Change zone fill algorithm to better handle thermal reliefs.

Thermal reliefs must not knock-out spokes of other pads, while
clearances must knock-out spokes of all pads.  Therefore we now
do all thermal reliefs, then all spokes, then all clearances.

Fixes: lp:602176
* https://bugs.launchpad.net/kicad/+bug/602176

Fixes: lp:1782957
* https://bugs.launchpad.net/kicad/+bug/1782957
This commit is contained in:
Jeff Young 2019-06-20 23:35:01 +01:00
parent 29ca96cfe7
commit 5c89e4490e
2 changed files with 342 additions and 407 deletions

View File

@ -75,10 +75,6 @@ private:
}; };
extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, const D_PAD& aPad,
int aThermalGap, int aCopperThickness, int aMinThicknessValue, int aError,
double aThermalRot );
static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads
static const bool s_DumpZonesWhenFilling = false; static const bool s_DumpZonesWhenFilling = false;
@ -346,67 +342,194 @@ bool ZONE_FILLER::Fill( const std::vector<ZONE_CONTAINER*>& aZones, bool aCheck
} }
void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone, /**
SHAPE_POLY_SET& aFeatures ) const * Return true if the given pad has a thermal connection with the given zone.
*/
bool hasThermalConnection( D_PAD* pad, const ZONE_CONTAINER* aZone )
{ {
aFeatures.RemoveAllContours(); // Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
{
return false;
}
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
{
return false;
}
if( !pad->IsOnLayer( aZone->GetLayer() ) )
return false;
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 )
return false;
EDA_RECT item_boundingbox = pad->GetBoundingBox();
int thermalGap = aZone->GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
return item_boundingbox.Intersects( aZone->GetBoundingBox() );
}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be
* either the thermal clearance or the electrical clearance).
*/
void ZONE_FILLER::addKnockout( D_PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
{
if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
{
// the pad shape in zone can be its convex hull or the shape itself
SHAPE_POLY_SET outline( aPad->GetCustomShapeAsPolygon() );
int numSegs = std::max( GetArcToSegmentCount( aGap, m_high_def, 360.0 ), 6 );
double correction = GetCircletoPolyCorrectionFactor( numSegs );
outline.Inflate( KiROUND( aGap * correction ), numSegs );
aPad->CustomShapeAsPolygonToBoardPosition( &outline, aPad->GetPosition(),
aPad->GetOrientation() );
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aHoles.NewOutline();
for( const wxPoint& pt : convex_hull )
aHoles.Append( pt );
}
else
aHoles.Append( outline );
}
else
{
// Optimizing polygon vertex count: the high definition is used for round
// and oval pads (pads with large arcs) but low def for other shapes (with
// small arcs)
if( aPad->GetShape() == PAD_SHAPE_CIRCLE || aPad->GetShape() == PAD_SHAPE_OVAL )
aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def );
else
aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_low_def );
}
}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which
* might be either the electrical clearance or the board edge clearance).
*/
void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, int aGap, bool aIgnoreLineWidth,
SHAPE_POLY_SET& aHoles )
{
switch( aItem->Type() )
{
case PCB_LINE_T:
{
DRAWSEGMENT* seg = (DRAWSEGMENT*) aItem;
seg->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth );
break;
}
case PCB_TEXT_T:
{
TEXTE_PCB* text = (TEXTE_PCB*) aItem;
text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap );
break;
}
case PCB_MODULE_EDGE_T:
{
EDGE_MODULE* edge = (EDGE_MODULE*) aItem;
edge->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth );
break;
}
case PCB_MODULE_TEXT_T:
{
TEXTE_MODULE* text = (TEXTE_MODULE*) aItem;
if( text->IsVisible() )
text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap );
break;
}
default:
break;
}
}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add
* in spokes, which must be done later.
*/
void ZONE_FILLER::knockoutThermals( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFill )
{
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
if( hasThermalConnection( pad, aZone ) )
{
int thermalGap = aZone->GetThermalReliefGap( pad );
thermalGap += aZone->GetMinThickness() / 2;
SHAPE_POLY_SET holes;
addKnockout( pad, thermalGap, holes );
holes.Simplify( SHAPE_POLY_SET::PM_FAST );
// Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
// needed by Gerber files and Fracture()
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
}
}
}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are
* not connected to it.
*/
void ZONE_FILLER::knockoutCopperItems( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFill )
{
SHAPE_POLY_SET holes;
int zone_clearance = aZone->GetClearance(); int zone_clearance = aZone->GetClearance();
int edgeClearance = m_board->GetDesignSettings().m_CopperEdgeClearance; int edgeClearance = m_board->GetDesignSettings().m_CopperEdgeClearance;
int zone_to_edgecut_clearance = std::max( aZone->GetZoneClearance(), edgeClearance ); int zone_to_edgecut_clearance = std::max( aZone->GetZoneClearance(), edgeClearance );
// dist_high_def can be used to define a high definition arc to polygon approximation: // When removing holes, the holes must be expanded by outline_half_thickness to take in
// (shorter than m_board->GetDesignSettings().m_MaxError and is a better wording here) // account the thickness of the zone outlines
int dist_high_def = m_board->GetDesignSettings().m_MaxError;
// dist_low_def can be used to define a low definition arc to polygon approximation:
// when converting some pad shapes that can accept lower resolution),
// vias and track ends to polygons.
