Initial introduction of improved VRML normals calculations; working on VRML1

This commit is contained in:
Cirilo Bernardo 2016-02-01 17:27:50 +11:00
parent 8dd744f635
commit 55c7c61458
8 changed files with 1032 additions and 367 deletions

View File

@ -5,12 +5,13 @@ include_directories(
${CMAKE_CURRENT_SOURCE_DIR}/v2 ${CMAKE_CURRENT_SOURCE_DIR}/v2
) )
add_definitions( -DDEBUG_VRML1=2 -DDEBUG_VRML2=2 ) add_definitions( -DDEBUG_VRML1=4 -DDEBUG_VRML2=1 )
add_library( s3d_plugin_vrml MODULE add_library( s3d_plugin_vrml MODULE
${CMAKE_SOURCE_DIR}/common/richio.cpp ${CMAKE_SOURCE_DIR}/common/richio.cpp
vrml.cpp vrml.cpp
wrlproc.cpp wrlproc.cpp
wrlfacet.cpp
v2/vrml2_node.cpp v2/vrml2_node.cpp
v2/vrml2_base.cpp v2/vrml2_base.cpp
v2/vrml2_transform.cpp v2/vrml2_transform.cpp

View File

@ -28,6 +28,7 @@
#include "vrml1_faceset.h" #include "vrml1_faceset.h"
#include "vrml1_coords.h" #include "vrml1_coords.h"
#include "vrml1_material.h" #include "vrml1_material.h"
#include "wrlfacet.h"
#include "plugins/3dapi/ifsg_all.h" #include "plugins/3dapi/ifsg_all.h"
@ -286,13 +287,14 @@ SGNODE* WRL1FACESET::TranslateToSG( SGNODE* aParent, WRL1STATUS* sp )
std::vector< SGVECTOR > nlist; std::vector< SGVECTOR > nlist;
std::vector< SGCOLOR > colorlist; std::vector< SGCOLOR > colorlist;
SGNODE* sgcolor = NULL; SGNODE* sgcolor = NULL;
WRL1_BINDING mbind = m_current.matbind; WRL1_BINDING mbind = m_current.matbind;
size_t matSize = matIndex.size();
switch( mbind ) switch( mbind )
{ {
case BIND_PER_FACE: case BIND_PER_FACE:
case BIND_PER_VERTEX: case BIND_PER_VERTEX:
case BIND_PER_VERTEX_INDEXED:
break; break;
case BIND_PER_FACE_INDEXED: case BIND_PER_FACE_INDEXED:
@ -310,22 +312,6 @@ SGNODE* WRL1FACESET::TranslateToSG( SGNODE* aParent, WRL1STATUS* sp )
break; break;
case BIND_PER_VERTEX_INDEXED:
if( matIndex.size() < 3 )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: per vertex indexed but indexsize = ";
std::cerr << matIndex.size() << "\n";
#endif
// support bad models by temporarily switching bindings
mbind = BIND_OVERALL;
sgcolor = m_current.mat->GetAppearance( 0 );
}
break;
default: default:
// use the first appearance definition // use the first appearance definition
@ -333,387 +319,155 @@ SGNODE* WRL1FACESET::TranslateToSG( SGNODE* aParent, WRL1STATUS* sp )
break; break;
} }
// create the index list and make sure we have >3 points // copy the data into FACET structures
size_t idx;
int i1 = coordIndex[0];
int i2 = coordIndex[1];
int i3 = coordIndex[2];
// check that all indices are valid SHAPE lShape;
for( idx = 0; idx < vsize; ++idx ) FACET* fp = NULL;
size_t iCoord;
int idx; // coordinate index
size_t cidx = 0; // color index
SGCOLOR pc1;
if( mbind == BIND_OVERALL || mbind == BIND_DEFAULT )
{ {
if( coordIndex[idx] < 0 ) // no per-vertex colors; we can save a few CPU cycles
continue; for( iCoord = 0; iCoord < vsize; ++iCoord )
if( coordIndex[idx] >= (int)coordsize )
{ {
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 ) idx = coordIndex[iCoord];
std::cerr << " * [INFO] bad model: index out of bounds (index = ";
std::cerr << coordIndex[idx] << ", npts = " << coordsize << ")\n";
#endif
m_current.mat->Reclaim( sgcolor ); if( idx < 0 )
return NULL;
}
}
// if the indices are defective just give up
if( i1 < 0 || i2 < 0 || i3 < 0
|| i1 == i2 || i1 == i3 || i2 == i3 )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: defective indices: " << i1;
std::cerr << ", " << i2 << ", " << i3 << "\n";
#endif
m_current.mat->Reclaim( sgcolor );
return NULL;
}
std::vector< SGPOINT > lCPts; // coordinate points for SG node
std::vector< int > lCIdx; // coordinate index list for SG node (must be triads)
std::vector< SGVECTOR > lCNorm; // per-vertex normals
std::vector< int > faces; // tracks the number of polygons for the entire set
std::vector< SGCOLOR > lColors; // colors points (if any) for SG node
int nfaces = 0; // number of triangles for each face in the list
if( BIND_OVERALL == mbind || BIND_DEFAULT == mbind )
{
// no color list
// assuming convex polygons, create triangles for the SG node
for( idx = 3; idx <= vsize; )
{
