First version of courtyard overlap detection

This commit is contained in:
jean-pierre charras 2017-03-19 16:38:30 +01:00
parent b365f17e9f
commit 2637835a1e
7 changed files with 654 additions and 68 deletions

View File

@ -371,6 +371,7 @@ set( PCB_COMMON_SRCS
../pcbnew/class_zone.cpp
../pcbnew/class_zone_settings.cpp
../pcbnew/classpcb.cpp
../pcbnew/convert_drawsegment_list_to_polygon.cpp
../pcbnew/ratsnest_data.cpp
../pcbnew/ratsnest_viewitem.cpp
../pcbnew/collectors.cpp

View File

@ -130,7 +130,10 @@ wxString DRC_ITEM::GetErrorText() const
return wxString( _( "Courtyards overlap" ) );
case DRCE_MISSING_COURTYARD_IN_FOOTPRINT:
return wxString( _( "Footprint has no courtard defined" ) );
return wxString( _( "Footprint has no courtyard defined" ) );
case DRCE_MALFORMED_COURTYARD_IN_FOOTPRINT:
return wxString( _( "Footprint has incorect courtyard (not a closed shape)" ) );
default:
return wxString::Format( wxT( "Unknown DRC error code %d" ), m_ErrorCode );

View File

@ -1221,75 +1221,39 @@ double MODULE::PadCoverageRatio() const
return std::min( ratio, 1.0 );
}
// see convert_drawsegment_list_to_polygon.cpp:
extern bool ConvertOutlineToPolygon( std::vector< DRAWSEGMENT* >& aSegList,
SHAPE_POLY_SET& aPolygons);
bool MODULE::BuildPolyCourtyard()
{
m_poly_courtyard.RemoveAllContours();
m_poly_courtyard_front.RemoveAllContours();
m_poly_courtyard_back.RemoveAllContours();
// Build the courtyard area from graphic items on the courtyard.
// Only PCB_MODULE_EDGE_T have meaning, graphic texts are ignored.
// Collect items:
std::vector< EDGE_MODULE* > list;
std::vector< DRAWSEGMENT* > list_front;
std::vector< DRAWSEGMENT* > list_back;
for( BOARD_ITEM* item = GraphicalItems(); item; item = item->Next() )
{
if( item->GetLayer() == B_CrtYd && item->Type() == PCB_MODULE_EDGE_T )
list.push_back( static_cast< EDGE_MODULE* > ( item ) );
list_back.push_back( static_cast< DRAWSEGMENT* > ( item ) );
if( item->GetLayer() == F_CrtYd && item->Type() == PCB_MODULE_EDGE_T )
list.push_back( static_cast< EDGE_MODULE* > ( item ) );
list_front.push_back( static_cast< DRAWSEGMENT* > ( item ) );
}
if( !list.size() )
return false;
// Note: if no item found on courtyard layers, return true.
// false is returned only when the shape defined on courtyard layers
// is not convertible to a polygon
if( !list_front.size() && !list_back.size() )
return true;
// Build the coutyard
const int circleToSegmentsCount = 16;
EDA_RECT rect; // the bouding box of segments
bool has_segments = false;
bool success = ConvertOutlineToPolygon( list_front, m_poly_courtyard_front );
for( EDGE_MODULE* item : list )
{
switch( item->GetShape() )
{
case S_SEGMENT:
if( !has_segments )
{
rect.Move( item->GetStart() );
has_segments = true;
}
else
rect.Merge( item->GetStart() );
if( success )
success = ConvertOutlineToPolygon( list_back, m_poly_courtyard_back );
rect.Merge( item->GetEnd() );
break;
case S_CIRCLE:
TransformCircleToPolygon( m_poly_courtyard, item->GetCenter(),
item->GetRadius(), circleToSegmentsCount );
break;
case S_ARC:
break;
case S_POLYGON:
break;
default:
break;
}
}
if( has_segments ) // Build the polygon from bounding box
{
m_poly_courtyard.NewOutline();
m_poly_courtyard.Append( rect.GetOrigin().x, rect.GetOrigin().y );
m_poly_courtyard.Append( rect.GetOrigin().x + rect.GetWidth(),
rect.GetOrigin().y );
m_poly_courtyard.Append( rect.GetOrigin().x + rect.GetWidth(),
rect.GetOrigin().y + rect.GetHeight() );
m_poly_courtyard.Append( rect.GetOrigin().x,
rect.GetOrigin().y + rect.GetHeight() );
}
return true;
return success;
}