// rect pads use dist_low_def to reduce the number of segments. For these shapes a low def
// gives a good shape, because the arc is small (90 degrees) and a small part of the shape.
int dist_low_def = std::min( ARC_LOW_DEF, int( dist_high_def*1.5 ) ); // Reasonable value
// When removing holes, the holes must be expanded by outline_half_thickness
// to take in account the thickness of the zone outlines
int outline_half_thickness = aZone->GetMinThickness() / 2; int outline_half_thickness = aZone->GetMinThickness() / 2;
zone_clearance += outline_half_thickness; zone_clearance += outline_half_thickness;
zone_to_edgecut_clearance += outline_half_thickness; zone_to_edgecut_clearance += outline_half_thickness;
/* store holes (i.e. tracks and pads areas as polygons outlines) // items outside the zone bounding box are skipped
* in a polygon list // the bounding box is the zone bounding box + the biggest clearance found in Netclass list
*/ EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
/* items outside the zone bounding box are skipped
* the bounding box is the zone bounding box + the biggest clearance found in Netclass list
*/
EDA_RECT item_boundingbox;
EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance ); biggest_clearance = std::max( biggest_clearance, zone_clearance );
zone_boundingbox.Inflate( biggest_clearance ); zone_boundingbox.Inflate( biggest_clearance );
/* // Use a dummy pad to calculate hole clearance when a pad has a hole but is not on the
* First : Add pads. Note: pads having the same net as zone are left in zone. // zone's copper layer. The dummy pad has the size and shape of the original pad's hole.
* Thermal shapes will be created later if necessary // We have to give it a parent because some functions expect a non-null parent to find
*/ // clearance data, etc.
MODULE dummymodule( m_board );
/* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers
* and this pad has a hole
* This dummy pad has the size and shape of the hole
* Therefore, this dummy pad is a circle or an oval.
* A pad must have a parent because some functions expect a non null parent
* to find the parent board, and some other data
*/
MODULE dummymodule( m_board ); // Creates a dummy parent
D_PAD dummypad( &dummymodule ); D_PAD dummypad( &dummymodule );
// Add non-connected pad clearances
//
for( auto module : m_board->Modules() ) for( auto module : m_board->Modules() )
{ {
for( auto pad : module->Pads() ) for( auto pad : module->Pads() )
{ {
if( !pad->IsOnLayer( aZone->GetLayer() ) ) if( !pad->IsOnLayer( aZone->GetLayer() ) )
{ {
/* Test for pads that are on top or bottom only and have a hole. /*
* Test for pads that are on top or bottom only and have a hole.
* There are curious pads but they can be used for some components that are * There are curious pads but they can be used for some components that are
* inside the board (in fact inside the hole. Some photo diodes and Leds are * inside the board (in fact inside the hole. Some photo diodes and Leds are
* like this) * like this)
@ -418,124 +541,30 @@ void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
// the pad hole // the pad hole
dummypad.SetSize( pad->GetDrillSize() ); dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetOrientation( pad->GetOrientation() ); dummypad.SetOrientation( pad->GetOrientation() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); : PAD_SHAPE_CIRCLE );
dummypad.SetPosition( pad->GetPosition() ); dummypad.SetPosition( pad->GetPosition() );
pad = &dummypad; pad = &dummypad;
} }
// Note: netcode <=0 means not connected item else if( pad->GetNetCode() != aZone->GetNetCode()
if( ( pad->GetNetCode() != aZone->GetNetCode() ) || ( pad->GetNetCode() <= 0 ) ) || pad->GetNetCode() <= 0
|| aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE )
{ {
int item_clearance = pad->GetClearance() + outline_half_thickness; int item_clearance = pad->GetClearance() + outline_half_thickness;
item_boundingbox = pad->GetBoundingBox(); int gap = std::max( zone_clearance, item_clearance );
EDA_RECT item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( item_clearance ); item_boundingbox.Inflate( item_clearance );
if( item_boundingbox.Intersects( zone_boundingbox ) ) if( item_boundingbox.Intersects( zone_boundingbox ) )
{ addKnockout( pad, gap, holes );
int clearance = std::max( zone_clearance, item_clearance );
// PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape
if( pad->GetShape() == PAD_SHAPE_CUSTOM
&& pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
int numSegs = std::max(
GetArcToSegmentCount( clearance, dist_high_def, 360.0 ), 6 );
double correction = GetCircletoPolyCorrectionFactor( numSegs );
outline.Inflate( KiROUND( clearance * correction ), numSegs );
pad->CustomShapeAsPolygonToBoardPosition(
&outline, pad->GetPosition(), pad->GetOrientation() );
if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
aFeatures.Append( outline );
}
else
{
// Optimizing polygon vertex count: the high definition is used for round and
