Formatted ttl library to comply with KiCad coding policy.

This commit is contained in:
Maciej Suminski 2014-04-07 13:32:09 +02:00
parent a0fb4ed0c1
commit 6fa2f060fa
9 changed files with 2707 additions and 2570 deletions

File diff suppressed because it is too large Load Diff

View File

@ -40,111 +40,152 @@
#ifndef _HALF_EDGE_DART_
#define _HALF_EDGE_DART_
#include <ttl/halfedge/hetriang.h>
namespace hed
{
/**
* \class Dart
* \brief \b %Dart class for the half-edge data structure.
*
* See \ref api for a detailed description of how the member functions
* should be implemented.
*/
class DART
{
EDGE_PTR m_edge;
namespace hed {
/// Dart direction: true if dart is counterclockwise in face
bool m_dir;
//------------------------------------------------------------------------------------------------
// Dart class for the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \class Dart
* \brief \b %Dart class for the half-edge data structure.
*
* See \ref api for a detailed description of how the member functions
* should be implemented.
*/
class Dart {
EdgePtr edge_;
bool dir_; // true if dart is counterclockwise in face
public:
public:
/// Default constructor
Dart() { dir_ = true; }
DART()
{
m_dir = true;
}
/// Constructor
Dart(const EdgePtr& edge, bool dir = true) { edge_ = edge; dir_ = dir; }
DART( const EDGE_PTR& aEdge, bool aDir = true )
{
m_edge = aEdge;
m_dir = aDir;
}
/// Copy constructor
Dart(const Dart& dart) { edge_ = dart.edge_; dir_ = dart.dir_; }
DART( const DART& aDart )
{
m_edge = aDart.m_edge;
m_dir = aDart.m_dir;
}
/// Destructor
~Dart() {}
~DART()
{
}
/// Assignment operator
Dart& operator = (const Dart& dart) {
if (this == &dart)
DART& operator=( const DART& aDart )
{
if( this == &aDart )
return *this;
m_edge = aDart.m_edge;
m_dir = aDart.m_dir;
return *this;
edge_ = dart.edge_;
dir_ = dart.dir_;
return *this;
}
/// Comparing dart objects
bool operator==(const Dart& dart) const {
if (dart.edge_ == edge_ && dart.dir_ == dir_)
return true;
return false;
bool operator==( const DART& aDart ) const
{
return ( aDart.m_edge == m_edge && aDart.m_dir == m_dir );
}
/// Comparing dart objects
bool operator!=(const Dart& dart) const {
return !(dart==*this);
bool operator!=( const DART& aDart ) const
{
return !( aDart == *this );
}
/// Maps the dart to a different node
Dart& alpha0() { dir_ = !dir_; return *this; }
DART& Alpha0()
{
m_dir = !m_dir;
return *this;
}
/// Maps the dart to a different edge
Dart& alpha1() {
if (dir_) {
edge_ = edge_->getNextEdgeInFace()->getNextEdgeInFace();
dir_ = false;
}
else {
edge_ = edge_->getNextEdgeInFace();
dir_ = true;
}
return *this;
DART& Alpha1()
{
if( m_dir )
{
m_edge = m_edge->GetNextEdgeInFace()->GetNextEdgeInFace();
m_dir = false;
}
else
{
m_edge = m_edge->GetNextEdgeInFace();
m_dir = true;
}
return *this;
}
/// Maps the dart to a different triangle. \b Note: the dart is not changed if it is at the boundary!
Dart& alpha2() {
if (edge_->getTwinEdge()) {
edge_ = edge_->getTwinEdge();
dir_ = !dir_;
}
// else, the dart is at the boundary and should not be changed
return *this;
DART& Alpha2()
{
if( m_edge->GetTwinEdge() )
{
m_edge = m_edge->GetTwinEdge();
m_dir = !m_dir;
}
// else, the dart is at the boundary and should not be changed
return *this;
}
// Utilities not required by TTL
// -----------------------------
/** @name Utilities not required by TTL */
//@{
void Init( const EDGE_PTR& aEdge, bool aDir = true )
{
m_edge = aEdge;
m_dir = aDir;
}
void init(const EdgePtr& edge, bool dir = true) { edge_ = edge; dir_ = dir; }
double X() const
{
return GetNode()->GetX();
}
double x() const { return getNode()->GetX(); } // x-coordinate of source node
double y() const { return getNode()->GetY(); } // y-coordinate of source node
double Y() const
{
return GetNode()->GetY();
}
bool isCounterClockWise() const { return dir_; }
bool IsCCW() const
{
return m_dir;
}
const NodePtr& getNode() const { return dir_ ? edge_->getSourceNode() : edge_->getTargetNode(); }
const NodePtr& getOppositeNode() const { return dir_ ? edge_->getTargetNode() : edge_->getSourceNode(); }
EdgePtr& getEdge() { return edge_; }
const NODE_PTR& GetNode() const
{
return m_dir ? m_edge->GetSourceNode() : m_edge->GetTargetNode();
}
const NODE_PTR& GetOppositeNode() const
{
return m_dir ? m_edge->GetTargetNode() : m_edge->GetSourceNode();
}
EDGE_PTR& GetEdge()
{
return m_edge;
}
//@} // End of Utilities not required by TTL
};
};
}; // End of hed namespace
} // End of hed namespace
#endif

