)
int padRadius = aRefPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polysetref, wxPoint( 0, 0 ), aRefPad->GetSize(),
aRefPad->GetOrientation(),
padRadius, aRefPad->GetChamferRectRatio(),
aRefPad->GetChamferPositions(), maxError );
}
else if( aRefPad->GetShape() == PAD_SHAPE_CUSTOM )
{
polysetref.Append( aRefPad->GetCustomShapeAsPolygon() );
// The reference pad can be rotated. Calculate the rotated coordinates.
// (note, the ref pad position is the origin of coordinates for this drc test)
aRefPad->CustomShapeAsPolygonToBoardPosition( &polysetref, wxPoint( 0, 0 ),
aRefPad->GetOrientation() );
}
else
{
// BuildPadPolygon has meaning for rect a trapeziod shapes and returns the 4 corners.
aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
}
// corners of aPad (used only for rect/roundrect/trap pad)
wxPoint polycompare[4];
// corners of aPad (used only custom pad)
SHAPE_POLY_SET polysetcompare;
switch( aPad->GetShape() )
{
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_RECT:
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CUSTOM:
if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aPad->GetRoundRectCornerRadius();
dist_extra = padRadius;
GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos, aPad->GetSize(),
aPad->GetOrientation() );
}
else if( aPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT )
{
BOARD* board = aRefPad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// The pad to compare can be rotated. Calculate the rotated coordinates.
// ( note, the pad to compare position is the relativePadPos for this drc test)
int padRadius = aPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polysetcompare, relativePadPos,
aPad->GetSize(), aPad->GetOrientation(),
padRadius, aPad->GetChamferRectRatio(),
aPad->GetChamferPositions(), maxError );
}
else if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
{
polysetcompare.Append( aPad->GetCustomShapeAsPolygon() );
// The pad to compare can be rotated. Calculate the rotated coordinates.
// ( note, the pad to compare position is the relativePadPos for this drc test)
aPad->CustomShapeAsPolygonToBoardPosition( &polysetcompare, relativePadPos,
aPad->GetOrientation() );
}
else
{
aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
// Move aPad shape to relativePadPos
for( int ii = 0; ii < 4; ii++ )
polycompare[ii] += relativePadPos;
}
// And now test polygons: We have 3 cases:
// one poly is complex and the other is basic (has only 4 corners)
// both polys are complex
// both polys are basic (have only 4 corners) the most usual case
if( polysetref.OutlineCount() && polysetcompare.OutlineCount() == 0)
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
polycompare, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else if( polysetref.OutlineCount() == 0 && polysetcompare.OutlineCount())
{
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC((wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
polyref, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else if( polysetref.OutlineCount() && polysetcompare.OutlineCount() )
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC((wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
(wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else
{
if( !poly2polyDRC( polyref, 4, polycompare, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
break;
default:
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() );
break;
}
}
return diag;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd,
int aDist, int* aActual )
{
/* Test if the segment is contained in the polygon.
* This case is not covered by the following check if the segment is
* completely contained in the polygon (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aSegStart ) )
{
*aActual = 0;
return false;
}
for( int ii = 0, jj = aTrefCount-1; ii < aTrefCount; jj = ii, ii++ )
{ // for all edges in polygon
double d;
if( TestForIntersectionOfStraightLineSegments( aTref[ii].x, aTref[ii].y, aTref[jj].x,
aTref[jj].y, aSegStart.x, aSegStart.y,
aSegEnd.x, aSegEnd.y, NULL, NULL, &d ) )
{
*aActual = 0;
return false;
}
if( d < aDist )
{
*aActual = KiROUND( d );
return false;
}
}
return true;
}
/**
* compare 2 convex polygons and return true if distance > aDist (if no error DRC)
* i.e if for each edge of the first polygon distance from each edge of the other polygon
* is >= aDist
*/
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::poly2polyDRC( wxPoint* aTref, int aTrefCount, wxPoint* aTtest, int aTtestCount,
int aAllowedDist, int* actualDist )
{
/* Test if one polygon is contained in the other and thus the polygon overlap.