// oval pads (pads with large arcs) but low def for other shapes (with smal arcs)
if( pad->GetShape() == PAD_SHAPE_CIRCLE ||
pad->GetShape() == PAD_SHAPE_OVAL )
pad->TransformShapeWithClearanceToPolygon( aFeatures, clearance,
dist_high_def );
else
pad->TransformShapeWithClearanceToPolygon( aFeatures, clearance,
dist_low_def );
}
}
continue;
}
// Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
// or if they have a custom shape and not PAD_ZONE_CONN_FULL,
// because a thermal relief will break
// the shape
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE
|| ( pad->GetShape() == PAD_SHAPE_CUSTOM && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_FULL ) )
{
int gap = zone_clearance;
int thermalGap = aZone->GetThermalReliefGap( pad );
gap = std::max( gap, thermalGap );
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( gap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
// PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape
// the pad shape in zone can be its convex hull or the shape itself
if( pad->GetShape() == PAD_SHAPE_CUSTOM
&& pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
int numSegs = std::max(
GetArcToSegmentCount( gap, dist_high_def, 360.0 ), 6 );
double correction = GetCircletoPolyCorrectionFactor( numSegs );
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( gap * correction ), numSegs );
pad->CustomShapeAsPolygonToBoardPosition(
&outline, pad->GetPosition(), pad->GetOrientation() );
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
{
if( pad->GetShape() == PAD_SHAPE_CIRCLE ||
pad->GetShape() == PAD_SHAPE_OVAL )
pad->TransformShapeWithClearanceToPolygon( aFeatures, gap,
dist_high_def );
else
pad->TransformShapeWithClearanceToPolygon( aFeatures, gap,
dist_low_def );
}
}
} }
} }
} }
/* Add holes (i.e. tracks and vias areas as polygons outlines) // Add non-connected track clearances
* in cornerBufferPolysToSubstract //
*/
for( auto track : m_board->Tracks() ) for( auto track : m_board->Tracks() )
{ {
if( !track->IsOnLayer( aZone->GetLayer() ) ) if( !track->IsOnLayer( aZone->GetLayer() ) )
@ -545,19 +574,16 @@ void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
continue; continue;
int item_clearance = track->GetClearance() + outline_half_thickness; int item_clearance = track->GetClearance() + outline_half_thickness;
item_boundingbox = track->GetBoundingBox(); int gap = std::max( zone_clearance, item_clearance );
EDA_RECT item_boundingbox = track->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) ) if( item_boundingbox.Intersects( zone_boundingbox ) )
{ track->TransformShapeWithClearanceToPolygon( holes, gap, m_low_def );
int clearance = std::max( zone_clearance, item_clearance );
track->TransformShapeWithClearanceToPolygon( aFeatures, clearance,
dist_low_def );
}
} }
/* Add graphic items that are on copper layers. These have no net, so we just // Add graphic item clearances. They are by definition unconnected, and have no clearance
* use the zone clearance (or edge clearance). // definitions of their own.
*/ //
auto doGraphicItem = [&]( BOARD_ITEM* aItem ) auto doGraphicItem = [&]( BOARD_ITEM* aItem )
{ {
// A item on the Edge_Cuts is always seen as on any layer: // A item on the Edge_Cuts is always seen as on any layer:
@ -568,48 +594,17 @@ void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
return; return;
bool ignoreLineWidth = false; bool ignoreLineWidth = false;
int zclearance = zone_clearance; int gap = zone_clearance;
if( aItem->IsOnLayer( Edge_Cuts ) ) if( aItem->IsOnLayer( Edge_Cuts ) )
{ {
// use only the m_ZoneClearance, not the clearance using gap = zone_to_edgecut_clearance;
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
// edge cuts by definition don't have a width // edge cuts by definition don't have a width
ignoreLineWidth = true; ignoreLineWidth = true;
} }
switch( aItem->Type() ) addKnockout( aItem, gap, ignoreLineWidth, holes );
{
case PCB_LINE_T:
static_cast<DRAWSEGMENT*>( aItem )->TransformShapeWithClearanceToPolygon(
aFeatures, zclearance, m_board->GetDesignSettings().m_MaxError,
ignoreLineWidth );
break;
case PCB_TEXT_T:
static_cast<TEXTE_PCB*>( aItem )->TransformBoundingBoxWithClearanceToPolygon(
&aFeatures, zclearance );
break;
case PCB_MODULE_EDGE_T:
static_cast<EDGE_MODULE*>( aItem )->TransformShapeWithClearanceToPolygon(
aFeatures, zclearance, m_board->GetDesignSettings().m_MaxError,
ignoreLineWidth );
break;
case PCB_MODULE_TEXT_T:
if( static_cast<TEXTE_MODULE*>( aItem )->IsVisible() )
{
static_cast<TEXTE_MODULE*>( aItem )->TransformBoundingBoxWithClearanceToPolygon(
&aFeatures, zclearance );
}
break;
default:
break;
}
}; };
for( auto module : m_board->Modules() ) for( auto module : m_board->Modules() )
@ -624,8 +619,8 @@ void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
for( auto item : m_board->Drawings() ) for( auto item : m_board->Drawings() )
doGraphicItem( item ); doGraphicItem( item );
/* Add zones outlines having an higher priority and keepout // Add zones outlines having an higher priority and keepout