switch( m_current.order )
{ {
case ORD_CCW: if( NULL != fp )
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
break;
case ORD_CLOCKWISE:
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
break;
default:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
break;
}
++nfaces;
i2 = i3;
if( idx == vsize )
break;
i3 = coordIndex[idx++];
while( ( i1 < 0 || i2 < 0 || i3 < 0 ) && ( idx < vsize ) )
{
if( i3 < 0 )
{ {
faces.push_back( nfaces ); if( fp->HasMinPoints() )
nfaces = 0; fp = NULL;
else
fp->Init();
} }
i1 = i2; continue;
i2 = i3;
i3 = coordIndex[idx++];
// any invalid polygons shall void the entire faceset; this is a requirement
// to ensure correct handling of the normals
if( ( i1 < 0 && i2 < 0 ) || ( i1 < 0 && i3 < 0 ) || ( i2 < 0 && i3 < 0 ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: defective indices: " << i1;
std::cerr << ", " << i2 << ", " << i3 << "\n";
#endif
m_current.mat->Reclaim( sgcolor );
return NULL;
}
} }
if( i1 < 0 || i2 < 0 || i3 < 0 ) // if the coordinate is bad then skip it
break; if( idx >= (int)coordsize )
continue;
if( NULL == fp )
fp = lShape.NewFacet();
// push the vertex value and index
WRLVEC3F vf;
glm::vec4 pt = glm::vec4( pcoords[idx].x, pcoords[idx].y, pcoords[idx].z, 1.0 );
pt = m_current.txmatrix * pt;
vf.x = pt.x;
vf.y = pt.y;
vf.z = pt.z;
fp->AddVertex( vf, idx );
} }
} }
else else
{ {
// the entity requires a color list for( iCoord = 0; iCoord < vsize; ++iCoord )
int cIndex;
SGCOLOR pc1, pc2, pc3;
switch( mbind )
{ {
case BIND_PER_VERTEX: idx = coordIndex[iCoord];
cIndex = 3;
m_current.mat->GetColor( &pc1, 0 );
m_current.mat->GetColor( &pc2, 1 );
m_current.mat->GetColor( &pc3, 2 );
break;
case BIND_PER_VERTEX_INDEXED: if( idx < 0 )
cIndex = 3;
if( matIndex.size() < vsize )
{ {
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 ) if( NULL != fp )
std::cerr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; {
std::cerr << " * [INFO] bad file; colorIndex.size() < coordIndex.size()\n"; if( fp->HasMinPoints() )
#endif fp = NULL;
else
fp->Init();
}
return NULL; if( mbind == BIND_PER_FACE || mbind == BIND_PER_FACE_INDEXED )
++cidx;
continue;
} }
m_current.mat->GetColor( &pc1, matIndex[0] ); // if the coordinate is bad then skip it
m_current.mat->GetColor( &pc2, matIndex[1] ); if( idx >= (int)coordsize )
m_current.mat->GetColor( &pc3, matIndex[2] ); continue;
break;
case BIND_PER_FACE: if( NULL == fp )
cIndex = 1; fp = lShape.NewFacet();
m_current.mat->GetColor( &pc1, 0 );
pc2.SetColor( pc1 );
pc3.SetColor( pc1 );
break;
default: // push the vertex value and index
// BIND_PER_FACE_INDEXED WRLVEC3F vf;
cIndex = 1; glm::vec4 pt = glm::vec4( pcoords[idx].x, pcoords[idx].y, pcoords[idx].z, 1.0 );
m_current.mat->GetColor( &pc1, matIndex[0] ); pt = m_current.txmatrix * pt;
pc2.SetColor( pc1 ); vf.x = pt.x;
pc3.SetColor( pc1 ); vf.y = pt.y;
break; vf.z = pt.z;
}
// assuming convex polygons, create triangles for the SG node fp->AddVertex( vf, idx );
int cMaxIdx = (int) matIndex.size();
bool colorPerVertex = false; // push the color if appropriate
switch( mbind )
if( BIND_PER_VERTEX == mbind
|| BIND_PER_VERTEX_INDEXED == mbind )
colorPerVertex = true;
bool noidx = false;
if( matIndex.empty() )
noidx = true;
for( idx = 3; idx <= vsize; )
{
switch( m_current.order )
{ {
case ORD_CCW: case BIND_PER_FACE:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 ); if( !fp->HasColors() )
lCIdx.push_back( i3 ); {
lColors.push_back( pc1 ); m_current.mat->GetColor( &pc1, cidx );
lColors.push_back( pc2 ); fp->AddColor( pc1 );
lColors.push_back( pc3 ); }
break; break;
case ORD_CLOCKWISE: case BIND_PER_VERTEX:
lCIdx.push_back( i1 ); m_current.mat->GetColor( &pc1, idx );
lCIdx.push_back( i3 ); fp->AddColor( pc1 );
lCIdx.push_back( i2 ); ++cidx;
lColors.push_back( pc1 ); break;
lColors.push_back( pc3 );
lColors.push_back( pc2 ); case BIND_PER_FACE_INDEXED:
if( !fp->HasColors() )
{
if( cidx >= matSize )
m_current.mat->GetColor( &pc1, matIndex.back() );
else
m_current.mat->GetColor( &pc1, matIndex[cidx] );
fp->AddColor( pc1 );
}
break;
case BIND_PER_VERTEX_INDEXED:
if( matIndex.empty() )