* This case is not covered by the following check if one polygone is
* completely contained in the other (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aTtest[0] ) )
{
*actualDist = 0;
return false;
}
if( TestPointInsidePolygon( aTtest, aTtestCount, aTref[0] ) )
{
*actualDist = 0;
return false;
}
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ )
{
// for all edges in aTref
for( int kk = 0, ll = aTtestCount - 1; kk < aTtestCount; ll = kk, kk++ )
{
// for all edges in aTtest
double d;
int intersect = TestForIntersectionOfStraightLineSegments(
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
aTtest[kk].x, aTtest[kk].y, aTtest[ll].x, aTtest[ll].y,
nullptr, nullptr, &d );
if( intersect )
{
*actualDist = 0;
return false;
}
if( d < aAllowedDist )
{
*actualDist = KiROUND( d );
return false;
}
}
}
return true;
}

View File

@ -0,0 +1,72 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef DRC_TEST_PROVIDER_CLEARANCE_BASE__H
#define DRC_TEST_PROVIDER_CLEARANCE_BASE__H
#include <class_board.h>
#include <drc_proto/drc_test_provider.h>
namespace test {
class DRC_TEST_PROVIDER_CLEARANCE_BASE : public DRC_TEST_PROVIDER
{
public:
DRC_TEST_PROVIDER_CLEARANCE_BASE () :
DRC_TEST_PROVIDER()
{
}
virtual ~DRC_TEST_PROVIDER_CLEARANCE_BASE()
{
}
protected:
void testCopperDrawItem( BOARD_ITEM* aItem );
bool doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd, int x_limit );
bool checkClearanceSegmToPad( const SEG& refSeg, int refSegWidth, const D_PAD* pad,
int minClearance, int* aActualDist );
bool checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad, int aMinClearance, int* aActual );
bool poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd,
int aDist, int* aActual );
bool poly2polyDRC( wxPoint* aTref, int aTrefCount, wxPoint* aTtest, int aTtestCount,
int aAllowedDist, int* actualDist );
wxPoint getLocation( TRACK* aTrack, const SEG& aConflictSeg );
wxPoint getLocation( TRACK* aTrack, ZONE_CONTAINER* aConflictZone );
BOARD* m_board;
int m_largestClearance;
SHAPE_POLY_SET m_boardOutline; // The board outline including cutouts
bool m_boardOutlineValid;
};
};
#endif // DRC_TEST_PROVIDER_CLEARANCE_BASE__H

View File

@ -11,30 +11,36 @@
#include <geometry/shape_rect.h>
#include <drc_proto/drc_engine.h>
#include <drc_proto/drc_test_provider.h>
#include <drc_proto/drc_item.h>
#include <drc_proto/drc_rule.h>
#include <drc_proto/drc_test_provider_clearance_base.h>
namespace test {
class DRC_TEST_PROVIDER_CLEARANCE : public DRC_TEST_PROVIDER
class DRC_TEST_PROVIDER_COPPER_CLEARANCE : public DRC_TEST_PROVIDER_CLEARANCE_BASE
{
public:
DRC_TEST_PROVIDER_CLEARANCE () :
DRC_TEST_PROVIDER()
DRC_TEST_PROVIDER_COPPER_CLEARANCE () :
DRC_TEST_PROVIDER_CLEARANCE_BASE()
{
}
virtual ~DRC_TEST_PROVIDER_CLEARANCE()
virtual ~DRC_TEST_PROVIDER_COPPER_CLEARANCE()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override { return "clearance"; };
virtual const wxString GetDescription() const override { return "Tests copper item clearance"; }
virtual const wxString GetName() const override
{
return "clearance";
};
virtual const wxString GetDescription() const override
{
return "Tests copper item clearance";
}
virtual std::set<test::DRC_RULE_ID_T> GetMatchingRuleIds() const override;
private:
@ -42,88 +48,18 @@ private:
void testTrackClearances();
void testCopperTextAndGraphics();
void testZones();
void testCopperDrawItem( BOARD_ITEM* aItem );
void doTrackDrc( TRACK* aRefSeg, TRACKS::iterator aStartIt,
TRACKS::iterator aEndIt, bool aTestZones );
bool doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd, int x_limit );
bool checkClearanceSegmToPad( const SEG& refSeg, int refSegWidth, const D_PAD* pad,
int minClearance, int* aActualDist );
bool checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad, int aMinClearance, int* aActual );
bool poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd,
int aDist, int* aActual );
bool poly2polyDRC( wxPoint* aTref, int aTrefCount, wxPoint* aTtest, int aTtestCount,
int aAllowedDist, int* actualDist );
wxPoint getLocation( TRACK* aTrack, const SEG& aConflictSeg );
wxPoint getLocation( TRACK* aTrack, ZONE_CONTAINER* aConflictZone );
BOARD* m_board;
int m_largestClearance;
SHAPE_POLY_SET m_boardOutline; // The board outline including cutouts
bool m_boardOutlineValid;
};
};
const int UI_EPSILON = Mils2iu( 5 );