*/ //
for( int ii = 0; ii < m_board->GetAreaCount(); ii++ ) for( int ii = 0; ii < m_board->GetAreaCount(); ii++ )
{ {
ZONE_CONTAINER* zone = m_board->GetArea( ii ); ZONE_CONTAINER* zone = m_board->GetArea( ii );
@ -641,7 +636,7 @@ void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
continue; continue;
// A highter priority zone or keepout area is found: remove this area // A highter priority zone or keepout area is found: remove this area
item_boundingbox = zone->GetBoundingBox(); EDA_RECT item_boundingbox = zone->GetBoundingBox();
if( !item_boundingbox.Intersects( zone_boundingbox ) ) if( !item_boundingbox.Intersects( zone_boundingbox ) )
continue; continue;
@ -651,101 +646,55 @@ void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
// do not add any clearance. // do not add any clearance.
// the zone will be connected to the current zone, but filled areas // the zone will be connected to the current zone, but filled areas
// will use different parameters (clearance, thermal shapes ) // will use different parameters (clearance, thermal shapes )
bool same_net = aZone->GetNetCode() == zone->GetNetCode(); bool sameNet = aZone->GetNetCode() == zone->GetNetCode();
bool use_net_clearance = true; bool useNetClearance = true;
int min_clearance = zone_clearance; int minClearance = zone_clearance;
// Do not forget to make room to draw the thick outlines // Do not forget to make room to draw the thick outlines
// of the hole created by the area of the zone to remove // of the hole created by the area of the zone to remove
int holeclearance = zone->GetClearance() + outline_half_thickness; int holeClearance = zone->GetClearance() + outline_half_thickness;
// The final clearance is obviously the max value of each zone clearance // The final clearance is obviously the max value of each zone clearance
min_clearance = std::max( min_clearance, holeclearance ); minClearance = std::max( minClearance, holeClearance );
if( zone->GetIsKeepout() || same_net ) if( zone->GetIsKeepout() || sameNet )
{ {
// Just take in account the fact the outline has a thickness, so // Just take in account the fact the outline has a thickness, so
// the actual area to substract is inflated to take in account this fact // the actual area to substract is inflated to take in account this fact
min_clearance = outline_half_thickness; minClearance = outline_half_thickness;
use_net_clearance = false; useNetClearance = false;
} }
zone->TransformOutlinesShapeWithClearanceToPolygon( zone->TransformOutlinesShapeWithClearanceToPolygon( holes, minClearance, useNetClearance );
aFeatures, min_clearance, use_net_clearance );
} }
/* Remove thermal symbols holes.Simplify( SHAPE_POLY_SET::PM_FAST );
*/
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue;
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL // Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL ) // needed by Gerber files and Fracture()
continue; aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode() )
continue;
if( pad->GetNetCode() <= 0 )
continue;
item_boundingbox = pad->GetBoundingBox();
int thermalGap = aZone->GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
CreateThermalReliefPadPolygon( aFeatures, *pad, thermalGap,
aZone->GetThermalReliefCopperBridge( pad ), aZone->GetMinThickness(),
m_board->GetDesignSettings().m_MaxError, s_thermalRot );
}
}
}
} }
/** /**
* Function ComputeRawFilledAreas * 1 - Creates the main zone outline using a correction to shrink the resulting area by
* Supports a min thickness area constraint. * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2
* Add non copper areas polygons (pads and tracks with clearance) * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the
* to the filled copper area found * outlines will match exactly the initial outlines
* in BuildFilledPolysListData after calculating filled areas in a zone * 2 - Knocks out thermal reliefs around thermally-connected pads
* Non filled copper areas are pads and track and their clearance areas * 3 - Adds thermal spokes
* The filled copper area must be computed just before. * 4 - Knocks out unconnected copper items
* BuildFilledPolysListData() call this function just after creating the * 5 - Removes unconnected copper islands
* filled copper area polygon (without clearance areas) * 6 - Removes unconnected thermal spokes
* to do that this function:
* 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area
* with m_ZoneMinThickness/2 value.
* The result is areas with a margin of m_ZoneMinThickness/2
* When drawing outline with segments having a thickness of m_ZoneMinThickness, the
* outlines will match exactly the initial outlines
* 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance +
* m_ZoneMinThickness/2
* in a buffer
* - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes
* 4 - calculates the polygon A - B
* 5 - put resulting list of polygons (filled areas) in m_FilledPolysList
* This zone contains pads with the same net.