View File

@ -643,11 +643,13 @@ public:
/** Used in DRC to test the courtyard area (a complex polygon)
* @return the courtyard polygon
*/
SHAPE_POLY_SET& GetPolyCourtyard() { return m_poly_courtyard; }
SHAPE_POLY_SET& GetPolyCourtyardFront() { return m_poly_courtyard_front; }
SHAPE_POLY_SET& GetPolyCourtyardBack() { return m_poly_courtyard_back; }
/** Used in DRC to build the courtyard area (a complex polygon)
* from graphic items put on the courtyard
* @return true if OK, false if the polygon cannot be built
* @return true if OK, or no courtyard defined,
* false only if the polygon cannot be built due to amalformed courtyard shape
* The polygon cannot be built if segments/arcs on courtyard layers
* cannot be grouped in a polygon.
*/
@ -697,7 +699,9 @@ private:
///< lazily allocated only if needed for speed
/// Used in DRC to test the courtyard area (a polygon which can be not basic
SHAPE_POLY_SET m_poly_courtyard;
/// Note also a footprint can have courtyards on bot board sides
SHAPE_POLY_SET m_poly_courtyard_front;
SHAPE_POLY_SET m_poly_courtyard_back;
};
#endif // MODULE_H_

View File

@ -0,0 +1,557 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2017 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file convert_drawsegment_list_to_polygon.cpp
* @brief functions to convert a shape built with DRAWSEGMENTS to a polygon.
* expecting the shape describes shape similar to a polygon
*/
#include <trigo.h>
#include <macros.h>
#include <class_drawsegment.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
/**
* Function close_ness
* is a non-exact distance (also called Manhattan distance) used to approximate
* the distance between two points.
* The distance is very in-exact, but can be helpful when used
* to pick between alternative neighboring points.
* @param aLeft is the first point
* @param aRight is the second point
* @return unsigned - a measure of proximity that the caller knows about, in BIU,
* but remember it is only an approximation.
*/
static unsigned close_ness( const wxPoint& aLeft, const wxPoint& aRight )
{
// Don't need an accurate distance calculation, just something
// approximating it, for relative ordering.
return unsigned( std::abs( aLeft.x - aRight.x ) + abs( aLeft.y - aRight.y ) );
}
/**
* Function close_enough
* is a local and tunable method of qualifying the proximity of two points.
*
* @param aLeft is the first point
* @param aRight is the second point
* @param aLimit is a measure of proximity that the caller knows about.
* @return bool - true if the two points are close enough, else false.
*/
inline bool close_enough( const wxPoint& aLeft, const wxPoint& aRight, unsigned aLimit )
{
// We don't use an accurate distance calculation, just something
// approximating it, since aLimit is non-exact anyway except when zero.
return close_ness( aLeft, aRight ) <= aLimit;
}
/**
* Function close_st
* is a local method of qualifying if either the start of end point of a segment is closest to a point.
*
* @param aReference is the reference point
* @param aFirst is the first point
* @param aSecond is the second point
* @return bool - true if the the first point is closest to the reference, otherwise false.
*/
inline bool close_st( const wxPoint& aReference, const wxPoint& aFirst, const wxPoint& aSecond )
{
// We don't use an accurate distance calculation, just something
