geometry: r-tree based shape index

This commit is contained in:
tomasz.wlostowski@cern.ch 2013-09-13 15:43:33 +02:00
parent 00ecafe94f
commit 299f424345
3 changed files with 2487 additions and 226 deletions

1908
include/geometry/rtree.h Normal file

File diff suppressed because it is too large Load Diff

View File

@ -2,6 +2,7 @@
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Jacobo Aragunde Pérez
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
@ -25,266 +26,328 @@
#ifndef __SHAPE_INDEX_H
#define __SHAPE_INDEX_H
#include <boost/unordered_map.hpp>
#include <vector>
#include <geometry/shape.h>
#include <geometry/rtree.h>
template <class T> const SHAPE *defaultShapeFunctor( const T aItem )
/**
* shapeFunctor template function
*
* It is used by SHAPE_INDEX to get a SHAPE* from another type.
* By default relies on T::GetShape() method, should be specialized if the T object
* doesn't allow that method.
* @param object generic T object
* @return a SHAPE* object equivalent to object.
*/
template <class T>
static const SHAPE* shapeFunctor( T aItem )
{
return aItem->GetShape();
return aItem->GetShape();
}
template <class T, const SHAPE *(ShapeFunctor)(const T) = defaultShapeFunctor<T> >
/**
* shapeFunctor template function: specialization for T = SHAPE*
*/
template<>
const SHAPE* shapeFunctor( SHAPE* aItem )
{
return aItem;
}
class SHAPE_INDEX_LIST {
struct ShapeEntry {
ShapeEntry(T aParent)
{
shape = ShapeFunctor(aParent);
bbox = shape->BBox(0);
parent = aParent;
}
/**
* boundingBox template method
*
* It is used by SHAPE_INDEX to get the bounding box of a generic T object.
* By default relies on T::BBox() method, should be specialized if the T object
* doesn't allow that method.
* @param object generic T object
* @return a BOX2I object containing the bounding box of the T object.
*/
template <class T>
BOX2I boundingBox( T object )
{
return shapeFunctor(object)->BBox();
}
~ShapeEntry()
{
}
/**
* acceptVisitor template method
*
* It is used by SHAPE_INDEX to implement Accept().
* By default relies on V::operation() redefinition, should be specialized if V class
* doesn't have its () operation defined to accept T objects.
* @param object generic T object
* @param visitor V visitor object
*/
template <class T, class V>
void acceptVisitor( T object, V visitor )
{
visitor(object);
}
T parent;
const SHAPE *shape;
BOX2I bbox;
};
/**
* collide template method
*
* It is used by SHAPE_INDEX to implement Query().
* By default relies on T::Collide(U) method, should be specialized if the T object
* doesn't allow that method.
* @param object generic T object
* @param anotherObject generic U object
* @param minDistance minimum collision distance
* @return if object and anotherObject collide
*/
template <class T, class U>
bool collide( T object, U anotherObject, int minDistance )
{
return shapeFunctor(object)->Collide( anotherObject, minDistance );
}
typedef std::vector<ShapeEntry> ShapeVec;
typedef typename std::vector<ShapeEntry>::iterator ShapeVecIter;
public:
template<class T, class V>
bool queryCallback(T shape, void* context) {
V* visitor = (V*) context;
acceptVisitor<T,V>(shape, *visitor);
return true;
}
// "Normal" iterator interface, for STL algorithms.
class iterator {
template <class T = SHAPE*>
class SHAPE_INDEX {
public:
iterator() {};
public:
iterator( ShapeVecIter aCurrent)
: m_current(aCurrent) {};
SHAPE_INDEX();
iterator(const iterator &b) :
m_current(b.m_current) {};
~SHAPE_INDEX();
T operator*() const
{
return (*m_current).parent;
}
/**
* Function Add()
*
* Adds a SHAPE to the index.
* @param shape the new SHAPE
*/
void Add( T shape );