* 6 - Remove insulated copper islands
* 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes:
* creates a buffer of polygons corresponding to stubs to remove
* sub them to the filled areas.
* Remove new insulated copper islands
*/ */
void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone, void ZONE_FILLER::computeRawFilledArea( const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aSmoothedOutline, const SHAPE_POLY_SET& aSmoothedOutline,
SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const SHAPE_POLY_SET& aFinalPolys )
{ {
m_high_def = m_board->GetDesignSettings().m_MaxError;
m_low_def = std::min( ARC_LOW_DEF, int( m_high_def*1.5 ) ); // Reasonable value
int outline_half_thickness = aZone->GetMinThickness() / 2; int outline_half_thickness = aZone->GetMinThickness() / 2;
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO( std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
@ -756,34 +705,43 @@ void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
SHAPE_POLY_SET solidAreas = aSmoothedOutline; SHAPE_POLY_SET solidAreas = aSmoothedOutline;
int numSegs = std::max( int numSegs = std::max( GetArcToSegmentCount( outline_half_thickness, m_high_def, 360.0 ), 6 );
GetArcToSegmentCount( outline_half_thickness, m_board->GetDesignSettings().m_MaxError,
360.0 ), 6 );
double correction = GetCircletoPolyCorrectionFactor( numSegs ); double correction = GetCircletoPolyCorrectionFactor( numSegs );
solidAreas.Inflate( -outline_half_thickness, numSegs ); solidAreas.Inflate( -outline_half_thickness, numSegs );
solidAreas.Simplify( SHAPE_POLY_SET::PM_FAST ); solidAreas.Simplify( SHAPE_POLY_SET::PM_FAST );
SHAPE_POLY_SET holes; // ORDER IS IMPORTANT HERE:
//
// Pad thermals MUST NOT knockout spokes of other pads. Therefore we do ALL the knockouts
// first, and THEN add in all the spokes.
//
// Other copper item clearances MUST knockout spokes. They are therefore done AFTER all
// the thermal spokes.
//
// Finally any spokes which are now dangling can be taken back out.
knockoutThermals( aZone, solidAreas );
if( s_DumpZonesWhenFilling ) if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas" ); dumper->Write( &solidAreas, "solid-areas-minus-thermal-reliefs" );
buildZoneFeatureHoleList( aZone, holes ); SHAPE_POLY_SET spokes;
buildThermalSpokes( spokes, aZone, solidAreas, false );
if( s_DumpZonesWhenFilling ) spokes.Simplify( SHAPE_POLY_SET::PM_FAST );
dumper->Write( &holes, "feature-holes" );
holes.Simplify( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &holes, "feature-holes-postsimplify" );
// Generate the filled areas (currently, without thermal shapes, which will
// be created later).
// Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons // Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
// needed by Gerber files and Fracture() // needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); solidAreas.BooleanAdd( spokes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas-with-thermal-spokes" );
knockoutCopperItems( aZone, solidAreas );
if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas-minus-clearances" );
// Now remove the non filled areas due to the hatch pattern // Now remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZFM_HATCH_PATTERN ) if( aZone->GetFillMode() == ZFM_HATCH_PATTERN )
@ -824,10 +782,7 @@ void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
SHAPE_POLY_SET thermalHoles; SHAPE_POLY_SET thermalHoles;
if( aZone->GetNetCode() > 0 ) if( aZone->GetNetCode() > 0 )
{ buildThermalSpokes( thermalHoles, aZone, solidAreas, true );
buildUnconnectedThermalStubsPolygonList(
thermalHoles, aZone, solidAreas, correction, s_thermalRot );
}
// remove copper areas corresponding to not connected stubs // remove copper areas corresponding to not connected stubs
if( !thermalHoles.IsEmpty() ) if( !thermalHoles.IsEmpty() )
@ -839,7 +794,7 @@ void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling ) if( s_DumpZonesWhenFilling )
dumper->Write( &thermalHoles, "thermal-holes" ); dumper->Write( &thermalHoles, "dangling-thermal-spokes" );
// put these areas in m_FilledPolysList // put these areas in m_FilledPolysList
SHAPE_POLY_SET th_fractured = solidAreas; SHAPE_POLY_SET th_fractured = solidAreas;
@ -895,12 +850,13 @@ void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
dumper->EndGroup(); dumper->EndGroup();
} }
/* Build the filled solid areas data from real outlines (stored in m_Poly) /* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes * The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline) * ( holes are linked by overlapping segments to the main outline)
*/ */
bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys, bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const SHAPE_POLY_SET& aFinalPolys )
{ {
SHAPE_POLY_SET smoothedPoly; SHAPE_POLY_SET smoothedPoly;
@ -913,7 +869,7 @@ bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPol
if( aZone->IsOnCopperLayer() ) if( aZone->IsOnCopperLayer() )
{ {
computeRawFilledAreas( aZone, smoothedPoly, aRawPolys, aFinalPolys ); computeRawFilledArea( aZone, smoothedPoly, aRawPolys, aFinalPolys );
} }
else else
{ {
@ -940,33 +896,29 @@ bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPol
/** /**
* Function buildUnconnectedThermalStubsPolygonList * Function buildThermalSpokes
* Creates a set of polygons corresponding to stubs created by thermal shapes on pads * Creates a set of polygons corresponding to stubs created by thermal shapes on pads
* which are not connected to a zone (dangling bridges) * which are not connected to a zone (dangling bridges)
* @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons * @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons
* @param aZone = a pointer to the ZONE_CONTAINER to examine. * @param aZone = a pointer to the ZONE_CONTAINER to examine.