{
int ic = coordIndex[iCoord];
if( ic >= (int)matSize )
m_current.mat->GetColor( &pc1, matIndex.back() );
else
m_current.mat->GetColor( &pc1, matIndex[ic] );
}
else
{
if( iCoord >= matSize )
m_current.mat->GetColor( &pc1, matIndex.back() );
else
m_current.mat->GetColor( &pc1, matIndex[iCoord] );
}
fp->AddColor( pc1 );
break; break;
default: default:
lCIdx.push_back( i1 );
lCIdx.push_back( i2 );
lCIdx.push_back( i3 );
lCIdx.push_back( i1 );
lCIdx.push_back( i3 );
lCIdx.push_back( i2 );
lColors.push_back( pc1 );
lColors.push_back( pc2 );
lColors.push_back( pc3 );
lColors.push_back( pc1 );
lColors.push_back( pc3 );
lColors.push_back( pc2 );
break; break;
} }
++nfaces;
i2 = i3;
if( idx == vsize )
break;
i3 = coordIndex[idx++];
if( colorPerVertex && i1 >= 0 && i2 >= 0 && i3 >= 0 )
{
pc1.SetColor( pc2 );
pc2.SetColor( pc3 );
if( noidx || cIndex >= cMaxIdx )
m_current.mat->GetColor( &pc3, cIndex++ );
else
m_current.mat->GetColor( &pc3, matIndex[cIndex++] );
}
while( ( i1 < 0 || i2 < 0 || i3 < 0 ) && ( idx < vsize ) )
{
if( i3 < 0 )
{
faces.push_back( nfaces );
nfaces = 0;
if( !colorPerVertex )
{
if( noidx || cIndex >= cMaxIdx )
m_current.mat->GetColor( &pc1, cIndex++ );
else
m_current.mat->GetColor( &pc1, matIndex[cIndex++] );
pc2.SetColor( pc1 );
pc3.SetColor( pc1 );
}
}
i1 = i2;
i2 = i3;
i3 = coordIndex[idx++];
if( colorPerVertex )
{
pc1.SetColor( pc2 );
pc2.SetColor( pc3 );
if( noidx || cIndex >= cMaxIdx )
m_current.mat->GetColor( &pc3, cIndex++ );
else
m_current.mat->GetColor( &pc3, matIndex[cIndex++] );
}
// any invalid polygons shall void the entire faceset; this is a requirement
// to ensure correct handling of the normals
if( ( i1 < 0 && i2 < 0 ) || ( i1 < 0 && i3 < 0 ) || ( i2 < 0 && i3 < 0 ) )
{
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: defective indices: " << i1;
std::cerr << ", " << i2 << ", " << i3 << "\n";
#endif
return NULL;
}
}
if( i1 < 0 || i2 < 0 || i3 < 0 )
break;
} }
} }
if( lCIdx.empty() ) // extract the final data set
{ SGNODE* np = lShape.CalcShape( aParent, sgcolor, m_current.order, m_current.creaseAngle );
#if defined( DEBUG_VRML1 ) && ( DEBUG_VRML1 > 1 )
std::cerr << " * [INFO] bad model: no points in final index list\n";
#endif
m_current.mat->Reclaim( sgcolor ); return np;
return NULL;
}
// create a vertex list for per-face per-vertex normals
do {
std::vector< int >::iterator sI = lCIdx.begin();
std::vector< int >::iterator eI = lCIdx.end();
while( sI != eI )
{
glm::vec4 pt = glm::vec4( pcoords[*sI].x, pcoords[*sI].y, pcoords[*sI].z, 1.0 );
pt = m_current.txmatrix * pt;
lCPts.push_back( SGPOINT( pt.x, pt.y, pt.z ) );
++sI;
}
switch( m_current.order )
{
case ORD_CCW:
for( size_t i = 0; i < lCPts.size(); i += 3 )
{
SGVECTOR sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+1], lCPts[i+2] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
}
break;
case ORD_CLOCKWISE:
for( size_t i = 0; i < lCPts.size(); i += 3 )
{
SGVECTOR sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+2], lCPts[i+1] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
}
break;
default:
for( size_t i = 0; i < lCPts.size(); i += 6 )
{
SGVECTOR sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+1], lCPts[i+2] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
sv = S3D::CalcTriNorm( lCPts[i], lCPts[i+2], lCPts[i+1] );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
lCNorm.push_back( sv );
}
break;
}
} while( 0 );
// create the hierarchy:
// Shape
// + (option) Appearance
// + FaceSet
IFSG_SHAPE shapeNode( aParent );
if( sgcolor )
{
if( NULL == S3D::GetSGNodeParent( sgcolor ) )
shapeNode.AddChildNode( sgcolor );
else
shapeNode.AddRefNode( sgcolor );
}
IFSG_FACESET fsNode( shapeNode );
IFSG_COORDS cpNode( fsNode );
cpNode.SetCoordsList( lCPts.size(), &lCPts[0] );
IFSG_COORDINDEX ciNode( fsNode );
for( int i = 0; i < (int)lCPts.size(); ++i )
ciNode.AddIndex( i );
IFSG_NORMALS nmNode( fsNode );
nmNode.SetNormalList( lCNorm.size(), &lCNorm[0] );
if( !lColors.empty() )
{
IFSG_COLORS nmColor( fsNode );
nmColor.SetColorList( lColors.size(), &lColors[0] );
}
return fsNode.GetRawPtr();
} }

