Simplify the winding calculation
This algorithm is more robust against points and cheaper to execute.
This commit is contained in:
parent
cf52bfcc55
commit
33bef16376
|
@ -221,97 +221,23 @@ int OUTLINE_DECOMPOSER::winding( const GLYPH_POINTS& aContour ) const
|
|||
return 0;
|
||||
}
|
||||
|
||||
unsigned int i_lowest_vertex = 0;
|
||||
double lowest_y = std::numeric_limits<double>::max();
|
||||
double sum = 0.0;
|
||||
size_t len = aContour.size();
|
||||
|
||||
for( unsigned int i = 0; i < aContour.size(); i++ )
|
||||
for( size_t i = 0; i < len - 1; i++ )
|
||||
{
|
||||
VECTOR2D p = aContour[i];
|
||||
VECTOR2D p1 = aContour[ i ];
|
||||
VECTOR2D p2 = aContour[ i + 1 ];
|
||||
|
||||
if( p.y < lowest_y )
|
||||
{
|
||||
i_lowest_vertex = i;
|
||||
lowest_y = p.y;
|
||||
|
||||
// note: we should also check for p.y == lowest_y and then choose the point with
|
||||
// leftmost.x, but as p.x is a double, equality is a dubious concept; however
|
||||
// this should suffice in the general case
|
||||
}
|
||||
sum += ( ( p2.x - p1.x ) * ( p2.y + p1.y ) );
|
||||
}
|
||||
|
||||
unsigned int i_prev_vertex = ( i_lowest_vertex + aContour.size() - 1 ) % aContour.size();
|
||||
unsigned int i_next_vertex = ( i_lowest_vertex + 1 ) % aContour.size();
|
||||
sum += ( ( aContour[0].x - aContour[len - 1].x ) * ( aContour[0].y + aContour[len - 1].y ) );
|
||||
|
||||
const VECTOR2D& lowest = aContour[i_lowest_vertex];
|
||||
VECTOR2D prev( aContour[i_prev_vertex] );
|
||||
|
||||
while( prev == lowest )
|
||||
{
|
||||
if( i_prev_vertex == 0 )
|
||||
i_prev_vertex = aContour.size() - 1;
|
||||
else
|
||||
i_prev_vertex--;
|
||||
|
||||
if( i_prev_vertex == i_lowest_vertex )
|
||||
{
|
||||
// ERROR: degenerate contour (all points are colinear with equal Y coordinate)
|
||||
// TODO: signal error
|
||||
// for now let's just return something at random
|
||||
return cw;
|
||||
}
|
||||
|
||||
prev = aContour[i_prev_vertex];
|
||||
}
|
||||
|
||||
VECTOR2D next( aContour[i_next_vertex] );
|
||||
|
||||
while( next == lowest )
|
||||
{
|
||||
if( i_next_vertex == aContour.size() - 1 )
|
||||
i_next_vertex = 0;
|
||||
else
|
||||
i_next_vertex++;
|
||||
|
||||
if( i_next_vertex == i_lowest_vertex )
|
||||
{
|
||||
// ERROR: degenerate contour (all points are equal)
|
||||
// TODO: signal error
|
||||
// for now let's just return something at random
|
||||
return cw;
|
||||
}
|
||||
|
||||
next = aContour[i_next_vertex];
|
||||
}
|
||||
|
||||
// winding is figured out based on the angle between the lowest
|
||||
// vertex and its neighbours
|
||||
//
|
||||
// prev.x < lowest.x && next.x > lowest.x -> ccw
|
||||
//
|
||||
// prev.x > lowest.x && next.x < lowest.x -> cw
|
||||
//
|
||||
// prev.x < lowest.x && next.x < lowest.x:
|
||||
// ?
|
||||
//
|
||||
// prev.x > lowest.x && next.x > lowest.x:
|
||||
// ?
|
||||
//
|
||||
if( prev.x < lowest.x && next.x > lowest.x )
|
||||
if( sum > 0.0 )
|
||||
return cw;
|
||||
if( sum < 0.0 )
|
||||
return ccw;
|
||||
|
||||
if( prev.x > lowest.x && next.x < lowest.x )
|
||||
return cw;
|
||||
|
||||
double prev_deltaX = prev.x - lowest.x;
|
||||
double prev_deltaY = prev.y - lowest.y;
|
||||
double next_deltaX = next.x - lowest.x;
|
||||
double next_deltaY = next.y - lowest.y;
|
||||
|
||||
double prev_atan = atan2( prev_deltaY, prev_deltaX );
|
||||
double next_atan = atan2( next_deltaY, next_deltaX );
|
||||
|
||||
if( prev_atan > next_atan )
|
||||
return ccw;
|
||||
else
|
||||
return cw;
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue