Fixes to SHAPE_POLY_SET slitting/fracturing algo, some speed optimization.
This commit is contained in:
parent
c9739b622b
commit
24170f5588
|
@ -354,7 +354,8 @@ void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
|
|||
if( bufferPolys.GetCornersCount() == 0 )
|
||||
continue;
|
||||
|
||||
#if 1 // Set to 1 to use boost::polygon to subtract holes to copper areas
|
||||
#if 0
|
||||
// Set to 1 to use boost::polygon to subtract holes to copper areas
|
||||
// (due to bugs in boost::polygon, this is deprecated and Clipper is used instead
|
||||
KI_POLYGON_SET currLayerPolyset;
|
||||
KI_POLYGON_SET polysetHoles;
|
||||
|
|
|
@ -37,49 +37,52 @@
|
|||
|
||||
using namespace ClipperLib;
|
||||
|
||||
int SHAPE_POLY_SET::NewOutline ()
|
||||
int SHAPE_POLY_SET::NewOutline()
|
||||
{
|
||||
Path empty_path;
|
||||
Paths poly;
|
||||
poly.push_back(empty_path);
|
||||
m_polys.push_back(poly);
|
||||
poly.push_back( empty_path );
|
||||
m_polys.push_back( poly );
|
||||
return m_polys.size() - 1;
|
||||
}
|
||||
|
||||
|
||||
int SHAPE_POLY_SET::NewHole( int aOutline )
|
||||
{
|
||||
assert(false);
|
||||
assert( false );
|
||||
return -1;
|
||||
}
|
||||
|
||||
int SHAPE_POLY_SET::AppendVertex ( int x, int y, int aOutline, int aHole )
|
||||
|
||||
int SHAPE_POLY_SET::AppendVertex( int x, int y, int aOutline, int aHole )
|
||||
{
|
||||
if(aOutline < 0)
|
||||
if( aOutline < 0 )
|
||||
aOutline += m_polys.size();
|
||||
|
||||
int idx;
|
||||
|
||||
if(aHole < 0)
|
||||
if( aHole < 0 )
|
||||
idx = 0;
|
||||
else
|
||||
idx = aHole + 1;
|
||||
|
||||
assert ( aOutline < (int)m_polys.size() );
|
||||
assert ( idx < (int)m_polys[aOutline].size() );
|
||||
assert( aOutline < (int)m_polys.size() );
|
||||
assert( idx < (int)m_polys[aOutline].size() );
|
||||
|
||||
m_polys[aOutline][idx].push_back( IntPoint( x, y ) );
|
||||
|
||||
return m_polys[aOutline][idx].size();
|
||||
}
|
||||
|
||||
int SHAPE_POLY_SET::VertexCount ( int aOutline , int aHole ) const
|
||||
|
||||
int SHAPE_POLY_SET::VertexCount( int aOutline, int aHole ) const
|
||||
{
|
||||
if(aOutline < 0)
|
||||
if( aOutline < 0 )
|
||||
aOutline += m_polys.size();
|
||||
|
||||
int idx;
|
||||
|
||||
if(aHole < 0)
|
||||
if( aHole < 0 )
|
||||
idx = 0;
|
||||
else
|
||||
idx = aHole + 1;
|
||||
|
@ -90,34 +93,36 @@ int SHAPE_POLY_SET::VertexCount ( int aOutline , int aHole ) const
|
|||
return m_polys[aOutline][idx].size();
|
||||
}
|
||||
|
||||
const VECTOR2I SHAPE_POLY_SET::GetVertex ( int index, int aOutline , int aHole ) const
|
||||
|
||||
const VECTOR2I SHAPE_POLY_SET::GetVertex( int index, int aOutline, int aHole ) const
|
||||
{
|
||||
if(aOutline < 0)
|
||||
if( aOutline < 0 )
|
||||
aOutline += m_polys.size();
|
||||
|
||||
int idx;
|
||||
|
||||
if(aHole < 0)
|
||||
if( aHole < 0 )
|
||||
idx = 0;
|
||||
else
|
||||
idx = aHole + 1;
|
||||
|
||||
assert ( aOutline < (int)m_polys.size() );
|
||||
assert ( idx < (int)m_polys[aOutline].size() );
|
||||
assert( aOutline < (int)m_polys.size() );
|
||||
assert( idx < (int)m_polys[aOutline].size() );