View File

@ -80,6 +80,8 @@ struct WRL1STATUS
// winding order of vertices // winding order of vertices
WRL1_ORDER order; WRL1_ORDER order;
float creaseAngle;
WRL1STATUS() WRL1STATUS()
{ {
Init(); Init();
@ -95,6 +97,7 @@ struct WRL1STATUS
coord = NULL; coord = NULL;
txmatrix = glm::scale( glm::mat4( 1.0 ), glm::vec3( 1.0 ) ); txmatrix = glm::scale( glm::mat4( 1.0 ), glm::vec3( 1.0 ) );
order = ORD_UNKNOWN; order = ORD_UNKNOWN;
creaseAngle = 0.5;
return; return;
} }
}; };

View File

@ -23,6 +23,7 @@
#include <iostream> #include <iostream>
#include <cmath>
#include "vrml1_base.h" #include "vrml1_base.h"
#include "vrml1_shapehints.h" #include "vrml1_shapehints.h"
@ -33,6 +34,7 @@ WRL1SHAPEHINTS::WRL1SHAPEHINTS( NAMEREGISTER* aDictionary ) : WRL1NODE( aDiction
{ {
m_order = ORD_UNKNOWN; m_order = ORD_UNKNOWN;
m_Type = WRL1_SHAPEHINTS; m_Type = WRL1_SHAPEHINTS;
m_crease = 0.5;
return; return;
} }
@ -229,6 +231,13 @@ bool WRL1SHAPEHINTS::Read( WRLPROC& proc, WRL1BASE* aTopNode )
return false; return false;
} }
if( tmp < 0.0 )
tmp = 0.0;
else if( tmp > M_PI )
tmp = M_PI;
m_crease = tmp;
} }
else else
{ {
@ -262,6 +271,7 @@ SGNODE* WRL1SHAPEHINTS::TranslateToSG( SGNODE* aParent, WRL1STATUS* sp )
} }
sp->order = m_order; sp->order = m_order;
sp->creaseAngle = m_crease;
return NULL; return NULL;
} }

View File

@ -41,7 +41,8 @@ class SGNODE;
class WRL1SHAPEHINTS : public WRL1NODE class WRL1SHAPEHINTS : public WRL1NODE
{ {
private: private:
WRL1_ORDER m_order; WRL1_ORDER m_order; // vertex order
float m_crease; // VRML creaseAngle
public: public:
WRL1SHAPEHINTS( NAMEREGISTER* aDictionary ); WRL1SHAPEHINTS( NAMEREGISTER* aDictionary );

View File

@ -47,7 +47,7 @@
#define PLUGIN_VRML_MAJOR 1 #define PLUGIN_VRML_MAJOR 1
#define PLUGIN_VRML_MINOR 0 #define PLUGIN_VRML_MINOR 1
#define PLUGIN_VRML_PATCH 0 #define PLUGIN_VRML_PATCH 0
#define PLUGIN_VRML_REVNO 0 #define PLUGIN_VRML_REVNO 0