void operator++()
{
++m_current;
}
/**
* Function Remove()
*
* Removes a SHAPE to the index.
* @param shape the new SHAPE
*/
void Remove( T shape );
iterator& operator++(int dummy)
{
++m_current;
return *this;
}
/**
* Function RemoveAll()
*
* Removes all the contents of the index.
*/
void RemoveAll();
bool operator ==( const iterator& rhs ) const
{
return m_current == rhs.m_current;
}
/**
* Function Accept()
*
* Accepts a visitor for every SHAPE object contained in this INDEX.
* @param visitor Visitor object to be run
*/
template<class V>
void Accept( V visitor )
{
SHAPE_INDEX::Iterator iter = this->Begin();
while(!iter.IsNull()) {
T shape = *iter;
acceptVisitor(shape, visitor);
iter++;
}
}
bool operator !=( const iterator& rhs ) const
{
return m_current != rhs.m_current;
}
/**
* Function Reindex()
*
* Rebuilds the index. This should be used if the geometry of the objects
* contained by the index has changed.
*/
void Reindex();
const iterator& operator=(const iterator& rhs)
{
m_current = rhs.m_current;
return *this;
}
/**
* Function Query()
*
* Runs a callback on every SHAPE object contained in the bounding box of (shape).
* @param shape shape to search against
* @param minDistance distance threshold
* @param visitor object to be invoked on every object contained in the search area.
*/
private:
ShapeVecIter m_current;
};
template<class V>
int Query( const SHAPE *shape, int minDistance, V& visitor, bool aExact )
{
BOX2I box = shape->BBox();
box.Inflate(minDistance);
int min[2] = {box.GetX(), box.GetY()};
int max[2] = {box.GetRight(), box.GetBottom()};
// "Query" iterator, for iterating over a set of spatially matching shapes.
class query_iterator {
public:
return this->m_tree->Search(min, max, visitor);
}
query_iterator()
{
class Iterator
{
private:
}
typedef typename RTree<T, int, 2, float>::Iterator RTreeIterator;
RTreeIterator iterator;
query_iterator( ShapeVecIter aCurrent, ShapeVecIter aEnd, SHAPE *aShape, int aMinDistance, bool aExact)
: m_end(aEnd),
m_current(aCurrent),
m_shape(aShape),
m_minDistance(aMinDistance),
m_exact(aExact)
{
if(aShape)
{
m_refBBox = aShape->BBox();
next();
}
}
/**
* Function Init()
*
* Setup the internal tree iterator.
* @param tree pointer to a RTREE object
*/
void Init(RTree<T, int, 2, float>* tree) {
tree->GetFirst(iterator);
}
query_iterator(const query_iterator &b)
: m_end(b.m_end),
m_current(b.m_current),
m_shape(b.m_shape),
m_minDistance(b.m_minDistance),
m_exact(b.m_exact),
m_refBBox(b.m_refBBox)
{
public:
}
/**
* Iterator constructor
*
* Creates an iterator for the index object
* @param index SHAPE_INDEX object to iterate
*/
Iterator(SHAPE_INDEX* index) {
Init(index->m_tree);
}
T operator*() const
{
return (*m_current).parent;
}
/**
* Operator * (prefix)
*
* Returns the next data element.
*/
T operator*() {
return *iterator;
}
query_iterator& operator++()
{
++m_current;
next();
return *this;
}
/**
* Operator ++ (prefix)
*
* Shifts the iterator to the next element.
*/
bool operator++() {
return ++iterator;
}
query_iterator& operator++(int dummy)
{
++m_current;
next();
return *this;
}
/**
* Operator ++ (postfix)
*
* Shifts the iterator to the next element.
*/
bool operator++(int) {
return ++iterator;
}
bool operator ==( const query_iterator& rhs ) const
{
return m_current == rhs.m_current;
}
/**
* Function IsNull()
*
* Checks if the iterator has reached the end.
* @return true if it is in an invalid position (data finished)
*/
bool IsNull() {
return iterator.IsNull();
}
bool operator !=( const query_iterator& rhs ) const
{
return m_current != rhs.m_current;
}
/**
* Function IsNotNull()