wxPoint test::DRC_TEST_PROVIDER_CLEARANCE::getLocation( TRACK* aTrack, ZONE_CONTAINER* aConflictZone )
{
SHAPE_POLY_SET* conflictOutline;
if( aConflictZone->IsFilled() )
conflictOutline = const_cast<SHAPE_POLY_SET*>( &aConflictZone->GetFilledPolysList() );
else
conflictOutline = aConflictZone->Outline();
wxPoint pt1 = aTrack->GetPosition();
wxPoint pt2 = aTrack->GetEnd();
// If the mid-point is in the zone, then that's a fine place for the marker
if( conflictOutline->SquaredDistance( ( pt1 + pt2 ) / 2 ) == 0 )
return ( pt1 + pt2 ) / 2;
// Otherwise do a binary search for a "good enough" marker location
else
{
while( GetLineLength( pt1, pt2 ) > UI_EPSILON )
{
if( conflictOutline->SquaredDistance( pt1 ) < conflictOutline->SquaredDistance( pt2 ) )
pt2 = ( pt1 + pt2 ) / 2;
else
pt1 = ( pt1 + pt2 ) / 2;
}
// Once we're within UI_EPSILON pt1 and pt2 are "equivalent"
return pt1;
}
}
wxPoint test::DRC_TEST_PROVIDER_CLEARANCE::getLocation( TRACK* aTrack, const SEG& aConflictSeg )
{
wxPoint pt1 = aTrack->GetPosition();
wxPoint pt2 = aTrack->GetEnd();
// Do a binary search along the track for a "good enough" marker location
while( GetLineLength( pt1, pt2 ) > UI_EPSILON )
{
if( aConflictSeg.SquaredDistance( pt1 ) < aConflictSeg.SquaredDistance( pt2 ) )
pt2 = ( pt1 + pt2 ) / 2;
else
pt1 = ( pt1 + pt2 ) / 2;
}
// Once we're within UI_EPSILON pt1 and pt2 are "equivalent"
return pt1;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE::Run()
bool test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::Run()
{
auto bds = m_drcEngine->GetDesignSettings();
m_board = m_drcEngine->GetBoard();
m_largestClearance = bds->GetBiggestClearanceValue();
@ -139,7 +75,7 @@ bool test::DRC_TEST_PROVIDER_CLEARANCE::Run()
return true;
}
void test::DRC_TEST_PROVIDER_CLEARANCE::testCopperTextAndGraphics()
void test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::testCopperTextAndGraphics()
{
// Test copper items for clearance violations with vias, tracks and pads
@ -177,7 +113,7 @@ void test::DRC_TEST_PROVIDER_CLEARANCE::testCopperTextAndGraphics()
}
void test::DRC_TEST_PROVIDER_CLEARANCE::testCopperDrawItem( BOARD_ITEM* aItem )
void test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::testCopperDrawItem( BOARD_ITEM* aItem )
{
EDA_RECT bbox;
std::vector<SEG> itemShape;
@ -388,7 +324,7 @@ void test::DRC_TEST_PROVIDER_CLEARANCE::testCopperDrawItem( BOARD_ITEM* aItem )
}
void test::DRC_TEST_PROVIDER_CLEARANCE::testTrackClearances()
void test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::testTrackClearances()
{
const int delta = 500; // This is the number of tests between 2 calls to the
// progress bar
@ -416,7 +352,7 @@ void test::DRC_TEST_PROVIDER_CLEARANCE::testTrackClearances()
}
}
void test::DRC_TEST_PROVIDER_CLEARANCE::doTrackDrc( TRACK* aRefSeg, TRACKS::iterator aStartIt,
void test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::doTrackDrc( TRACK* aRefSeg, TRACKS::iterator aStartIt,
TRACKS::iterator aEndIt, bool aTestZones )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
@ -651,7 +587,7 @@ void test::DRC_TEST_PROVIDER_CLEARANCE::doTrackDrc( TRACK* aRefSeg, TRACKS::iter
}
void test::DRC_TEST_PROVIDER_CLEARANCE::testPadClearances( )
void test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::testPadClearances( )
{
auto bds = m_drcEngine->GetDesignSettings();
std::vector<D_PAD*> sortedPads;
@ -692,59 +628,13 @@ void test::DRC_TEST_PROVIDER_CLEARANCE::testPadClearances( )
ReportProgress( (double) ii / (double) sortedPads.size() );
ii++;
#if 0
// fixme: move Board outline clearance to separate provider
if( m_boardOutlineValid )
{
//int minClearance = bds->m_CopperEdgeClearance;
//m_clearanceSource = _( "board edge" );
int x_limit = pad->GetPosition().x + pad->GetBoundingRadius() + max_size;
static DRAWSEGMENT dummyEdge;
dummyEdge.SetLayer( Edge_Cuts );
//if( pad->GetRuleClearance( &dummyEdge, &minClearance, &m_clearanceSource ) )
// /* minClearance and m_clearanceSource set in GetRuleClearance() */;
// FIXME
// auto rule = m_drcEngine->EvalRuleForItems( pad, dummyEdge, DRC_RULE_CLEARANCE );
// min_clearance = rule->Constraint().Min();
int minClearance;
for( auto it = m_boardOutline.IterateSegmentsWithHoles(); it; it++ )
{
int actual;
if( !checkClearanceSegmToPad( *it, 0, pad, minClearance, &actual ) )
{
actual = std::max( 0, actual );