View File

@ -0,0 +1,748 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Cirilo Bernardo <cirilo.bernardo@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <cmath>
#include <iostream>
#include "wrlfacet.h"
static bool VDegenerate( glm::vec3* pts )
{
double dx, dy, dz;
dx = pts[1].x - pts[0].x;
dy = pts[1].y - pts[0].y;
dz = pts[1].z - pts[0].z;
if( ( dx*dx + dy*dy + dz*dz ) < 1e-6 )
return true;
dx = pts[2].x - pts[0].x;
dy = pts[2].y - pts[0].y;
dz = pts[2].z - pts[0].z;
if( ( dx*dx + dy*dy + dz*dz ) < 1e-6 )
return true;
dx = pts[2].x - pts[1].x;
dy = pts[2].y - pts[1].y;
dz = pts[2].z - pts[1].z;
if( ( dx*dx + dy*dy + dz*dz ) < 1e-6 )
return true;
return false;
};
static WRLVEC3F VCalcTriNorm( const WRLVEC3F& p1, const WRLVEC3F& p2, const WRLVEC3F& p3 )
{
// note: p1 = reference vertex
WRLVEC3F result;
result.x = 0.0;
result.y = 0.0;
result.z = 1.0;
glm::vec3 tri = glm::dvec3( 0.0, 0.0, 0.0 );
glm::vec3 pts[3];
pts[0] = glm::vec3( p1.x, p1.y, p1.z );
pts[1] = glm::vec3( p2.x, p2.y, p2.z );
pts[2] = glm::vec3( p3.x, p3.y, p3.z );
// degenerate points are given a default 0, 0, 1 normal
if( VDegenerate( pts ) )
return result;
// normal
tri = cross( pts[1] - pts[0], pts[2] - pts[0] );
normalize( tri );
result.x = tri.x;
result.y = tri.y;
result.z = tri.z;
return result;
}
void printX( const WRLVEC3F& p1 )
{
std::cerr << p1.x << ", " << p1.y << ", " << p1.z << "\n";
}
// p1 = reference vertex
static float VCalcAngle( const WRLVEC3F& p1, const WRLVEC3F& p2, const WRLVEC3F& p3 )
{
// note: p1 = reference vertex
float l12, l13;
float dx, dy, dz;
dx = p2.x - p1.x;
dy = p2.y - p1.y;
dz = p2.z - p1.z;
float p12 = dx*dx + dy*dy + dz*dz;
l12 = sqrtf( p12 );
dx = p3.x - p2.x;
dy = p3.y - p2.y;
dz = p3.z - p2.z;
float p23 = dx*dx + dy*dy + dz*dz;
dx = p3.x - p1.x;
dy = p3.y - p1.y;
dz = p3.z - p1.z;
float p13 = dx*dx + dy*dy + dz*dz;
l13 = sqrtf( p13 );
float dn = 2.0 * l12 * l13;
// place a limit to prevent calculations from blowing up
if( dn < 1e-15 )
return 0.0;
float cosAngle = (p12 + p13 - p23) / dn;
// check the domain; errors in the cosAngle calculation
// can result in domain errors
if( cosAngle > 1.0 || cosAngle < -1.0 )
cosAngle = 1.0;
// note: we are guaranteed that acosf() is never negative
return acosf( cosAngle );
}
FACET::FACET()
{
face_normal.x = 0.0;
face_normal.y = 0.0;
face_normal.z = 0.0;
maxIdx = 0;
}
void FACET::Init()
{
vertices.clear();
colors.clear();
indices.clear();
norms.clear();
vnweight.clear();
face_normal.x = 0.0;
face_normal.y = 0.0;
face_normal.z = 0.0;
maxIdx = 0;
return;
}
bool FACET::HasMinPoints()
{
if( vertices.size() < 3 )
return false;
return true;
}
bool FACET::HasColors()
{
if( colors.empty() )
return false;
return true;
}
void FACET::AddVertex( WRLVEC3F& aVertex, int aIndex )
{
if( aIndex < 0 )
return;
vertices.push_back( aVertex );
indices.push_back( aIndex );
if( aIndex > maxIdx )
maxIdx = aIndex;
return;
}
void FACET::AddColor( const SGCOLOR& aColor )
{
colors.push_back( aColor );
return;
}
void FACET::CalcFaceNormal()
{
// note: this calculation assumes that the face is a convex polygon;
// concave polygons may be supported in the future via functions which
// split the polygon into triangles
if( vertices.size() < 3 )
return;
// check if the values were already calculated
if( vertices.size() == vnweight.size() )
return;
WRLVEC3F lCPts[3];
std::vector< WRLVEC3F >::iterator sV = vertices.begin();
std::vector< WRLVEC3F >::iterator eV = vertices.end();
lCPts[0] = vertices.back();
lCPts[1] = *sV;
++sV;
lCPts[2] = *sV;
++sV;
face_normal = VCalcTriNorm( lCPts[1], lCPts[0], lCPts[2] );
vnweight.clear();
WRLVEC3F wnorm = face_normal;
float ang = VCalcAngle( lCPts[1], lCPts[0], lCPts[2] );
wnorm.x *= ang;
wnorm.y *= ang;
wnorm.z *= ang;
vnweight.push_back( wnorm );
while( sV != eV )
{
lCPts[0] = lCPts[1];
lCPts[1] = lCPts[2];
lCPts[2] = *sV;
++sV;
WRLVEC3F wnorm = face_normal;
ang = VCalcAngle( lCPts[1], lCPts[0], lCPts[2] );
wnorm.x *= ang;
wnorm.y *= ang;
wnorm.z *= ang;
vnweight.push_back( wnorm );
}
lCPts[0] = lCPts[1];
lCPts[1] = lCPts[2];
lCPts[2] = vertices.front();
wnorm = face_normal;
ang = VCalcAngle( lCPts[1], lCPts[0], lCPts[2] );
wnorm.x *= ang;
wnorm.y *= ang;
wnorm.z *= ang;