*
* Checks if the iterator has not reached the end.
* @return true if it is in an valid position (data not finished)
*/
bool IsNotNull() {
return iterator.IsNotNull();
}
const query_iterator& operator=(const query_iterator& rhs)
{
m_end = rhs.m_end;
m_current = rhs.m_current;
m_shape = rhs.m_shape;
m_minDistance = rhs.m_minDistance;
m_exact = rhs.m_exact;
m_refBBox = rhs.m_refBBox;
return *this;
}
/**
* Function Next()
*
* Returns the current element of the iterator and moves to the next
* position.
* @return SHAPE object pointed by the iterator before moving to the
* next position.
*/
T Next() {
T object = *iterator;
++iterator;
return object;
}
};
private:
/**
* Function Begin()
*
* Creates an iterator for the current index object
* @return iterator
*/
Iterator Begin();
void next()
{
while(m_current != m_end)
{
if (m_refBBox.Distance(m_current->bbox) <= m_minDistance)
{
if(!m_exact || m_current->shape->Collide(m_shape, m_minDistance))
return;
}
++m_current;
}
}
private:
ShapeVecIter m_end;
ShapeVecIter m_current;
BOX2I m_refBBox;
bool m_exact;
SHAPE *m_shape;
int m_minDistance;
};
void Add(T aItem)
{
ShapeEntry s (aItem);
m_shapes.push_back(s);
}
void Remove(const T aItem)
{
ShapeVecIter i;
for(i=m_shapes.begin(); i!=m_shapes.end();++i)
{
if(i->parent == aItem)
break;
}
if(i == m_shapes.end())
return;
m_shapes.erase(i);
}
int Size() const
{
return m_shapes.size();
}
template<class Visitor>
int Query( const SHAPE *aShape, int aMinDistance, Visitor &v, bool aExact = true) //const
{
ShapeVecIter i;
int n = 0;
VECTOR2I::extended_type minDistSq = (VECTOR2I::extended_type) aMinDistance * aMinDistance;
BOX2I refBBox = aShape->BBox();
for(i = m_shapes.begin(); i!=m_shapes.end(); ++i)
{
if (refBBox.SquaredDistance(i->bbox) <= minDistSq)
{
if(!aExact || i->shape->Collide(aShape, aMinDistance))
{
n++;
if(!v( i->parent ))
return n;
}
}
}
return n;
}
void Clear()
{
m_shapes.clear();
}
query_iterator qbegin( SHAPE *aShape, int aMinDistance, bool aExact )
{
return query_iterator( m_shapes.begin(), m_shapes.end(), aShape, aMinDistance, aExact);
}
const query_iterator qend()
{
return query_iterator( m_shapes.end(), m_shapes.end(), NULL, 0, false );
}
iterator begin()
{
return iterator( m_shapes.begin() );
}
iterator end()
{
return iterator( m_shapes.end() );
}
private:
ShapeVec m_shapes;
RTree<T, int, 2, float>* m_tree;
};
/*
* Class members implementation
*/
template<class T>
SHAPE_INDEX<T>::SHAPE_INDEX() {
this->m_tree = new RTree<T, int, 2, float>();
}
template<class T>
SHAPE_INDEX<T>::~SHAPE_INDEX() {
delete this->m_tree;
}
template<class T>
void SHAPE_INDEX<T>::Add(T shape) {
BOX2I box = boundingBox(shape);
int min[2]= {box.GetX(), box.GetY()};
int max[2] = {box.GetRight(), box.GetBottom()};
this->m_tree->Insert(min, max, shape);
}
template<class T>
void SHAPE_INDEX<T>::Remove(T shape) {
BOX2I box = boundingBox(shape);
int min[2]= {box.GetX(), box.GetY()};
int max[2] = {box.GetRight(), box.GetBottom()};
this->m_tree->Remove(min, max, shape);
}
template<class T>
void SHAPE_INDEX<T>::RemoveAll() {
this->m_tree->RemoveAll();
}
template<class T>
void SHAPE_INDEX<T>::Reindex() {
RTree<T, int, 2, float>* newTree;
newTree = new RTree<T, int, 2, float>();
SHAPE_INDEX::Iterator iter = this->Begin();
while(!iter.IsNull()) {
T shape = *iter;
BOX2I box = boundingBox(shape);
int min[2]= {box.GetX(), box.GetY()};
int max[2] = {box.GetRight(), box.GetBottom()};
newTree->Insert(min, max, shape);
iter++;
}
delete this->m_tree;
this->m_tree = newTree;
}
template<class T>
typename SHAPE_INDEX<T>::Iterator SHAPE_INDEX<T>::Begin() {
return Iterator(this);
}
#endif