DRC_ITEM* drcItem = new DRC_ITEM( DRCE_PAD_NEAR_EDGE );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
/*m_clearanceSource FIXME*/ "" ,
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), actual, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( pad );
MARKER_PCB* marker = nullptr; // fixme new MARKER_PCB( drcItem, pad->GetPosition() );
AddMarkerToPcb( marker );
break;
}
}
}
#endif
//if( !bds->Ignore( DRCE_PAD_NEAR_PAD ) || !bds->Ignore( DRCE_HOLE_NEAR_PAD ) )
{
int x_limit = pad->GetPosition().x + pad->GetBoundingRadius() + max_size;
doPadToPadsDrc( pad, &pad, listEnd, x_limit );
}
doPadToPadsDrc( pad, &pad, listEnd, x_limit );
}
}
bool test::DRC_TEST_PROVIDER_CLEARANCE::doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd,
bool test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd,
int x_limit )
{
const static LSET all_cu = LSET::AllCuMask();
@ -773,109 +663,6 @@ bool test::DRC_TEST_PROVIDER_CLEARANCE::doPadToPadsDrc( D_PAD* aRefPad, D_PAD**
if( pad->GetPosition().x > x_limit )
break;
#if 0
// fixme move hole clearance check to another provider
// No problem if pads which are on copper layers are on different copper layers,
// (pads can be p on a technical layer, to build complex pads)
// but their hole (if any ) can create DRC error because they are on all
// copper layers, so we test them
if( ( pad->GetLayerSet() & layerMask ) == 0 &&
( pad->GetLayerSet() & all_cu ) != 0 &&
( aRefPad->GetLayerSet() & all_cu ) != 0 )
{
// if holes are in the same location and have the same size and shape,
// this can be accepted
if( pad->GetPosition() == aRefPad->GetPosition()
&& pad->GetDrillSize() == aRefPad->GetDrillSize()
&& pad->GetDrillShape() == aRefPad->GetDrillShape() )
{
if( aRefPad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
continue;
// for oval holes: must also have the same orientation
if( pad->GetOrientation() == aRefPad->GetOrientation() )
continue;
}
// fixme move hole clearance check to another providers
/* Here, we must test clearance between holes and pads
* dummy pad size and shape is adjusted to pad drill size and shape
*/
if( pad->GetDrillSize().x )
{
// pad under testing has a hole, test this hole against pad reference
dummypad.SetPosition( pad->GetPosition() );
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetOrientation( pad->GetOrientation() );
int minClearance = 0; // fixme aRefPad->GetClearance( nullptr, &m_clearanceSource );
auto rule = m_drcEngine->MatchRulesForItems( DRC_RULE_ID_CLEARANCE, pad, &dummypad );
int minClearance = rule->m_Value.Min();
int actual;
if( !checkClearancePadToPad( aRefPad, &dummypad, minClearance, &actual ) )
{
DRC_ITEM* drcItem = new DRC_ITEM( DRCE_HOLE_NEAR_PAD );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
/* fixme m_clearanceSource */"",
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), actual, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( pad, aRefPad );
MARKER_PCB* marker = nullptr; // fixme new MARKER_PCB( drcItem, pad->GetPosition() );
AddMarkerToPcb( marker );
return false;
}
}
if( aRefPad->GetDrillSize().x ) // pad reference has a hole
{
dummypad.SetPosition( aRefPad->GetPosition() );
dummypad.SetSize( aRefPad->GetDrillSize() );
dummypad.SetShape( aRefPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetOrientation( aRefPad->GetOrientation() );
// FIXME min_clearance = rule->Constraint().Min();
//int minClearance = pad->GetClearance( nullptr, &m_clearanceSource );
int minClearance;
int actual;
if( !checkClearancePadToPad( pad, &dummypad, minClearance, &actual ) )
{
DRC_ITEM* drcItem = new DRC_ITEM( DRCE_HOLE_NEAR_PAD );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
/*m_clearanceSource FIXME */ "",
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), actual, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( aRefPad, pad );
MARKER_PCB* marker = nullptr; // fixme new MARKER_PCB( drcItem, aRefPad->GetPosition() );
AddMarkerToPcb( marker );
return false;
}
}
continue;
}
#endif
// The pad must be in a net (i.e pt_pad->GetNet() != 0 ),
// But no problem if pads have the same netcode (same net)
if( pad->GetNetCode() && ( aRefPad->GetNetCode() == pad->GetNetCode() ) )
@ -930,409 +717,7 @@ bool test::DRC_TEST_PROVIDER_CLEARANCE::doPadToPadsDrc( D_PAD* aRefPad, D_PAD**
}
/*
* Test if distance between a segment and a pad is > minClearance. Return the actual
* distance if it is less.