// approximating to find the closest to the reference.
return close_ness( aReference, aFirst ) <= close_ness( aReference, aSecond );
}
/**
* Function findPoint
* searches for a DRAWSEGMENT with an end point or start point of aPoint, and
* if found, removes it from the TYPE_COLLECTOR and returns it, else returns NULL.
* @param aPoint The starting or ending point to search for.
* @param items The list to remove from.
* @param aLimit is the distance from \a aPoint that still constitutes a valid find.
* @return DRAWSEGMENT* - The first DRAWSEGMENT that has a start or end point matching
* aPoint, otherwise NULL if none.
*/
static DRAWSEGMENT* findPoint( const wxPoint& aPoint, std::vector< DRAWSEGMENT* >& aList, unsigned aLimit )
{
unsigned min_d = INT_MAX;
int ndx_min = 0;
// find the point closest to aPoint and perhaps exactly matching aPoint.
for( size_t i = 0; i < aList.size(); ++i )
{
DRAWSEGMENT* graphic = aList[i];
unsigned d;
switch( graphic->GetShape() )
{
case S_ARC:
if( aPoint == graphic->GetArcStart() || aPoint == graphic->GetArcEnd() )
{
aList.erase( aList.begin() + i );
return graphic;
}
d = close_ness( aPoint, graphic->GetArcStart() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
d = close_ness( aPoint, graphic->GetArcEnd() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
break;
default:
if( aPoint == graphic->GetStart() || aPoint == graphic->GetEnd() )
{
aList.erase( aList.begin() + i );
return graphic;
}
d = close_ness( aPoint, graphic->GetStart() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
d = close_ness( aPoint, graphic->GetEnd() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
}
}
if( min_d <= aLimit )
{
DRAWSEGMENT* graphic = aList[ndx_min];
aList.erase( aList.begin() + ndx_min );
return graphic;
}
return NULL;
}
/**
* Function ConvertOutlineToPolygon
* build a polygon (with holes) from a DRAWSEGMENT list, which is expected to be
* a outline, therefore a closed main outline with perhaps closed inner outlines.
* These closed inner outlines are considered as holes in the main outline
* @param aSegList the initial list of drawsegments (only lines, circles and arcs).
* @param aPolygons will contain the complex polygon.
*/
bool ConvertOutlineToPolygon( std::vector< DRAWSEGMENT* >& aSegList, SHAPE_POLY_SET& aPolygons)
{
if( aSegList.size() == 0 )
return true;
// Make a working copy of aSegList, because the list is modified during calculations
std::vector< DRAWSEGMENT* > segList = aSegList;
unsigned prox; // a proximity BIU metric, not an accurate distance
const int STEPS = 16; // for a segmentation of an arc of 360 degrees
DRAWSEGMENT* graphic;
wxPoint prevPt;
// Find edge point with minimum x, this should be in the outer polygon
// which will define the perimeter Edge.Cuts polygon.
wxPoint xmin = wxPoint( INT_MAX, 0 );
int xmini = 0;
for( size_t i = 0; i < segList.size(); i++ )
{
graphic = (DRAWSEGMENT*) segList[i];
switch( graphic->GetShape() )
{
case S_SEGMENT:
{
if( graphic->GetStart().x < xmin.x )
{
xmin = graphic->GetStart();
xmini = i;
}
if( graphic->GetEnd().x < xmin.x )
{
xmin = graphic->GetEnd();
xmini = i;
}
}
break;
case S_ARC:
// Freerouter does not yet understand arcs, so approximate
// an arc with a series of short lines and put those
// line segments into the !same! PATH.
{
wxPoint pstart = graphic->GetArcStart();
wxPoint center = graphic->GetCenter();
double angle = -graphic->GetAngle();