|
||||
|
||||
IntPoint p = m_polys[aOutline][idx][index];
|
||||
return VECTOR2I (p.X, p.Y);
|
||||
}
|
||||
|
||||
|
||||
int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
|
||||
{
|
||||
assert ( aOutline.IsClosed() );
|
||||
assert( aOutline.IsClosed() );
|
||||
|
||||
Path p = convert ( aOutline );
|
||||
Path p = convert( aOutline );
|
||||
Paths poly;
|
||||
|
||||
if( !Orientation( p ) )
|
||||
ReversePath(p); // outlines are always CW
|
||||
ReversePath( p ); // outlines are always CW
|
||||
|
||||
poly.push_back( p );
|
||||
|
||||
|
@ -126,73 +131,80 @@ int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
|
|||
return m_polys.size() - 1;
|
||||
}
|
||||
|
||||
int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
|
||||
|
||||
int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
|
||||
{
|
||||
assert ( m_polys.size() );
|
||||
if(aOutline < 0)
|
||||
|
||||
if( aOutline < 0 )
|
||||
aOutline += m_polys.size();
|
||||
|
||||
Paths& poly = m_polys[ aOutline ];
|
||||
Paths& poly = m_polys[aOutline];
|
||||
|
||||
assert ( poly.size() );
|
||||
assert( poly.size() );
|
||||
|
||||
Path p = convert( aHole );
|
||||
|
||||
Path p = convert ( aHole );
|
||||
if( Orientation( p ) )
|
||||
ReversePath(p); // holes are always CCW
|
||||
ReversePath( p ); // holes are always CCW
|
||||
|
||||
poly.push_back( p );
|
||||
|
||||
return poly.size() - 1;
|
||||
}
|
||||
|
||||
|
||||
const ClipperLib::Path SHAPE_POLY_SET::convert( const SHAPE_LINE_CHAIN& aPath )
|
||||
{
|
||||
Path c_path;
|
||||
|
||||
for(int i = 0; i < aPath.PointCount(); i++)
|
||||
for( int i = 0; i < aPath.PointCount(); i++ )
|
||||
{
|
||||
const VECTOR2I& vertex = aPath.CPoint(i);
|
||||
c_path.push_back(ClipperLib::IntPoint ( vertex.x, vertex.y ) );
|
||||
const VECTOR2I& vertex = aPath.CPoint( i );
|
||||
c_path.push_back( ClipperLib::IntPoint( vertex.x, vertex.y ) );
|
||||
}
|
||||
|
||||
return c_path;
|
||||
}
|
||||
|
||||
|
||||
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType type, const SHAPE_POLY_SET& b )
|
||||
{
|
||||
Clipper c;
|
||||
|
||||
c.StrictlySimple( true );
|
||||
|
||||
BOOST_FOREACH ( Paths& subject, m_polys )
|
||||
BOOST_FOREACH( Paths& subject, m_polys )
|
||||
{
|
||||
c.AddPaths(subject, ptSubject, true);
|
||||
c.AddPaths( subject, ptSubject, true );
|
||||
}
|
||||
|
||||
BOOST_FOREACH ( const Paths& clip, b.m_polys )
|
||||
BOOST_FOREACH( const Paths& clip, b.m_polys )
|
||||
{
|
||||
c.AddPaths(clip, ptClip, true);
|
||||
c.AddPaths( clip, ptClip, true );
|
||||
}
|
||||
|
||||
PolyTree solution;
|
||||
|
||||
c.Execute(type, solution, pftNonZero, pftNonZero);
|
||||
c.Execute( type, solution, pftNonZero, pftNonZero );
|
||||
|
||||
importTree(&solution);
|
||||
importTree( &solution );
|
||||
}
|
||||
|
||||
|
||||
void SHAPE_POLY_SET::Add( const SHAPE_POLY_SET& b )
|
||||
{
|
||||
booleanOp( ctUnion, b );
|
||||
}
|
||||
|
||||
|
||||
void SHAPE_POLY_SET::Subtract( const SHAPE_POLY_SET& b )
|
||||
{
|
||||
booleanOp( ctDifference, b );
|
||||
}
|
||||
|
||||
|
||||