*/
bool test::DRC_TEST_PROVIDER_CLEARANCE::checkClearanceSegmToPad( const SEG& refSeg, int refSegWidth, const D_PAD* pad,
int minClearance, int* aActualDist )
{
if( ( pad->GetShape() == PAD_SHAPE_CIRCLE || pad->GetShape() == PAD_SHAPE_OVAL ) )
{
/* Treat an oval pad as a line segment along the hole's major axis,
* shortened by half its minor axis.
* A circular pad is just a degenerate case of an oval hole.
*/
wxPoint padStart, padEnd;
int padWidth;
pad->GetOblongGeometry( pad->GetSize(), &padStart, &padEnd, &padWidth );
padStart += pad->ShapePos();
padEnd += pad->ShapePos();
SEG padSeg( padStart, padEnd );
int widths = ( padWidth + refSegWidth ) / 2;
int center2centerAllowed = minClearance + widths;
// Avoid square-roots if possible (for performance)
SEG::ecoord center2center_squared = refSeg.SquaredDistance( padSeg );
if( center2center_squared < SEG::Square( center2centerAllowed ) )
{
*aActualDist = std::max( 0.0, sqrt( center2center_squared ) - widths );
return false;
}
}
else if( ( pad->GetShape() == PAD_SHAPE_RECT || pad->GetShape() == PAD_SHAPE_ROUNDRECT )
&& ( (int) pad->GetOrientation() % 900 == 0 ) )
{
EDA_RECT padBBox = pad->GetBoundingBox();
int widths = refSegWidth / 2;
// Note a ROUNDRECT pad with a corner radius = r can be treated as a smaller
// RECT (size - 2*r) with a clearance increased by r
if( pad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
padBBox.Inflate( - pad->GetRoundRectCornerRadius() );
widths += pad->GetRoundRectCornerRadius();
}
SHAPE_RECT padShape( padBBox.GetPosition(), padBBox.GetWidth(), padBBox.GetHeight() );
int actual;
if( padShape.DoCollide( refSeg, minClearance + widths, &actual ) )
{
*aActualDist = std::max( 0, actual - widths );
return false;
}
}
else // Convert the rest to polygons
{
SHAPE_POLY_SET polyset;
BOARD* board = pad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
pad->TransformShapeWithClearanceToPolygon( polyset, 0, maxError );
const SHAPE_LINE_CHAIN& refpoly = polyset.COutline( 0 );
int widths = refSegWidth / 2;
int actual;
if( !poly2segmentDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
(wxPoint) refSeg.A, (wxPoint) refSeg.B,
minClearance + widths, &actual ) )
{
*aActualDist = std::max( 0, actual - widths );
return false;
}
}
return true;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad, int aMinClearance, int* aActual )
{
// relativePadPos is the aPad shape position relative to the aRefPad shape position
wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
int center2center = KiROUND( EuclideanNorm( relativePadPos ) );
// Quick test: Clearance is OK if the bounding circles are further away than aMinClearance
if( center2center - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius() >= aMinClearance )
return true;
/* Here, pads are near and DRC depends on the pad shapes. We must compare distance using
* a fine shape analysis.
* Because a circle or oval shape is the easier shape to test, swap pads to have aRefPad be
* a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. If aRefPad = TRAPEZOID and aPad = RECT, also swap.
*/
bool swap_pads;
swap_pads = false;
// swap pads to make comparisons easier
// Note also a ROUNDRECT pad with a corner radius = r can be considered as
// a smaller RECT (size - 2*r) with a clearance increased by r
// priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other
if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
{
// pad ref shape is here oval, rect, roundrect, chamfered rect, trapezoid or custom
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
swap_pads = true;
break;
case PAD_SHAPE_OVAL:
swap_pads = true;
break;
case PAD_SHAPE_RECT:
case PAD_SHAPE_ROUNDRECT:
if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
swap_pads = true;
break;
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_CUSTOM:
break;
}
}
if( swap_pads )
{
std::swap( aRefPad, aPad );
relativePadPos = -relativePadPos;
}
bool diag = true;
if( ( aRefPad->GetShape() == PAD_SHAPE_CIRCLE || aRefPad->GetShape() == PAD_SHAPE_OVAL ) )
{
/* Treat an oval pad as a line segment along the hole's major axis,
* shortened by half its minor axis.
* A circular pad is just a degenerate case of an oval hole.