int steps = STEPS * fabs(angle) /3600.0;
if( steps == 0 )
steps = 1;
wxPoint pt;
for( int step = 1; step<=steps; ++step )
{
double rotation = ( angle * step ) / steps;
pt = pstart;
RotatePoint( &pt, center, rotation );
if( pt.x < xmin.x )
{
xmin = pt;
xmini = i;
}
}
}
break;
case S_CIRCLE:
{
wxPoint pt = graphic->GetCenter();
// pt has minimum x point
pt.x -= graphic->GetRadius();
// when the radius <= 0, this is a mal-formed circle. Skip it
if( graphic->GetRadius() > 0 && pt.x < xmin.x )
{
xmin = pt;
xmini = i;
}
}
break;
default:
break;
}
}
// Grab the left most point, assume its on the board's perimeter, and see if we
// can put enough graphics together by matching endpoints to formulate a cohesive
// polygon.
graphic = (DRAWSEGMENT*) segList[xmini];
// The first DRAWSEGMENT is in 'graphic', ok to remove it from 'items'
segList.erase( segList.begin() + xmini );
// Set maximum proximity threshold for point to point nearness metric for
// board perimeter only, not interior keepouts yet.
prox = Millimeter2iu( 0.01 ); // should be enough to fix rounding issues
// is arc start and end point calculations
// Output the Edge.Cuts perimeter as circle or polygon.
if( graphic->GetShape() == S_CIRCLE )
{
TransformCircleToPolygon( aPolygons, graphic->GetCenter(),
graphic->GetRadius(), STEPS );
}
else
{
// Polygon start point. Arbitrarily chosen end of the
// segment and build the poly from here.
wxPoint startPt = wxPoint( graphic->GetEnd() );
prevPt = graphic->GetEnd();
aPolygons.NewOutline();
aPolygons.Append( prevPt );
// Do not append the other end point yet of this 'graphic', this first
// 'graphic' might be an arc.
for(;;)
{
switch( graphic->GetShape() )
{
case S_SEGMENT:
{
wxPoint nextPt;
// Use the line segment end point furthest away from
// prevPt as we assume the other end to be ON prevPt or
// very close to it.
if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) )
{
nextPt = graphic->GetEnd();
}
else
{
nextPt = graphic->GetStart();
}
aPolygons.Append( nextPt );
prevPt = nextPt;
}
break;
case S_ARC:
// We do not support arcs in polygons, so approximate
// an arc with a series of short lines and put those
// line segments into the !same! PATH.
{
wxPoint pstart = graphic->GetArcStart();
wxPoint pend = graphic->GetArcEnd();
wxPoint pcenter = graphic->GetCenter();
double angle = -graphic->GetAngle();
int steps = STEPS * fabs(angle) /3600.0;
if( steps == 0 )
steps = 1;
if( !close_enough( prevPt, pstart, prox ) )
{
wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), prox ) );
angle = -angle;
std::swap( pstart, pend );
}
wxPoint nextPt;
for( int step = 1; step<=steps; ++step )
{
double rotation = ( angle * step ) / steps;
nextPt = pstart;
RotatePoint( &nextPt, pcenter, rotation );
aPolygons.Append( nextPt );
}
prevPt = nextPt;
}
break;
default:
{
wxLogMessage( _( "Unsupported DRAWSEGMENT type %s" ),
GetChars( BOARD_ITEM::ShowShape( graphic->GetShape() ) ) );
return false;
}
break;
}
// Get next closest segment.
graphic = findPoint( prevPt, segList, prox );
// If there are no more close segments, check if the board
// outline polygon can be closed.
if( !graphic )
{
if( close_enough( startPt, prevPt, prox ) )
{
// Close the polygon back to start point
// aPolygons.Append( startPt ); // not needed
}
else
{
wxLogMessage(
_( "Unable to find the next boundary segment with an endpoint of (%s mm, %s mm). "