vnweight.push_back( wnorm );
return;
}
void FACET::CalcVertexNormal( int aIndex, std::list< FACET* > &aFacetList, float aCreaseAngle )
{
if( vertices.size() < 3 )
return;
if( norms.size() != vertices.size() )
norms.resize( vertices.size() );
std::vector< int >::iterator sI = indices.begin();
std::vector< int >::iterator eI = indices.end();
int idx = 0;
WRLVEC3F fp[2]; // vectors to calculate facet angle
fp[0].x = 0.0;
fp[0].y = 0.0;
fp[0].z = 0.0;
while( sI != eI )
{
if( *sI == aIndex )
{
if( vnweight.size() != vertices.size() )
CalcFaceNormal();
// first set the default (weighted) normal value
norms[idx] = vnweight[idx];
// iterate over adjacent facets
std::list< FACET* >::iterator sF = aFacetList.begin();
std::list< FACET* >::iterator eF = aFacetList.end();
while( sF != eF )
{
if( this == *sF )
{
++sF;
continue;
}
// check the create angle limit
(*sF)->GetFaceNormal( fp[1] );
if( aCreaseAngle >= VCalcAngle( fp[0], face_normal, fp[1] ) )
{
if( GetWeightedNormal( aIndex, fp[1] ) )
{
norms[idx].x += fp[1].x;
norms[idx].y += fp[1].y;
norms[idx].z += fp[1].z;
}
}
++sF;
}
// normalize the vector
glm::vec3 tri = glm::dvec3( norms[idx].x, norms[idx].y, norms[idx].z );
normalize( tri );
norms[idx].x = tri.x;
norms[idx].y = tri.y;
norms[idx].z = tri.z;
return;
}
++idx;
++sI;
}
return;
}
bool FACET::GetWeightedNormal( int aIndex, WRLVEC3F& aNorm )
{
// the default weighted normal shall have no effect even if accidentally included
aNorm.x = 0.0;
aNorm.y = 0.0;
aNorm.z = 0.0;
if( vertices.size() < 3 )
return false;
std::vector< int >::iterator sI = indices.begin();
std::vector< int >::iterator eI = indices.end();
int idx = 0;
while( sI != eI )
{
if( *sI == aIndex )
{
if( vnweight.size() != vertices.size() )
CalcFaceNormal();
aNorm = vnweight[idx];
return true;
}
++idx;
++sI;
}
return false;
}
bool FACET::GetFaceNormal( WRLVEC3F& aNorm )
{
aNorm.x = 0.0;
aNorm.y = 0.0;
aNorm.z = 0.0;
if( vertices.size() < 3 )
return false;
if( vnweight.size() != vertices.size() )
CalcFaceNormal();
aNorm = face_normal;
return true;
}
bool FACET::GetData( std::vector< WRLVEC3F >& aVertexList, std::vector< WRLVEC3F >& aNormalsList,
std::vector< SGCOLOR >& aColorsList, WRL1_ORDER aVertexOrder )
{
// if no normals are calculated we simply return
if( norms.empty() )
return false;
// the output must always be triangle sets in order to conform to the
// requirements of the SG* classes
int idx[3];
idx[0] = 0;
idx[1] = 1;
idx[2] = 2;
WRLVEC3F tnorm;
if( aVertexOrder != ORD_CLOCKWISE )
{
aVertexList.push_back( vertices[idx[0]] );
aVertexList.push_back( vertices[idx[1]] );
aVertexList.push_back( vertices[idx[2]] );
aNormalsList.push_back( norms[idx[0]] );
aNormalsList.push_back( norms[idx[1]] );
aNormalsList.push_back( norms[idx[2]] );
}
if( aVertexOrder != ORD_CCW )
{
aVertexList.push_back( vertices[idx[0]] );
aVertexList.push_back( vertices[idx[2]] );
aVertexList.push_back( vertices[idx[1]] );
tnorm = norms[idx[0]];
tnorm.x = -tnorm.x;
tnorm.y = -tnorm.y;
tnorm.z = -tnorm.z;
aNormalsList.push_back( tnorm );
tnorm = norms[idx[2]];
tnorm.x = -tnorm.x;
tnorm.y = -tnorm.y;
tnorm.z = -tnorm.z;
aNormalsList.push_back( tnorm );
tnorm = norms[idx[1]];
tnorm.x = -tnorm.x;
tnorm.y = -tnorm.y;
tnorm.z = -tnorm.z;
aNormalsList.push_back( tnorm );
}
bool hasColor;
bool perVC; // per-vertex colors?
if( !colors.empty() )
{
hasColor = true;
if( colors.size() >= vertices.size() )
perVC = true;
if( perVC )
{
if( aVertexOrder != ORD_CLOCKWISE )
{
aColorsList.push_back( colors[idx[0]] );
aColorsList.push_back( colors[idx[1]] );
aColorsList.push_back( colors[idx[2]] );
}
if( aVertexOrder != ORD_CCW )
{
aColorsList.push_back( colors[idx[0]] );
aColorsList.push_back( colors[idx[2]] );
aColorsList.push_back( colors[idx[1]] );
}
}
else
{
if( aVertexOrder != ORD_CLOCKWISE )
{
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
}
if( aVertexOrder != ORD_CCW )
{
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
}
}
}
else
{
hasColor = false;
}
int lim = (int) vertices.size() - 1;
while( idx[2] < lim )
{
idx[1] = idx[2];
++idx[2];
if( aVertexOrder != ORD_CLOCKWISE )
{
aVertexList.push_back( vertices[idx[0]] );
aVertexList.push_back( vertices[idx[1]] );
aVertexList.push_back( vertices[idx[2]] );