*/
wxPoint refPadStart, refPadEnd;
int refPadWidth;
aRefPad->GetOblongGeometry( aRefPad->GetSize(), &refPadStart, &refPadEnd, &refPadWidth );
refPadStart += aRefPad->ShapePos();
refPadEnd += aRefPad->ShapePos();
SEG refPadSeg( refPadStart, refPadEnd );
diag = checkClearanceSegmToPad( refPadSeg, refPadWidth, aPad, aMinClearance, aActual );
}
else
{
int dist_extra = 0;
// corners of aRefPad (used only for rect/roundrect/trap pad)
wxPoint polyref[4];
// corners of aRefPad (used only for custom pad)
SHAPE_POLY_SET polysetref;
if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aRefPad->GetRoundRectCornerRadius();
dist_extra = padRadius;
GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ), aRefPad->GetSize(),
aRefPad->GetOrientation() );
}
else if( aRefPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT )
{
BOARD* board = aRefPad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// The reference pad can be rotated. Calculate the rotated coordinates.
// (note, the ref pad position is the origin of coordinates for this drc test)
int padRadius = aRefPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polysetref, wxPoint( 0, 0 ), aRefPad->GetSize(),
aRefPad->GetOrientation(),
padRadius, aRefPad->GetChamferRectRatio(),
aRefPad->GetChamferPositions(), maxError );
}
else if( aRefPad->GetShape() == PAD_SHAPE_CUSTOM )
{
polysetref.Append( aRefPad->GetCustomShapeAsPolygon() );
// The reference pad can be rotated. Calculate the rotated coordinates.
// (note, the ref pad position is the origin of coordinates for this drc test)
aRefPad->CustomShapeAsPolygonToBoardPosition( &polysetref, wxPoint( 0, 0 ),
aRefPad->GetOrientation() );
}
else
{
// BuildPadPolygon has meaning for rect a trapeziod shapes and returns the 4 corners.
aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
}
// corners of aPad (used only for rect/roundrect/trap pad)
wxPoint polycompare[4];
// corners of aPad (used only custom pad)
SHAPE_POLY_SET polysetcompare;
switch( aPad->GetShape() )
{
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_RECT:
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CUSTOM:
if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aPad->GetRoundRectCornerRadius();
dist_extra = padRadius;
GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos, aPad->GetSize(),
aPad->GetOrientation() );
}
else if( aPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT )
{
BOARD* board = aRefPad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// The pad to compare can be rotated. Calculate the rotated coordinates.
// ( note, the pad to compare position is the relativePadPos for this drc test)
int padRadius = aPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polysetcompare, relativePadPos,
aPad->GetSize(), aPad->GetOrientation(),
padRadius, aPad->GetChamferRectRatio(),
aPad->GetChamferPositions(), maxError );
}
else if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
{
polysetcompare.Append( aPad->GetCustomShapeAsPolygon() );
// The pad to compare can be rotated. Calculate the rotated coordinates.
// ( note, the pad to compare position is the relativePadPos for this drc test)
aPad->CustomShapeAsPolygonToBoardPosition( &polysetcompare, relativePadPos,
aPad->GetOrientation() );
}
else
{
aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
// Move aPad shape to relativePadPos
for( int ii = 0; ii < 4; ii++ )
polycompare[ii] += relativePadPos;
}
// And now test polygons: We have 3 cases:
// one poly is complex and the other is basic (has only 4 corners)
// both polys are complex
// both polys are basic (have only 4 corners) the most usual case
if( polysetref.OutlineCount() && polysetcompare.OutlineCount() == 0)
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
polycompare, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else if( polysetref.OutlineCount() == 0 && polysetcompare.OutlineCount())
{
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC((wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
polyref, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else if( polysetref.OutlineCount() && polysetcompare.OutlineCount() )
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC((wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
(wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else
{
if( !poly2polyDRC( polyref, 4, polycompare, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
break;
default:
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() );
break;
}
}
return diag;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE::poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd,
int aDist, int* aActual )
{
/* Test if the segment is contained in the polygon.
* This case is not covered by the following check if the segment is
* completely contained in the polygon (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aSegStart ) )
{
*aActual = 0;
return false;
}
for( int ii = 0, jj = aTrefCount-1; ii < aTrefCount; jj = ii, ii++ )
{ // for all edges in polygon
double d;
if( TestForIntersectionOfStraightLineSegments( aTref[ii].x, aTref[ii].y, aTref[jj].x,
aTref[jj].y, aSegStart.x, aSegStart.y,
aSegEnd.x, aSegEnd.y, NULL, NULL, &d ) )
{
*aActual = 0;
return false;
}
if( d < aDist )
{
*aActual = KiROUND( d );
return false;
}
}
return true;
}
/**
* compare 2 convex polygons and return true if distance > aDist (if no error DRC)
* i.e if for each edge of the first polygon distance from each edge of the other polygon
* is >= aDist
*/
bool test::DRC_TEST_PROVIDER_CLEARANCE::poly2polyDRC( wxPoint* aTref, int aTrefCount, wxPoint* aTtest, int aTtestCount,
int aAllowedDist, int* actualDist )
{
/* Test if one polygon is contained in the other and thus the polygon overlap.