void SHAPE_POLY_SET::Erode ( int aFactor )
|
||||
void SHAPE_POLY_SET::Erode( int aFactor )
|
||||
{
|
||||
ClipperOffset c;
|
||||
|
||||
|
@ -201,290 +213,265 @@ void SHAPE_POLY_SET::Erode ( int aFactor )
|
|||
|
||||
PolyTree solution;
|
||||
|
||||
c.Execute ( solution, aFactor );
|
||||
c.Execute( solution, aFactor );
|
||||
|
||||
m_polys.clear();
|
||||
|
||||
for (PolyNode *n = solution.GetFirst(); n; n = n->GetNext() )
|
||||
for( PolyNode* n = solution.GetFirst(); n; n = n->GetNext() )
|
||||
{
|
||||
Paths ps;
|
||||
ps.push_back(n->Contour);
|
||||
m_polys.push_back(ps);
|
||||
ps.push_back( n->Contour );
|
||||
m_polys.push_back( ps );
|
||||
}
|
||||
}
|
||||
|
||||
void SHAPE_POLY_SET::importTree ( ClipperLib::PolyTree* tree)
|
||||
|
||||
void SHAPE_POLY_SET::importTree( ClipperLib::PolyTree* tree )
|
||||
{
|
||||
m_polys.clear();
|
||||
|
||||
for (PolyNode *n = tree->GetFirst(); n; n = n->GetNext() )
|
||||
for( PolyNode* n = tree->GetFirst(); n; n = n->GetNext() )
|
||||
{
|
||||
if( !n->IsHole() )
|
||||
{
|
||||
Paths paths;
|
||||
paths.push_back(n->Contour);
|
||||
paths.push_back( n->Contour );
|
||||
|
||||
for (unsigned i = 0; i < n->Childs.size(); i++)
|
||||
paths.push_back(n->Childs[i]->Contour);
|
||||
m_polys.push_back(paths);
|
||||
for( unsigned i = 0; i < n->Childs.size(); i++ )
|
||||
paths.push_back( n->Childs[i]->Contour );
|
||||
|
||||
m_polys.push_back( paths );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Polygon fracturing code. Work in progress.
|
||||
|
||||
// Polygon fracturing code. Work in progress.
|
||||
struct FractureEdge
|
||||
{
|
||||
FractureEdge(bool connected, Path* owner, int index) :
|
||||
m_connected(connected),
|
||||
m_owner(owner),
|
||||
m_next(NULL)
|
||||
FractureEdge( bool connected, Path* owner, int index ) :
|
||||
m_connected( connected ),
|
||||
m_next( NULL )
|
||||
{
|
||||
m_p1 = (*owner)[index];
|
||||
m_p2 = (*owner)[(index + 1) % owner->size()];
|
||||
}
|
||||
|
||||
FractureEdge(int64_t y = 0) :
|
||||
m_connected(false),
|
||||
m_owner(NULL),
|
||||
m_next(NULL)
|
||||
FractureEdge( int64_t y = 0 ) :
|
||||
m_connected( false ),
|
||||
m_next( NULL )
|
||||
{
|
||||
m_p1.Y = m_p2.Y = y;
|
||||
}
|
||||
|
||||
FractureEdge(bool connected, const IntPoint& p1, const IntPoint& p2) :
|
||||
m_connected(connected),
|
||||
m_owner(NULL),
|
||||
m_p1(p1),
|
||||
m_p2(p2),
|
||||
m_next(NULL)
|
||||
FractureEdge( bool connected, const IntPoint& p1, const IntPoint& p2 ) :
|
||||
m_connected( connected ),
|
||||
m_p1( p1 ),
|
||||
m_p2( p2 ),
|
||||
m_next( NULL )
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
bool matches ( int y ) const
|
||||
bool matches( int y ) const
|
||||
{
|
||||
int y_min = std::min(m_p1.Y, m_p2.Y);
|
||||
int y_max = std::max(m_p1.Y, m_p2.Y);
|
||||
int y_min = std::min( m_p1.Y, m_p2.Y );
|
||||
int y_max = std::max( m_p1.Y, m_p2.Y );
|
||||
|
||||
return (y >= y_min) && (y <= y_max);
|
||||
return ( y >= y_min ) && ( y <= y_max );
|
||||
}
|
||||
|
||||
bool m_connected;
|
||||
Path* m_owner;
|
||||
IntPoint m_p1, m_p2;