"graphic outline must form a contiguous, closed polygon." ),
GetChars( FROM_UTF8( BOARD_ITEM::FormatInternalUnits( prevPt.x ).c_str() ) ),
GetChars( FROM_UTF8( BOARD_ITEM::FormatInternalUnits( prevPt.y ).c_str() ) )
);
return false;
}
break;
}
}
}
// Output the interior Edge.Cuts graphics as keepouts, using same nearness
// metric as the board edge as otherwise we have trouble completing complex
// polygons.
prox = Millimeter2iu( 0.05 );
while( segList.size() )
{
// emit a signal layers keepout for every interior polygon left...
int hole = aPolygons.NewHole();
graphic = (DRAWSEGMENT*) segList[0];
segList.erase( segList.begin() );
if( graphic->GetShape() == S_CIRCLE )
{
// make a circle by segments;
wxPoint center = graphic->GetCenter();
double angle = 3600.0;
wxPoint start = center;
int radius = graphic->GetRadius();
start.x += radius;
wxPoint nextPt;
for( int step = 0; step<STEPS; ++step )
{
double rotation = ( angle * step ) / STEPS;
nextPt = start;
RotatePoint( &nextPt.x, &nextPt.y, center.x, center.y, rotation );
aPolygons.Append( nextPt, -1, hole );
}
}
else
{
// Polygon start point. Arbitrarily chosen end of the
// segment and build the poly from here.
wxPoint startPt( graphic->GetEnd() );
prevPt = graphic->GetEnd();
aPolygons.Append( prevPt, -1, hole );
// do not append the other end point yet, this first 'graphic' might be an arc
for(;;)
{
switch( graphic->GetShape() )
{
case S_SEGMENT:
{
wxPoint nextPt;
// Use the line segment end point furthest away from
// prevPt as we assume the other end to be ON prevPt or
// very close to it.
if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) )
{
nextPt = graphic->GetEnd();
}
else
{
nextPt = graphic->GetStart();
}
prevPt = nextPt;
aPolygons.Append( prevPt, -1, hole );
}
break;
case S_ARC:
// Freerouter does not yet understand arcs, so approximate
// an arc with a series of short lines and put those
// line segments into the !same! PATH.
{
wxPoint pstart = graphic->GetArcStart();
wxPoint pend = graphic->GetArcEnd();
wxPoint pcenter = graphic->GetCenter();
double angle = -graphic->GetAngle();
int steps = STEPS * fabs(angle) /3600.0;
if( steps == 0 )
steps = 1;
if( !close_enough( prevPt, pstart, prox ) )
{
wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), prox ) );
angle = -angle;
std::swap( pstart, pend );
}
wxPoint nextPt;
for( int step = 1; step<=steps; ++step )
{
double rotation = ( angle * step ) / steps;
nextPt = pstart;
RotatePoint( &nextPt, pcenter, rotation );
aPolygons.Append( nextPt, -1, hole );
}
prevPt = nextPt;
}
break;
default:
{
wxLogMessage(
_( "Unsupported DRAWSEGMENT type %s" ),
GetChars( BOARD_ITEM::ShowShape( graphic->GetShape() ) ) );
return false;
}
break;
}
// Get next closest segment.
graphic = findPoint( prevPt, segList, prox );
// If there are no more close segments, check if polygon
// can be closed.
if( !graphic )
{
if( close_enough( startPt, prevPt, prox ) )
{
// Close the polygon back to start point
// aPolygons.Append( startPt, -1, hole ); // not needed
}
else
{
wxLogMessage(
_( "Unable to find the next graphic segment with an endpoint of (%s mm, %s mm).\n"
"Edit graphics, making them contiguous polygons each." ),
GetChars( FROM_UTF8( BOARD_ITEM::FormatInternalUnits( prevPt.x ).c_str() ) ),
GetChars( FROM_UTF8( BOARD_ITEM::FormatInternalUnits( prevPt.y ).c_str() ) )
);
return false;
}
break;
}
}
}
}
return true;
}