aNormalsList.push_back( norms[idx[0]] );
aNormalsList.push_back( norms[idx[1]] );
aNormalsList.push_back( norms[idx[2]] );
}
if( aVertexOrder != ORD_CCW )
{
aVertexList.push_back( vertices[idx[0]] );
aVertexList.push_back( vertices[idx[2]] );
aVertexList.push_back( vertices[idx[1]] );
tnorm = norms[idx[0]];
tnorm.x = -tnorm.x;
tnorm.y = -tnorm.y;
tnorm.z = -tnorm.z;
aNormalsList.push_back( tnorm );
tnorm = norms[idx[2]];
tnorm.x = -tnorm.x;
tnorm.y = -tnorm.y;
tnorm.z = -tnorm.z;
aNormalsList.push_back( tnorm );
tnorm = norms[idx[1]];
tnorm.x = -tnorm.x;
tnorm.y = -tnorm.y;
tnorm.z = -tnorm.z;
aNormalsList.push_back( tnorm );
}
if( hasColor )
{
if( perVC )
{
if( aVertexOrder != ORD_CLOCKWISE )
{
aColorsList.push_back( colors[idx[0]] );
aColorsList.push_back( colors[idx[1]] );
aColorsList.push_back( colors[idx[2]] );
}
if( aVertexOrder != ORD_CCW )
{
aColorsList.push_back( colors[idx[0]] );
aColorsList.push_back( colors[idx[2]] );
aColorsList.push_back( colors[idx[1]] );
}
}
else
{
if( aVertexOrder != ORD_CLOCKWISE )
{
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
}
if( aVertexOrder != ORD_CCW )
{
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
aColorsList.push_back( colors[0] );
}
}
}
}
return true;
}
void FACET::CollectVertices( std::vector< std::list< FACET* > >& aFacetList )
{
// check if this facet may contribute anything at all
if( vertices.size() < 3 )
return;
// note: in principle this should never be invoked
if( (maxIdx + 1) >= (int)aFacetList.size() )
aFacetList.resize( maxIdx + 1 );
std::vector< int >::iterator sI = indices.begin();
std::vector< int >::iterator eI = indices.end();
while( sI != eI )
{
aFacetList[*sI].push_back( this );
++sI;
}
return;
}
SHAPE::~SHAPE()
{
std::list< FACET* >::iterator sF = facets.begin();
std::list< FACET* >::iterator eF = facets.end();
while( sF != eF )
{
delete *sF;
++sF;
}
facets.clear();
return;
}
FACET* SHAPE::NewFacet()
{
FACET* fp = new FACET;
facets.push_back( fp );
return fp;
}
SGNODE* SHAPE::CalcShape( SGNODE* aParent, SGNODE* aColor, WRL1_ORDER aVertexOrder,
float aCreaseAngle )
{
if( facets.empty() || !facets.front()->HasMinPoints() )
return NULL;
std::vector< std::list< FACET* > > flist;
// determine the max. index and size flist as appropriate
std::list< FACET* >::iterator sF = facets.begin();
std::list< FACET* >::iterator eF = facets.end();
int maxIdx = 0;
int tmi;
while( sF != eF )
{
tmi = (*sF)->GetMaxIndex();
if( tmi > maxIdx )
maxIdx = tmi;
++sF;
}
++maxIdx;
if( maxIdx < 3 )
return NULL;
flist.resize( maxIdx );
// create the lists of facets common to indices
sF = facets.begin();
while( sF != eF )
{
(*sF)->CollectVertices( flist );
++sF;
}
// calculate the normals
size_t vs = flist.size();
for( size_t i = 0; i < vs; ++i )
{
sF = flist[i].begin();
eF = flist[i].end();
while( sF != eF )
{
(*sF)->CalcVertexNormal( i, flist[i], aCreaseAngle );
++sF;
}
}
std::vector< WRLVEC3F > vertices;
std::vector< WRLVEC3F > normals;
std::vector< SGCOLOR > colors;
// push the facet data to the final output list
sF = facets.begin();
eF = facets.end();
while( sF != eF )
{
(*sF)->GetData( vertices, normals, colors, aVertexOrder );
++sF;
}
flist.clear();
if( vertices.size() < 3 )
return NULL;
IFSG_SHAPE shapeNode( aParent );
if( aColor )
{
if( NULL == S3D::GetSGNodeParent( aColor ) )
shapeNode.AddChildNode( aColor );
else
shapeNode.AddRefNode( aColor );
}
std::vector< SGPOINT > lCPts; // vertex points in SGPOINT (double) format
std::vector< SGVECTOR > lCNorm; // per-vertex normals
vs = vertices.size();
for( size_t i = 0; i < vs; ++i )
{
SGPOINT pt;
pt.x = vertices[i].x;
pt.y = vertices[i].y;
pt.z = vertices[i].z;
lCPts.push_back( pt );
lCNorm.push_back( SGVECTOR( normals[i].x, normals[i].y, normals[i].z ) );
}
vertices.clear();
normals.clear();
IFSG_FACESET fsNode( shapeNode );
IFSG_COORDS cpNode( fsNode );
cpNode.SetCoordsList( lCPts.size(), &lCPts[0] );
IFSG_COORDINDEX ciNode( fsNode );
for( int i = 0; i < (int)lCPts.size(); ++i )
ciNode.AddIndex( i );
IFSG_NORMALS nmNode( fsNode );
nmNode.SetNormalList( lCNorm.size(), &lCNorm[0] );
if( !colors.empty() )
{
IFSG_COLORS nmColor( fsNode );
nmColor.SetColorList( colors.size(), &colors[0] );
colors.clear();
}
return fsNode.GetRawPtr();
}