* @param aArcCorrection = arc correction factor.
* @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads
*/ */
void ZONE_FILLER::buildThermalSpokes( SHAPE_POLY_SET& aCornerBuffer,
void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, const ZONE_CONTAINER* aZone,
const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aRawFilledArea,
const SHAPE_POLY_SET& aRawFilledArea, bool aDanglingOnly )
double aArcCorrection,
double aRoundPadThermalRotation ) const
{ {
SHAPE_LINE_CHAIN spokes;
BOX2I itemBB; BOX2I itemBB;
VECTOR2I ptTest[4]; VECTOR2I ptTest[4];
auto zoneBB = aRawFilledArea.BBox(); auto zoneBB = aRawFilledArea.BBox();
int zone_clearance = aZone->GetZoneClearance();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
int zone_clearance = aZone->GetZoneClearance();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance ); biggest_clearance = std::max( biggest_clearance, zone_clearance );
zoneBB.Inflate( biggest_clearance ); zoneBB.Inflate( biggest_clearance );
int outline_half_thickness = aZone->GetMinThickness() / 2;
int numSegs = std::max( GetArcToSegmentCount( outline_half_thickness, m_high_def, 360.0 ), 6 );
double correction = GetCircletoPolyCorrectionFactor( numSegs );
// half size of the pen used to draw/plot zones outlines // half size of the pen used to draw/plot zones outlines
int pen_radius = aZone->GetMinThickness() / 2; int pen_radius = aZone->GetMinThickness() / 2;
@ -974,39 +926,26 @@ void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCorn
{ {
for( auto pad : module->Pads() ) for( auto pad : module->Pads() )
{ {
// Rejects non-standard pads with tht-only thermal reliefs if( !hasThermalConnection( pad, aZone ) )
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue; continue;
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
continue;
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode() )
continue;
// Calculate thermal bridge half width
int thermalBridgeWidth = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( thermalBridgeWidth <= 0 )
continue;
// we need the thermal bridge half width
// with a small extra size to be sure we create a stub
// slightly larger than the actual stub
thermalBridgeWidth = ( thermalBridgeWidth + 4 ) / 2;
int thermalReliefGap = aZone->GetThermalReliefGap( pad ); int thermalReliefGap = aZone->GetThermalReliefGap( pad );
itemBB = pad->GetBoundingBox(); itemBB = pad->GetBoundingBox();
itemBB.Inflate( thermalReliefGap ); itemBB.Inflate( thermalReliefGap );
if( !( itemBB.Intersects( zoneBB ) ) ) if( !( itemBB.Intersects( zoneBB ) ) )
continue; continue;
// Calculate thermal bridge half width
int spokeThickness = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( spokeThickness <= 0 )
continue;
spokeThickness = spokeThickness / 2;
// Thermal bridges are like a segment from a starting point inside the pad // Thermal bridges are like a segment from a starting point inside the pad
// to an ending point outside the pad // to an ending point outside the pad
@ -1015,86 +954,58 @@ void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCorn
endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap; endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap;
endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap; endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap;
// Calculate the starting point of the thermal stub
// inside the pad
VECTOR2I startpoint;
int copperThickness = aZone->GetThermalReliefCopperBridge( pad )
- aZone->GetMinThickness();
if( copperThickness < 0 )
copperThickness = 0;
// Leave a small extra size to the copper area inside to pad
copperThickness += KiROUND( IU_PER_MM * 0.04 );
startpoint.x = std::min( pad->GetSize().x, copperThickness );
startpoint.y = std::min( pad->GetSize().y, copperThickness );
startpoint.x /= 2;
startpoint.y /= 2;
// This is a CIRCLE pad tweak // This is a CIRCLE pad tweak
// for circle pads, the thermal stubs orientation is 45 deg // for circle pads, the thermal stubs orientation is 45 deg
double fAngle = pad->GetOrientation(); double fAngle = pad->GetOrientation();
if( pad->GetShape() == PAD_SHAPE_CIRCLE ) if( pad->GetShape() == PAD_SHAPE_CIRCLE )
{ {
endpoint.x = KiROUND( endpoint.x * aArcCorrection ); endpoint.x = KiROUND( endpoint.x * correction );
endpoint.y = endpoint.x; endpoint.y = endpoint.x;
fAngle = aRoundPadThermalRotation; fAngle = s_thermalRot;
} }
// contour line width has to be taken into calculation to avoid "thermal stub bleed" // contour line width has to be taken into calculation to avoid "thermal stub bleed"
endpoint.x += pen_radius; endpoint.x += pen_radius + KiROUND( IU_PER_MM * 0.04 );
endpoint.y += pen_radius; endpoint.y += pen_radius + KiROUND( IU_PER_MM * 0.04 );
// compute north, south, west and east points for zone connection. // compute north, south, west and east points for zone connection.