View File

@ -0,0 +1,290 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __SHAPE_INDEX_LIST_H
#define __SHAPE_INDEX_LIST_H
#include <boost/unordered_map.hpp>
template <class T> const SHAPE *defaultShapeFunctor( const T aItem )
{
return aItem->GetShape();
}
template <class T, const SHAPE *(ShapeFunctor)(const T) = defaultShapeFunctor<T> >
class SHAPE_INDEX_LIST {
struct ShapeEntry {
ShapeEntry(T aParent)
{
shape = ShapeFunctor(aParent);
bbox = shape->BBox(0);
parent = aParent;
}
~ShapeEntry()
{
}
T parent;
const SHAPE *shape;
BOX2I bbox;
};
typedef std::vector<ShapeEntry> ShapeVec;
typedef typename std::vector<ShapeEntry>::iterator ShapeVecIter;
public:
// "Normal" iterator interface, for STL algorithms.
class iterator {
public:
iterator() {};
iterator( ShapeVecIter aCurrent)
: m_current(aCurrent) {};
iterator(const iterator &b) :
m_current(b.m_current) {};
T operator*() const
{
return (*m_current).parent;
}
void operator++()
{
++m_current;
}
iterator& operator++(int dummy)
{
++m_current;
return *this;
}
bool operator ==( const iterator& rhs ) const
{
return m_current == rhs.m_current;
}
bool operator !=( const iterator& rhs ) const
{
return m_current != rhs.m_current;
}
const iterator& operator=(const iterator& rhs)
{
m_current = rhs.m_current;
return *this;
}
private:
ShapeVecIter m_current;
};
// "Query" iterator, for iterating over a set of spatially matching shapes.
class query_iterator {
public:
query_iterator()
{
}
query_iterator( ShapeVecIter aCurrent, ShapeVecIter aEnd, SHAPE *aShape, int aMinDistance, bool aExact)
: m_end(aEnd),
m_current(aCurrent),
m_shape(aShape),
m_minDistance(aMinDistance),
m_exact(aExact)
{
if(aShape)
{
m_refBBox = aShape->BBox();
next();
}
}
query_iterator(const query_iterator &b)
: m_end(b.m_end),
m_current(b.m_current),
m_shape(b.m_shape),
m_minDistance(b.m_minDistance),
m_exact(b.m_exact),
m_refBBox(b.m_refBBox)
{
}
T operator*() const
{
return (*m_current).parent;
}
query_iterator& operator++()
{
++m_current;
next();
return *this;
}
query_iterator& operator++(int dummy)
{
++m_current;
next();
return *this;
}
bool operator ==( const query_iterator& rhs ) const
{
return m_current == rhs.m_current;
}
bool operator !=( const query_iterator& rhs ) const
{
return m_current != rhs.m_current;
}
const query_iterator& operator=(const query_iterator& rhs)
{
m_end = rhs.m_end;
m_current = rhs.m_current;
m_shape = rhs.m_shape;
m_minDistance = rhs.m_minDistance;
m_exact = rhs.m_exact;
m_refBBox = rhs.m_refBBox;
return *this;
}
private:
void next()
{
while(m_current != m_end)
{
if (m_refBBox.Distance(m_current->bbox) <= m_minDistance)
{
if(!m_exact || m_current->shape->Collide(m_shape, m_minDistance))
return;
}
++m_current;
}
}
ShapeVecIter m_end;
ShapeVecIter m_current;
BOX2I m_refBBox;
bool m_exact;
SHAPE *m_shape;
int m_minDistance;
};
void Add(T aItem)
{
ShapeEntry s (aItem);
m_shapes.push_back(s);
}
void Remove(const T aItem)
{
ShapeVecIter i;
for(i=m_shapes.begin(); i!=m_shapes.end();++i)
{
if(i->parent == aItem)
break;
}
if(i == m_shapes.end())
return;
m_shapes.erase(i);
}
int Size() const
{
return m_shapes.size();
}
template<class Visitor>
int Query( const SHAPE *aShape, int aMinDistance, Visitor &v, bool aExact = true) //const
{
ShapeVecIter i;
int n = 0;
VECTOR2I::extended_type minDistSq = (VECTOR2I::extended_type) aMinDistance * aMinDistance;
BOX2I refBBox = aShape->BBox();
for(i = m_shapes.begin(); i!=m_shapes.end(); ++i)
{
if (refBBox.SquaredDistance(i->bbox) <= minDistSq)
{
if(!aExact || i->shape->Collide(aShape, aMinDistance))
{
n++;
if(!v( i->parent ))
return n;
}
}
}
return n;
}
void Clear()
{
m_shapes.clear();
}
query_iterator qbegin( SHAPE *aShape, int aMinDistance, bool aExact )
{
return query_iterator( m_shapes.begin(), m_shapes.end(), aShape, aMinDistance, aExact);
}
const query_iterator qend()
{
return query_iterator( m_shapes.end(), m_shapes.end(), NULL, 0, false );
}
iterator begin()
{
return iterator( m_shapes.begin() );
}
iterator end()
{
return iterator( m_shapes.end() );
}
private:
ShapeVec m_shapes;
};
#endif