|
||||
FractureEdge *m_next;
|
||||
FractureEdge* m_next;
|
||||
};
|
||||
|
||||
struct CompareEdges
|
||||
{
|
||||
bool operator()(const FractureEdge *a, const FractureEdge *b) const
|
||||
{
|
||||
if( std::min(a->m_p1.Y, a->m_p2.Y) < std::min(b->m_p1.Y, b->m_p2.Y) )
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::vector<FractureEdge*> FractureEdgeSet;
|
||||
|
||||
static int processEdge ( FractureEdgeSet& edges, FractureEdge* edge )
|
||||
static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
|
||||
{
|
||||
int n = 0;
|
||||
int64_t x = edge->m_p1.X;
|
||||
int64_t y = edge->m_p1.Y;
|
||||
int64_t min_dist = std::numeric_limits<int64_t>::max();
|
||||
int64_t x_nearest = 0;
|
||||
|
||||
FractureEdge* e_nearest = NULL;
|
||||
|
||||
int64_t min_dist_l = std::numeric_limits<int64_t>::max();
|
||||
int64_t min_dist_r = std::numeric_limits<int64_t>::max();
|
||||
int64_t x_nearest_l = 0, x_nearest_r = 0, x_nearest;
|
||||
|
||||
// fixme: search edges in sorted multiset
|
||||
// FractureEdge comp_min( std::min(edge->m_p1.Y, edge->m_p2.Y) );
|
||||
// FractureEdgeSet::iterator e_begin = edges.lower_bound ( &comp_min );
|
||||
|
||||
FractureEdgeSet::iterator e_nearest_l = edges.end(), e_nearest_r = edges.end(), e_nearest;
|
||||
|
||||
|
||||
for(FractureEdgeSet::iterator i = edges.begin() ; i != edges.end(); ++i)
|
||||
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
||||
{
|
||||
n++;
|
||||
if( (*i)->matches(y) )
|
||||
if( !(*i)->matches( y ) )
|
||||
continue;
|
||||
|
||||
int64_t x_intersect;
|
||||
|
||||
if( (*i)->m_p1.Y == (*i)->m_p2.Y ) // horizontal edge
|
||||
x_intersect = std::max( (*i)->m_p1.X, (*i)->m_p2.X );
|
||||
else
|
||||
x_intersect = (*i)->m_p1.X + rescale((*i)->m_p2.X - (*i)->m_p1.X,
|
||||
y - (*i)->m_p1.Y, (*i)->m_p2.Y - (*i)->m_p1.Y );
|
||||
|
||||
int64_t dist = ( x - x_intersect );
|
||||
|
||||
if( dist > 0 && dist < min_dist )
|
||||
{
|
||||
int64_t x_intersect;
|
||||
if( (*i)->m_p1.Y == (*i)->m_p2.Y ) // horizontal edge
|
||||
x_intersect = std::max ( (*i)->m_p1.X, (*i)->m_p2.X );
|
||||
else
|
||||
x_intersect = (*i)->m_p1.X + rescale((*i)->m_p2.X - (*i)->m_p1.X, y - (*i)->m_p1.Y, (*i)->m_p2.Y - (*i)->m_p1.Y );
|
||||
|
||||
int64_t dist = (x - x_intersect);
|
||||
|
||||
if(dist > 0 && dist < min_dist_l)
|
||||
{
|
||||
min_dist_l = dist;
|
||||
x_nearest_l = x_intersect;
|
||||
e_nearest_l = i;
|
||||
}
|
||||
|
||||
if(dist <= 0 && (-dist) < min_dist_r)
|
||||
{
|
||||
min_dist_r = -dist;
|
||||
x_nearest_r = x_intersect;
|
||||
e_nearest_r = i;
|
||||
}
|
||||
min_dist = dist;
|
||||
x_nearest = x_intersect;
|
||||
e_nearest = (*i);
|
||||
}
|
||||
}
|
||||
|
||||
if(e_nearest_l != edges.end() || e_nearest_r != edges.end())
|
||||
if( e_nearest && e_nearest->m_connected )
|
||||
{
|
||||
if( e_nearest_l !=edges.end() && ( (*e_nearest_l)->m_connected || ((*e_nearest_l) ->m_owner != edge->m_owner )))
|
||||
{
|
||||
e_nearest = e_nearest_l;
|
||||
x_nearest = x_nearest_l;
|
||||
}
|
||||