ptTest[0] = VECTOR2I( 0, endpoint.y ); // lower point ptTest[0] = VECTOR2I( 0, endpoint.y ); // lower point
ptTest[1] = VECTOR2I( 0, -endpoint.y ); // upper point ptTest[1] = VECTOR2I( 0, -endpoint.y ); // upper point
ptTest[2] = VECTOR2I( endpoint.x, 0 ); // right point ptTest[2] = VECTOR2I( endpoint.x, 0 ); // right point
ptTest[3] = VECTOR2I( -endpoint.x, 0 ); // left point ptTest[3] = VECTOR2I( -endpoint.x, 0 ); // left point
// Test all sides auto addStub = [&] ( int aSide ) {
for( int i = 0; i < 4; i++ ) SHAPE_LINE_CHAIN spokes;
{
// rotate point
RotatePoint( ptTest[i], fAngle );
// translate point
ptTest[i] += pad->ShapePos();
if( aRawFilledArea.Contains( ptTest[i] ) )
continue;
spokes.Clear();
// polygons are rectangles with width of copper bridge value // polygons are rectangles with width of copper bridge value
switch( i ) switch( aSide )
{ {
case 0: // lower stub case 0: // lower stub
spokes.Append( -thermalBridgeWidth, endpoint.y ); spokes.Append( -spokeThickness, endpoint.y );
spokes.Append( +thermalBridgeWidth, endpoint.y ); spokes.Append( +spokeThickness, endpoint.y );
spokes.Append( +thermalBridgeWidth, startpoint.y ); spokes.Append( +spokeThickness, 0 );
spokes.Append( -thermalBridgeWidth, startpoint.y ); spokes.Append( -spokeThickness, 0 );
break; break;
case 1: // upper stub case 1: // upper stub
spokes.Append( -thermalBridgeWidth, -endpoint.y ); spokes.Append( -spokeThickness, -endpoint.y );
spokes.Append( +thermalBridgeWidth, -endpoint.y ); spokes.Append( +spokeThickness, -endpoint.y );
spokes.Append( +thermalBridgeWidth, -startpoint.y ); spokes.Append( +spokeThickness, 0 );
spokes.Append( -thermalBridgeWidth, -startpoint.y ); spokes.Append( -spokeThickness, 0 );
break; break;
case 2: // right stub case 2: // right stub
spokes.Append( endpoint.x, -thermalBridgeWidth ); spokes.Append( endpoint.x, -spokeThickness );
spokes.Append( endpoint.x, thermalBridgeWidth ); spokes.Append( endpoint.x, spokeThickness );
spokes.Append( +startpoint.x, thermalBridgeWidth ); spokes.Append( 0, spokeThickness );
spokes.Append( +startpoint.x, -thermalBridgeWidth ); spokes.Append( 0, -spokeThickness );
break; break;
case 3: // left stub case 3: // left stub
spokes.Append( -endpoint.x, -thermalBridgeWidth ); spokes.Append( -endpoint.x, -spokeThickness );
spokes.Append( -endpoint.x, thermalBridgeWidth ); spokes.Append( -endpoint.x, spokeThickness );
spokes.Append( -startpoint.x, thermalBridgeWidth ); spokes.Append( 0, spokeThickness );
spokes.Append( -startpoint.x, -thermalBridgeWidth ); spokes.Append( 0, -spokeThickness );
break; break;
} }
@ -1104,17 +1015,34 @@ void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCorn
for( int ic = 0; ic < spokes.PointCount(); ic++ ) for( int ic = 0; ic < spokes.PointCount(); ic++ )
{ {
auto cpos = spokes.CPoint( ic ); auto cpos = spokes.CPoint( ic );
RotatePoint( cpos, fAngle ); // Rotate according to module orientation RotatePoint( cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ShapePos(); // Shift origin to position cpos += pad->ShapePos(); // Shift origin to position
aCornerBuffer.Append( cpos ); aCornerBuffer.Append( cpos );
} }
};
for( int i = 0; i < 4; i++ )
{
if( aDanglingOnly )
{
// rotate point
RotatePoint( ptTest[i], fAngle );
// translate point
ptTest[i] += pad->ShapePos();
if( aRawFilledArea.Contains( ptTest[i] ) )
continue;
}
addStub( i );
} }
} }
} }
} }
void ZONE_FILLER::addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys ) const void ZONE_FILLER::addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys )
{ {
// Build grid: // Build grid:

View File

@ -46,11 +46,16 @@ public:
private: private:
void buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone, void addKnockout( D_PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles );
SHAPE_POLY_SET& aFeatures ) const;
void addKnockout( BOARD_ITEM* aItem, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles );
void knockoutThermals( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFill );
void knockoutCopperItems( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aFill );
/** /**
* Function computeRawFilledAreas * Function computeRawFilledArea
* Add non copper areas polygons (pads and tracks with clearance) * Add non copper areas polygons (pads and tracks with clearance)
* to a filled copper area * to a filled copper area