* This case is not covered by the following check if one polygone is
* completely contained in the other (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aTtest[0] ) )
{
*actualDist = 0;
return false;
}
if( TestPointInsidePolygon( aTtest, aTtestCount, aTref[0] ) )
{
*actualDist = 0;
return false;
}
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ )
{
// for all edges in aTref
for( int kk = 0, ll = aTtestCount - 1; kk < aTtestCount; ll = kk, kk++ )
{
// for all edges in aTtest
double d;
int intersect = TestForIntersectionOfStraightLineSegments(
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
aTtest[kk].x, aTtest[kk].y, aTtest[ll].x, aTtest[ll].y,
nullptr, nullptr, &d );
if( intersect )
{
*actualDist = 0;
return false;
}
if( d < aAllowedDist )
{
*actualDist = KiROUND( d );
return false;
}
}
}
return true;
}
void test::DRC_TEST_PROVIDER_CLEARANCE::testZones()
void test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::testZones()
{
// Test copper areas for valid netcodes -> fixme, goes to connectivity checks
@ -1502,7 +887,7 @@ void test::DRC_TEST_PROVIDER_CLEARANCE::testZones()
}
std::set<test::DRC_RULE_ID_T> test::DRC_TEST_PROVIDER_CLEARANCE::GetMatchingRuleIds() const
std::set<test::DRC_RULE_ID_T> test::DRC_TEST_PROVIDER_COPPER_CLEARANCE::GetMatchingRuleIds() const
{
return { DRC_RULE_ID_T::DRC_RULE_ID_CLEARANCE };
}
@ -1510,5 +895,5 @@ std::set<test::DRC_RULE_ID_T> test::DRC_TEST_PROVIDER_CLEARANCE::GetMatchingRule
namespace detail
{
static test::DRC_REGISTER_TEST_PROVIDER<test::DRC_TEST_PROVIDER_CLEARANCE> dummy;
//static test::DRC_REGISTER_TEST_PROVIDER<test::DRC_TEST_PROVIDER_COPPER_CLEARANCE> dummy;
}

View File

@ -0,0 +1,244 @@
#include <common.h>
#include <class_board.h>
#include <class_drawsegment.h>
#include <class_pad.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/polygon_test_point_inside.h>
#include <geometry/seg.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_rect.h>
#include <drc_proto/drc_engine.h>
#include <drc_proto/drc_item.h>
#include <drc_proto/drc_rule.h>
#include <drc_proto/drc_test_provider_clearance_base.h>
namespace test {
class DRC_TEST_PROVIDER_HOLE_CLEARANCE : public DRC_TEST_PROVIDER_CLEARANCE_BASE
{
public:
DRC_TEST_PROVIDER_HOLE_CLEARANCE () :
DRC_TEST_PROVIDER_CLEARANCE_BASE()
{
}
virtual ~DRC_TEST_PROVIDER_HOLE_CLEARANCE()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return "hole_clearance";
};
virtual const wxString GetDescription() const override
{
return "Tests clearance of holes (via/pad drills)";
}
virtual std::set<test::DRC_RULE_ID_T> GetMatchingRuleIds() const override;
private:
void testPadHoles();
bool doPadToPadHoleDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd, int x_limit );
};
};
bool test::DRC_TEST_PROVIDER_HOLE_CLEARANCE::Run()
{
auto bds = m_drcEngine->GetDesignSettings();
m_board = m_drcEngine->GetBoard();
m_largestClearance = bds->GetBiggestClearanceValue();
ReportStage( ("Testing pad/hole clearances"), 0, 2 );
testPadHoles();
return true;
}
void test::DRC_TEST_PROVIDER_HOLE_CLEARANCE::testPadHoles()
{
std::vector<D_PAD*> sortedPads;
m_board->GetSortedPadListByXthenYCoord( sortedPads );
if( sortedPads.empty() )
return;
// find the max size of the pads (used to stop the pad-to-pad tests)
int max_size = 0;
for( D_PAD* pad : sortedPads )
{
// GetBoundingRadius() is the radius of the minimum sized circle fully containing the pad
int radius = pad->GetBoundingRadius();
if( radius > max_size )
max_size = radius;
}
// Better to be fast than accurate; this keeps us from having to look up / calculate the
// actual clearances
max_size += m_largestClearance;
// Upper limit of pad list (limit not included)
D_PAD** listEnd = &sortedPads[0] + sortedPads.size();
// Test the pads
for( auto& pad : sortedPads )
{
int x_limit = pad->GetPosition().x + pad->GetBoundingRadius() + max_size;
drc_dbg(4,"-> %p\n", pad);
doPadToPadHoleDrc( pad, &pad, listEnd, x_limit );
}
}
bool test::DRC_TEST_PROVIDER_HOLE_CLEARANCE::doPadToPadHoleDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd,
int x_limit )
{
const static LSET all_cu = LSET::AllCuMask();
LSET layerMask = aRefPad->GetLayerSet() & all_cu;
// For hole testing we use a dummy pad which is given the shape of the hole. Note that
// this pad must have a parent because some functions expect a non-null parent to find
// the pad's board.