else if( e_nearest_r !=edges.end() && ( (*e_nearest_r)->m_connected || ((*e_nearest_r) ->m_owner != edge->m_owner ) )) {
|
||||
e_nearest = e_nearest_r;
|
||||
x_nearest = x_nearest_r;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
int count = 0;
|
||||
|
||||
bool connFlag = (*e_nearest)->m_connected;
|
||||
FractureEdge* lead1 = new FractureEdge( true, IntPoint( x_nearest, y), IntPoint( x, y ) );
|
||||
FractureEdge* lead2 = new FractureEdge( true, IntPoint( x, y), IntPoint( x_nearest, y ) );
|
||||
FractureEdge* split_2 = new FractureEdge( true, IntPoint( x_nearest, y ), e_nearest->m_p2 );
|
||||
|
||||
FractureEdge split_1 ( connFlag, (*e_nearest)->m_p1, IntPoint(x_nearest, y) );
|
||||
FractureEdge *lead1 = new FractureEdge( connFlag, IntPoint(x_nearest, y), IntPoint(x, y) );
|
||||
FractureEdge *lead2 = new FractureEdge( connFlag, IntPoint(x, y), IntPoint(x_nearest, y) );
|
||||
FractureEdge *split_2 = new FractureEdge ( connFlag, IntPoint(x_nearest, y), (*e_nearest)->m_p2 );
|
||||
edges.push_back( split_2 );
|
||||
edges.push_back( lead1 );
|
||||
edges.push_back( lead2 );
|
||||
|
||||
edges.push_back(split_2);
|
||||
edges.push_back(lead1);
|
||||
edges.push_back(lead2);
|
||||
FractureEdge* link = e_nearest->m_next;
|
||||
|
||||
FractureEdge* link = (*e_nearest)->m_next;
|
||||
|
||||
(*e_nearest)->m_p1 = split_1.m_p1;
|
||||
(*e_nearest)->m_p2 = IntPoint(x_nearest, y);
|
||||
(*e_nearest)->m_connected = connFlag;
|
||||
(*e_nearest)->m_next = lead1;
|
||||
e_nearest->m_p2 = IntPoint( x_nearest, y );
|
||||
e_nearest->m_next = lead1;
|
||||
lead1->m_next = edge;
|
||||
FractureEdge* last;
|
||||
|
||||
FractureEdge *last;
|
||||
for(last = edge; last->m_next != edge; last = last->m_next)
|
||||
for( last = edge; last->m_next != edge; last = last->m_next )
|
||||
{
|
||||
last->m_connected = connFlag;
|
||||
last->m_owner = NULL;
|
||||
last->m_connected = true;
|
||||
count++;
|
||||
}
|
||||
|
||||
last->m_owner = NULL;
|
||||
last->m_connected = connFlag;
|
||||
last->m_connected = true;
|
||||
last->m_next = lead2;
|
||||
lead2->m_next = split_2;
|
||||
split_2->m_next = link;
|
||||
|
||||
return 1;
|
||||
return count + 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void SHAPE_POLY_SET::fractureSingle( ClipperLib::Paths& paths )
|
||||
{
|
||||
FractureEdgeSet edges;
|
||||
FractureEdge *root = NULL;
|
||||
FractureEdgeSet border_edges;
|
||||
FractureEdge* root = NULL;
|
||||
|
||||
bool first = true;
|
||||
|
||||
if(paths.size() == 1)
|
||||
if( paths.size() == 1 )
|
||||
return;
|
||||
|
||||
int num_unconnected = 0;
|
||||
|
||||
BOOST_FOREACH(Path& path, paths)
|
||||
BOOST_FOREACH( Path& path, paths )
|
||||
{
|
||||
int index = 0;
|
||||
|
||||
FractureEdge *prev = NULL, *first_edge = NULL;
|
||||
for(unsigned i = 0; i < path.size(); i++)
|
||||
{
|
||||
FractureEdge *fe = new FractureEdge ( first, &path, index++ );
|
||||
|
||||
if(!root)
|
||||
int64_t x_min = std::numeric_limits<int64_t>::max();
|
||||
|
||||
for( unsigned i = 0; i < path.size(); i++ )
|
||||
{
|
||||
if( path[i].X < x_min )
|
||||
x_min = path[i].X;
|
||||
}
|