* used in BuildFilledSolidAreasPolygons when calculating filled areas in a zone * used in BuildFilledSolidAreasPolygons when calculating filled areas in a zone
@ -59,28 +64,21 @@ private:
* BuildFilledSolidAreasPolygons() call this function just after creating the * BuildFilledSolidAreasPolygons() call this function just after creating the
* filled copper area polygon (without clearance areas * filled copper area polygon (without clearance areas
* @param aPcb: the current board * @param aPcb: the current board
* _NG version uses SHAPE_POLY_SET instead of Boost.Polygon
*/ */
void computeRawFilledAreas( const ZONE_CONTAINER* aZone, void computeRawFilledArea( const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aSmoothedOutline,
const SHAPE_POLY_SET& aSmoothedOutline, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys );
SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const;
/** /**
* Function buildUnconnectedThermalStubsPolygonList * Function buildThermalSpokes
* Creates a set of polygons corresponding to stubs created by thermal shapes on pads * Creates a set of polygons corresponding to stubs created by thermal shapes on pads
* which are not connected to a zone (dangling bridges) * which are not connected to a zone (dangling bridges)
* @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons * @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons
* @param aPcb = the board. * @param aPcb = the board.
* @param aZone = a pointer to the ZONE_CONTAINER to examine. * @param aZone = a pointer to the ZONE_CONTAINER to examine.
* @param aArcCorrection = a pointer to the ZONE_CONTAINER to examine. * @param aDanglingSpokesOnly = true to add only dangling spokes to aCornerBuffer
* @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads
*/ */
void buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, void buildThermalSpokes( SHAPE_POLY_SET& aCornerBuffer, const ZONE_CONTAINER* aZone,
const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aRawFilledArea, bool aDanglingSpokesOnly);
const SHAPE_POLY_SET& aRawFilledArea,
double aArcCorrection,
double aRoundPadThermalRotation ) const;
/** /**
* Build the filled solid areas polygons from zone outlines (stored in m_Poly) * Build the filled solid areas polygons from zone outlines (stored in m_Poly)
@ -96,8 +94,8 @@ private:
* by aZone->GetMinThickness() / 2 to be drawn with a outline thickness = aZone->GetMinThickness() * by aZone->GetMinThickness() / 2 to be drawn with a outline thickness = aZone->GetMinThickness()
* aFinalPolys are polygons that will be drawn on screen and plotted * aFinalPolys are polygons that will be drawn on screen and plotted
*/ */
bool fillSingleZone( ZONE_CONTAINER* aZone, bool fillSingleZone( ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ) const; SHAPE_POLY_SET& aFinalPolys );
/** /**
* for zones having the ZONE_FILL_MODE::ZFM_HATCH_PATTERN, create a grid pattern * for zones having the ZONE_FILL_MODE::ZFM_HATCH_PATTERN, create a grid pattern
@ -106,7 +104,7 @@ private:
* @param aRawPolys: A reference to a SHAPE_POLY_SET buffer containing the initial * @param aRawPolys: A reference to a SHAPE_POLY_SET buffer containing the initial
* filled areas, and after adding the grid pattern, the modified filled areas with holes * filled areas, and after adding the grid pattern, the modified filled areas with holes
*/ */
void addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys ) const; void addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys );
BOARD* m_board; BOARD* m_board;
SHAPE_POLY_SET m_boardOutline; // The board outlines, if exists SHAPE_POLY_SET m_boardOutline; // The board outlines, if exists
@ -114,6 +112,15 @@ private:
// false if not (not closed outlines for instance) // false if not (not closed outlines for instance)
COMMIT* m_commit; COMMIT* m_commit;
WX_PROGRESS_REPORTER* m_progressReporter; WX_PROGRESS_REPORTER* m_progressReporter;
// m_high_def can be used to define a high definition arc to polygon approximation
int m_high_def;
// m_low_def can be used to define a low definition arc to polygon approximation
// Used when converting some pad shapes that can accept lower resolution, vias and track ends.
// Rect pads use m_low_def to reduce the number of segments. For these shapes a low def
// gives a good shape, because the arc is small (90 degrees) and a small part of the shape.
int m_low_def;
}; };
#endif #endif