View File

@ -986,16 +986,34 @@ bool DRC::doPadToPadsDrc( D_PAD* aRefPad, D_PAD** aStart, D_PAD** aEnd, int x_li
bool DRC::doFootprintOverlappingDrc()
{
// Detects missing footprint courtyards, and for others, courtyard overlap.
// Detects missing (or malformed) footprint courtyard,
// and for footprint with courtyard, courtyards overlap.
wxString msg;
bool success = true;
// Update courtyard polygons, and test for missing courtyard definition:
for( MODULE* footprint = m_pcb->m_Modules; footprint; footprint = footprint->Next() )
{
footprint->BuildPolyCourtyard();
bool diag = footprint->BuildPolyCourtyard();
if( footprint->GetPolyCourtyard().OutlineCount() == 0 && m_doNoCourtyardDefined )
if( !diag && m_doFootprintOverlapping )
{
msg.Printf( _( "footprint '%s' has malformed courtyard" ),
footprint->GetReference().GetData() );
m_currentMarker = fillMarker( footprint->GetPosition(),
DRCE_MALFORMED_COURTYARD_IN_FOOTPRINT,
msg, m_currentMarker );
addMarkerToPcb( m_currentMarker );
m_currentMarker = nullptr;
success = false;
}
if( !m_doNoCourtyardDefined )
continue;
if( footprint->GetPolyCourtyardFront().OutlineCount() == 0 &&
footprint->GetPolyCourtyardBack().OutlineCount() == 0 &&
!diag )
{
msg.Printf( _( "footprint '%s' has no courtyard defined" ),
footprint->GetReference().GetData() );
@ -1011,29 +1029,66 @@ bool DRC::doFootprintOverlappingDrc()
if( !m_doFootprintOverlapping )
return success;
// Now test for overlapping:
// Now test for overlapping on top layer:
SHAPE_POLY_SET courtyard; // temporary storage of the courtyard of current footprint
for( MODULE* footprint = m_pcb->m_Modules; footprint; footprint = footprint->Next() )
{
if( footprint->GetPolyCourtyard().OutlineCount() == 0 )
if( footprint->GetPolyCourtyardFront().OutlineCount() == 0 )
continue; // No courtyard defined
for( MODULE* candidate = footprint->Next(); candidate; candidate = candidate->Next() )
{
if( candidate->GetPolyCourtyard().OutlineCount() == 0 )
if( candidate->GetPolyCourtyardFront().OutlineCount() == 0 )
continue; // No courtyard defined
SHAPE_POLY_SET courtyard;
courtyard.Append( footprint->GetPolyCourtyard() );
courtyard.RemoveAllContours();
courtyard.Append( footprint->GetPolyCourtyardFront() );
// Build the common area between footprint and the candidate:
courtyard.BooleanIntersection( candidate->GetPolyCourtyard(), SHAPE_POLY_SET::PM_FAST );
courtyard.BooleanIntersection( candidate->GetPolyCourtyardFront(), SHAPE_POLY_SET::PM_FAST );
// If no overlap, courtyard is empty (no common area).
// Therefore if a common polygon exists, this is a DRC error
if( courtyard.OutlineCount() )
{
//Overlap between footprint and candidate
msg.Printf( _( "footprints '%s' and '%s' overlap" ),
msg.Printf( _( "footprints '%s' and '%s' overlap on front (top) layer" ),
footprint->GetReference().GetData(),
candidate->GetReference().GetData() );
VECTOR2I& pos = courtyard.Vertex( 0, 0 );
wxPoint loc( pos.x, pos.y );
m_currentMarker = fillMarker( loc, DRCE_OVERLAPPING_FOOTPRINTS, msg, m_currentMarker );
addMarkerToPcb( m_currentMarker );
m_currentMarker = nullptr;
success = false;
}
}
}
// Test for overlapping on bottom layer:
for( MODULE* footprint = m_pcb->m_Modules; footprint; footprint = footprint->Next() )
{
if( footprint->GetPolyCourtyardBack().OutlineCount() == 0 )
continue; // No courtyard defined
for( MODULE* candidate = footprint->Next(); candidate; candidate = candidate->Next() )
{
if( candidate->GetPolyCourtyardBack().OutlineCount() == 0 )
continue; // No courtyard defined
courtyard.RemoveAllContours();
courtyard.Append( footprint->GetPolyCourtyardBack() );
// Build the common area between footprint and the candidate:
courtyard.BooleanIntersection( candidate->GetPolyCourtyardBack(), SHAPE_POLY_SET::PM_FAST );
// If no overlap, courtyard is empty (no common area).
// Therefore if a common polygon exists, this is a DRC error
if( courtyard.OutlineCount() )
{
//Overlap between footprint and candidate
msg.Printf( _( "footprints '%s' and '%s' overlap on back (bottom) layer" ),
footprint->GetReference().GetData(),
candidate->GetReference().GetData() );
VECTOR2I& pos = courtyard.Vertex( 0, 0 );

View File

@ -82,6 +82,8 @@
#define DRCE_PAD_INSIDE_TEXT 43 ///< Pad in inside a text area
#define DRCE_OVERLAPPING_FOOTPRINTS 44 ///< footprint courtyards overlap
#define DRCE_MISSING_COURTYARD_IN_FOOTPRINT 45 ///< footprint has no courtyard defined
#define DRCE_MALFORMED_COURTYARD_IN_FOOTPRINT 46 ///< footprint has a courtyard but malformed
///< (not convetrible to polygon)
class EDA_DRAW_PANEL;