||||
|
||||
for( unsigned i = 0; i < path.size(); i++ )
|
||||
{
|
||||
FractureEdge* fe = new FractureEdge( first, &path, index++ );
|
||||
|
||||
if( !root )
|
||||
root = fe;
|
||||
|
||||
if(!first_edge)
|
||||
if( !first_edge )
|
||||
first_edge = fe;
|
||||
if(prev)
|
||||
|
||||
if( prev )
|
||||
prev->m_next = fe;
|
||||
|
||||
if(i == path.size() - 1)
|
||||
if( i == path.size() - 1 )
|
||||
fe->m_next = first_edge;
|
||||
|
||||
prev = fe;
|
||||
edges.push_back ( fe );
|
||||
edges.push_back( fe );
|
||||
|
||||
if(!fe->m_connected)
|
||||
if( !first )
|
||||
{
|
||||
if( fe->m_p1.X == x_min )
|
||||
border_edges.push_back( fe );
|
||||
}
|
||||
|
||||
if( !fe->m_connected )
|
||||
num_unconnected++;
|
||||
}
|
||||
|
||||
first = false; // first path is always the outline
|
||||
}
|
||||
|
||||
while(1)
|
||||
// keep connecting holes to the main outline, until there's no holes left...
|
||||
while( num_unconnected > 0 )
|
||||
{
|
||||
int n_unconnected = 0;
|
||||
int64_t x_min = std::numeric_limits<int64_t>::max();
|
||||
FractureEdge* smallestX;
|
||||
|
||||
for(FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
||||
// find the left-most hole edge and merge with the outline
|
||||
for( FractureEdgeSet::iterator i = border_edges.begin(); i != border_edges.end(); ++i )
|
||||
{
|
||||
if(!(*i)->m_connected)
|
||||
n_unconnected++;
|
||||
}
|
||||
|
||||
if(!n_unconnected)
|
||||
break;
|
||||
|
||||
for(FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
||||
{
|
||||
if(!(*i)->m_connected)
|
||||
int64_t xt = (*i)->m_p1.X;
|
||||
if( ( xt < x_min ) && ! (*i)->m_connected )
|
||||
{
|
||||
if (processEdge ( edges, *i ) )
|
||||
break;
|
||||
x_min = xt;
|
||||
smallestX = *i;
|
||||
}
|
||||
}
|
||||
|
||||
num_unconnected -= processEdge( edges, smallestX );
|
||||
}
|
||||
|
||||
paths.clear();
|
||||
Path newPath;
|
||||
FractureEdge *e;
|
||||
FractureEdge* e;
|
||||
|
||||
for(e = root; e->m_next != root; e = e->m_next )
|
||||
newPath.push_back(e->m_p1);
|
||||
for( e = root; e->m_next != root; e = e->m_next )
|
||||
newPath.push_back( e->m_p1 );
|
||||
|
||||
newPath.push_back(e->m_p1);
|
||||
newPath.push_back( e->m_p1 );
|
||||
|
||||
for(FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
||||
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
||||
delete *i;
|
||||
|
||||
paths.push_back(newPath);
|
||||
paths.push_back( newPath );
|
||||
}
|
||||
|
||||
void SHAPE_POLY_SET::Fracture ()
|
||||
|
||||
void SHAPE_POLY_SET::Fracture()
|
||||
{
|
||||
BOOST_FOREACH(Paths& paths, m_polys)
|
||||
BOOST_FOREACH( Paths& paths, m_polys )
|
||||
{
|
||||
fractureSingle( paths );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SHAPE_POLY_SET::Simplify()
|
||||
{
|
||||
for (unsigned i = 0; i < m_polys.size(); i++)
|
||||
for( unsigned i = 0; i < m_polys.size(); i++ )
|
||||
{
|
||||
Paths out;
|
||||
SimplifyPolygons(m_polys[i], out, pftNonZero);
|
||||
SimplifyPolygons( m_polys[i], out, pftNonZero );
|
||||
m_polys[i] = out;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const std::string SHAPE_POLY_SET::Format() const