MODULE dummymodule( m_board ); // Creates a dummy parent
D_PAD dummypad( &dummymodule );
// Ensure the hole is on all copper layers
dummypad.SetLayerSet( all_cu | dummypad.GetLayerSet() );
for( D_PAD** pad_list = aStart; pad_list<aEnd; ++pad_list )
{
D_PAD* pad = *pad_list;
if( pad == aRefPad )
continue;
drc_dbg(4," chk against -> %p\n", pad);
// We can stop the test when pad->GetPosition().x > x_limit
// because the list is sorted by X values
if( pad->GetPosition().x > x_limit )
break;
drc_dbg(4," chk2 against -> %p ds %d %d\n", pad, pad->GetDrillSize().x, aRefPad->GetDrillSize().x );
// No problem if pads which are on copper layers are on different copper layers,
// (pads can be only on a technical layer, to build complex pads)
// but their hole (if any ) can create DRC error because they are on all
// copper layers, so we test them
if( ( pad->GetLayerSet() & layerMask ) == 0 &&
( pad->GetLayerSet() & all_cu ) != 0 &&
( aRefPad->GetLayerSet() & all_cu ) != 0 )
{
drc_dbg(4," chk3 against -> %p\n", pad);
// if holes are in the same location and have the same size and shape,
// this can be accepted
if( pad->GetPosition() == aRefPad->GetPosition()
&& pad->GetDrillSize() == aRefPad->GetDrillSize()
&& pad->GetDrillShape() == aRefPad->GetDrillShape() )
{
if( aRefPad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
continue;
// for oval holes: must also have the same orientation
if( pad->GetOrientation() == aRefPad->GetOrientation() )
continue;
}
/* Here, we must test clearance between holes and pads
* dummy pad size and shape is adjusted to pad drill size and shape
*/
if( pad->GetDrillSize().x )
{
drc_dbg(4,"check pad %p\n", pad );
// pad under testing has a hole, test this hole against pad reference
dummypad.SetPosition( pad->GetPosition() );
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetOrientation( pad->GetOrientation() );
auto rule = m_drcEngine->EvalRulesForItems( test::DRC_RULE_ID_T::DRC_RULE_ID_HOLE_CLEARANCE, aRefPad, &dummypad );
auto minClearance = rule->GetConstraint().GetValue().Min();
int actual;
if( !checkClearancePadToPad( aRefPad, &dummypad, minClearance, &actual ) )
{
DRC_ITEM* drcItem = new DRC_ITEM( DRCE_HOLE_NEAR_PAD );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
"",
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), actual, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( pad, aRefPad );
drcItem->SetViolatingRule( rule );
ReportWithMarker( drcItem, pad->GetPosition() );
return false;
}
}
if( aRefPad->GetDrillSize().x ) // pad reference has a hole
{
drc_dbg(4,"check refpad %p\n", pad );
dummypad.SetPosition( aRefPad->GetPosition() );
dummypad.SetSize( aRefPad->GetDrillSize() );
dummypad.SetShape( aRefPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetOrientation( aRefPad->GetOrientation() );
auto rule = m_drcEngine->EvalRulesForItems( test::DRC_RULE_ID_T::DRC_RULE_ID_HOLE_CLEARANCE, aRefPad, &dummypad );
auto minClearance = rule->GetConstraint().GetValue().Min();
int actual;
if( !checkClearancePadToPad( pad, &dummypad, minClearance, &actual ) )
{
DRC_ITEM* drcItem = new DRC_ITEM( DRCE_HOLE_NEAR_PAD );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
"",
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), actual, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( aRefPad, pad );
drcItem->SetViolatingRule( rule );
ReportWithMarker( drcItem, pad->GetPosition() );
return false;
}
}
}
}
return true;
}
std::set<test::DRC_RULE_ID_T> test::DRC_TEST_PROVIDER_HOLE_CLEARANCE::GetMatchingRuleIds() const
{
return { DRC_RULE_ID_T::DRC_RULE_ID_HOLE_CLEARANCE };
}
namespace detail
{
static test::DRC_REGISTER_TEST_PROVIDER<test::DRC_TEST_PROVIDER_HOLE_CLEARANCE> dummy;
}