148
plugins/3d/vrml/wrlfacet.h Normal file
View File

@ -0,0 +1,148 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Cirilo Bernardo <cirilo.bernardo@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file wrlfacet.h
* declares classes to help manage normals calculations from VRML files
*/
#ifndef WRLFACET_H
#define WRLFACET_H
#include <list>
#include <vector>
#include "wrltypes.h"
#include "plugins/3dapi/ifsg_all.h"
class SGNODE;
class FACET
{
private:
std::vector< WRLVEC3F > vertices; // vertices of the facet
std::vector< SGCOLOR > colors; // per-vertex/per-face color (if any)
std::vector< int > indices; // index of each vertex
WRLVEC3F face_normal; // normal of this facet
std::vector< WRLVEC3F > norms; // per-vertex normals
std::vector< WRLVEC3F > vnweight; // angle weighted per vertex normal
int maxIdx; // maximum index used
public:
FACET();
void Init();
bool HasMinPoints();
bool HasColors();
/**
* Function AddVertex
* adds the vertex and its associated index to the internal list
* of polygon vertices
*/
void AddVertex( WRLVEC3F& aVertex, int aIndex );
/**
* Function AddColor
* adds the given RGB color to the internal list. For per-face
* coloring only a single color needs to be specified; for a
* per-vertex coloring the color must be specified for each
* vertex
*/
void AddColor( const SGCOLOR& aColor );
/**
* Function CalcFaceNormal
* calculates the normal to the facet assuming a CCW orientation
* and performs the calculation of the angle weighted vertex normals
*/
void CalcFaceNormal();
/**
* Function CalcVertexNormal
* calculates the weighted normal for the given vertex
*
* @param aIndex is the VRML file's Vertex Index for the vertex to be processed
* @param aFacetList is the list of all faces which share this vertex
*/
void CalcVertexNormal( int aIndex, std::list< FACET* >& aFacetList, float aCreaseAngle );
/**
* Function GetWeightedNormal
* retrieves the angle weighted normal for the given vertex index
*
* @param aIndex is the VRML file's Vertex Index for the vertex to be processed
* @param aNorm will hold the result
*/
bool GetWeightedNormal( int aIndex, WRLVEC3F& aNorm );
/**
* Function GetFaceNormal
* retrieves the normal for this facet
*
* @param aNorm will hold the result
*/
bool GetFaceNormal( WRLVEC3F& aNorm );
/**
* Function GetData
* packages the internal data as triangles with corresponding per-vertex normals
*
* @param aVertexList is the list of vertices to add to
* @param aNormalsList is the list of per-vertex normals to add to
* @param aColorsList is the list of per-vertex colors (if any) to add to
* @param aVertexOrder informs the function of the vertex winding order
*/
bool GetData( std::vector< WRLVEC3F >& aVertexList, std::vector< WRLVEC3F >& aNormalsList,
std::vector< SGCOLOR >& aColorsList, WRL1_ORDER aVertexOrder );
int GetMaxIndex()
{
return maxIdx;
}
/**
* Function CollectVertices
* adds a pointer to this object at each position within aFacetList
* referenced by the internal vertex indices
*/
void CollectVertices( std::vector< std::list< FACET* > >& aFacetList );
};
class SHAPE
{
std::list< FACET* > facets;
public:
~SHAPE();
FACET* NewFacet();
SGNODE* CalcShape( SGNODE* aParent, SGNODE* aColor, WRL1_ORDER aVertexOrder,
float aCreaseAngle = 0.5235983 );
};
#endif // WRLFACET_H