|
||||
{
|
||||
std::stringstream ss;
|
||||
|
@ -494,9 +481,11 @@ const std::string SHAPE_POLY_SET::Format() const
|
|||
for( unsigned i = 0; i < m_polys.size(); i++ )
|
||||
{
|
||||
ss << "poly " << m_polys[i].size() << "\n";
|
||||
|
||||
for( unsigned j = 0; j < m_polys[i].size(); j++)
|
||||
{
|
||||
ss << m_polys[i][j].size() << "\n";
|
||||
|
||||
for( unsigned v = 0; v < m_polys[i][j].size(); v++)
|
||||
ss << m_polys[i][j][v].X << " " << m_polys[i][j][v].Y << "\n";
|
||||
}
|
||||
|
@ -506,13 +495,14 @@ const std::string SHAPE_POLY_SET::Format() const
|
|||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
|
||||
{
|
||||
std::string tmp;
|
||||
|
||||
aStream >> tmp;
|
||||
|
||||
if(tmp != "polyset")
|
||||
if( tmp != "polyset" )
|
||||
return false;
|
||||
|
||||
aStream >> tmp;
|
||||
|
@ -525,9 +515,9 @@ bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
|
|||
for( int i = 0; i < n_polys; i++ )
|
||||
{
|
||||
ClipperLib::Paths paths;
|
||||
|
||||
aStream >> tmp;
|
||||
if(tmp != "poly")
|
||||
|
||||
if( tmp != "poly" )
|
||||
return false;
|
||||
|
||||
aStream >> tmp;
|
||||
|
@ -546,17 +536,19 @@ bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
|
|||
{
|
||||
ClipperLib::IntPoint p;
|
||||
|
||||
aStream >> tmp; p.X = atoi ( tmp.c_str() );
|
||||
aStream >> tmp; p.Y = atoi ( tmp.c_str() );
|
||||
outline.push_back(p);
|
||||
aStream >> tmp; p.X = atoi( tmp.c_str() );
|
||||
aStream >> tmp; p.Y = atoi( tmp.c_str() );
|
||||
outline.push_back( p );
|
||||
}
|
||||
paths.push_back(outline);
|
||||
paths.push_back( outline );
|
||||
}
|
||||
m_polys.push_back(paths);
|
||||
m_polys.push_back( paths );
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
|
||||
{
|
||||
BOX2I bb;
|
||||
|
@ -569,10 +561,11 @@ const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
|
|||
for( unsigned v = 0; v < m_polys[i][j].size(); v++)
|
||||
{
|
||||
VECTOR2I p( m_polys[i][j][v].X, m_polys[i][j][v].Y );
|
||||
if(first)
|
||||
bb = BOX2I(p, VECTOR2I(0, 0));
|
||||
|
||||
if( first )
|
||||
bb = BOX2I( p, VECTOR2I( 0, 0 ) );
|
||||
else
|
||||
bb.Merge (p);
|
||||
bb.Merge( p );
|
||||
|
||||
first = false;
|
||||
}
|
||||
|
|
|
@ -43,26 +43,26 @@
|
|||
class SHAPE_POLY_SET : public SHAPE
|
||||
{
|
||||
public:
|
||||
SHAPE_POLY_SET() : SHAPE (SH_POLY_SET) {};
|
||||
SHAPE_POLY_SET() : SHAPE( SH_POLY_SET ) {};
|
||||
~SHAPE_POLY_SET() {};
|
||||
|
||||
///> Creates a new empty polygon in the set and returns its index
|
||||
int NewOutline ();
|
||||
int NewOutline();
|
||||
|
||||
///> Cretes a new empty hole in the given outline (default: last one) and returns its index
|
||||
int NewHole( int aOutline = -1);
|
||||
|
||||
///> Adds a new outline to the set and returns its index
|
||||
int AddOutline ( const SHAPE_LINE_CHAIN& aOutline );
|
||||
int AddOutline( const SHAPE_LINE_CHAIN& aOutline );
|
||||
|
||||
///> Adds a new hole to the given outline (default: last) and returns its index
|
||||
int AddHole ( const SHAPE_LINE_CHAIN& aHole, int aOutline = -1 );
|
||||
int AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline = -1 );
|
||||
|
||||
///> Appends a vertex at the end of the given outline/hole (default: last hole in the last outline)
|
||||
int AppendVertex ( int x, int y, int aOutline = -1, int aHole = -1 );
|
||||
int AppendVertex( int x, int y, int aOutline = -1, int aHole = -1 );
|
||||
|
||||
///> Returns the index-th vertex in a given hole outline within a given outline
|
||||
const VECTOR2I GetVertex ( int index, int aOutline = -1, int aHole = -1) const;
|
||||
const VECTOR2I GetVertex( int index, int aOutline = -1, int aHole = -1) const;
|
||||
|
||||
///> Returns true if any of the outlines is self-intersecting
|
||||
bool IsSelfIntersecting();
|
||||
|
@ -71,10 +71,10 @@ class SHAPE_POLY_SET : public SHAPE
|
|||
int OutlineCount() const { return m_polys.size(); }
|
||||
|
||||
///> Returns the number of vertices in a given outline/hole
|
||||
int VertexCount ( int aOutline = -1, int aHole = -1 ) const;
|
||||
int VertexCount( int aOutline = -1, int aHole = -1 ) const;
|
||||
|
||||
///> Returns the internal representation (ClipperLib) of a given polygon (outline + holes)
|
||||
const ClipperLib::Paths& GetPoly ( int aIndex ) const
|
||||
const ClipperLib::Paths& GetPoly( int aIndex ) const
|
||||
{
|
||||
return m_polys[aIndex];
|
||||
}
|
||||
|
@ -86,17 +86,17 @@ class SHAPE_POLY_SET : public SHAPE
|
|||
void Add( const SHAPE_POLY_SET& b );
|
||||
|
||||
///> Performs smooth outline inflation (Minkowski sum of the outline and a circle of a given radius)
|
||||
void SmoothInflate ( int aFactor );
|
||||
void SmoothInflate( int aFactor );
|
||||
|
||||
///> Performs outline erosion/shrinking
|
||||
void Erode ( int aFactor );
|
||||
void Erode( int aFactor );
|
||||
|
||||
///> Converts a set of polygons with holes to a singe outline with 'slits'/'fractures' connecting the outer ring
|
||||
///> Converts a set of polygons with holes to a singe outline with "slits"/"fractures" connecting the outer ring
|
||||
///> to the inner holes
|
||||
void Fracture ();
|
||||
void Fracture();
|
||||
|
||||
///> Simplifies the polyset (merges overlapping polys, eliminates degeneracy/self-intersections)
|
||||
void Simplify ();
|
||||
void Simplify();
|
||||
|
||||
/// @copydoc SHAPE::Format()
|
||||
const std::string Format() const;
|
||||
|
@ -113,13 +113,14 @@ class SHAPE_POLY_SET : public SHAPE
|
|||
|
||||
const BOX2I BBox( int aClearance = 0 ) const;
|
||||
|
||||
// fixme: add collision support
|
||||
bool Collide( const VECTOR2I& aP, int aClearance = 0 ) const { return false; }
|
||||
bool Collide( const SEG& aSeg, int aClearance = 0 ) const { return false; }
|
||||
|
||||
private:
|
||||
|
||||
void fractureSingle( ClipperLib::Paths& paths );
|
||||
void importTree ( ClipperLib::PolyTree* tree);
|
||||
void importTree( ClipperLib::PolyTree* tree);
|
||||
void booleanOp( ClipperLib::ClipType type, const SHAPE_POLY_SET& b );
|
||||
|
||||
const ClipperLib::Path convert( const SHAPE_LINE_CHAIN& aPath );
|
||||
|
|
Loading…
Reference in New Issue