View File

@ -40,136 +40,149 @@
#ifndef _HALF_EDGE_TRAITS_
#define _HALF_EDGE_TRAITS_
#include <ttl/halfedge/hetriang.h>
#include <ttl/halfedge/hedart.h>
namespace hed {
//------------------------------------------------------------------------------------------------
// Traits class for the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \struct TTLtraits
* \brief \b Traits class (static struct) for the half-edge data structure.
*
* The member functions are those required by different function templates
* in the TTL. Documentation is given here to explain what actions
* should be carried out on the actual data structure as required by the functions
* in the \ref ttl namespace.
*
* The source code of \c %HeTraits.h shows how the traits class is implemented for the
* half-edge data structure.
*
* \see \ref api
*
*/
struct TTLtraits {
/** The floating point type used in calculations
* involving scalar products and cross products.
*/
typedef double real_type;
//----------------------------------------------------------------------------------------------
// ------------------------------- Geometric Predicates Group ---------------------------------
//----------------------------------------------------------------------------------------------
namespace hed
{
/**
* \struct TTLtraits
* \brief \b Traits class (static struct) for the half-edge data structure.
*
* The member functions are those required by different function templates
* in the TTL. Documentation is given here to explain what actions
* should be carried out on the actual data structure as required by the functions
* in the \ref ttl namespace.
*
* The source code of \c %HeTraits.h shows how the traits class is implemented for the
* half-edge data structure.
*
* \see \ref api
*/
struct TTLtraits
{
/**
* The floating point type used in calculations involving scalar products and cross products.
*/
typedef double REAL_TYPE;
/** @name Geometric Predicates */
//@{
/**
* Scalar product between two 2D vectors represented as darts.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static REAL_TYPE ScalarProduct2D( const DART& aV1, const DART& aV2 )
{
DART v10 = aV1;
v10.Alpha0();
//----------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors represented as darts.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static real_type scalarProduct2d(const Dart& v1, const Dart& v2) {
Dart v10 = v1; v10.alpha0();
Dart v20 = v2; v20.alpha0();
return ttl_util::scalarProduct2d(v10.x()-v1.x(), v10.y()-v1.y(),
v20.x()-v2.x(), v20.y()-v2.y());
DART v20 = aV2;
v20.Alpha0();
return ttl_util::ScalarProduct2D( v10.X() - aV1.X(), v10.Y() - aV1.Y(),
v20.X() - aV2.X(), v20.Y() - aV2.Y() );
}
/**
* Scalar product between two 2D vectors.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.\n
*
* ttl_util::ScalarProduct2D can be used.
*/
static REAL_TYPE ScalarProduct2D( const DART& aV, const NODE_PTR& aP )
{
DART d0 = aV;
d0.Alpha0();
//----------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static real_type scalarProduct2d(const Dart& v, const NodePtr& p) {
Dart d0 = v; d0.alpha0();
return ttl_util::scalarProduct2d(d0.x() - v.x(), d0.y() - v.y(),
p->GetX() - v.x(), p->GetY() - v.y());
return ttl_util::ScalarProduct2D( d0.X() - aV.X(), d0.Y() - aV.Y(),
aP->GetX() - aV.X(), aP->GetY() - aV.Y() );
}
/**
* Cross product between two vectors in the plane represented as darts.
* The z-component of the cross product is returned.\n
*
* ttl_util::CrossProduct2D can be used.
*/
static REAL_TYPE CrossProduct2D( const DART& aV1, const DART& aV2 )
{
DART v10 = aV1;
v10.Alpha0();
//----------------------------------------------------------------------------------------------
/** Cross product between two vectors in the plane represented as darts.
* The z-component of the cross product is returned.\n
*
* ttl_util::crossProduct2d can be used.
*/
static real_type crossProduct2d(const Dart& v1, const Dart& v2) {
Dart v10 = v1; v10.alpha0();
Dart v20 = v2; v20.alpha0();
return ttl_util::crossProduct2d(v10.x()-v1.x(), v10.y()-v1.y(),
v20.x()-v2.x(), v20.y()-v2.y());
DART v20 = aV2;
v20.Alpha0();
return ttl_util::CrossProduct2D( v10.X() - aV1.X(), v10.Y() - aV1.Y(),
v20.X() - aV2.X(), v20.Y() - aV2.Y() );
}
/**
* Cross product between two vectors in the plane.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.
* The z-component of the cross product is returned.\n
*
* ttl_util::CrossProduct2d can be used.
*/
static REAL_TYPE CrossProduct2D( const DART& aV, const NODE_PTR& aP )
{
DART d0 = aV;
d0.Alpha0();
//----------------------------------------------------------------------------------------------
/** Cross product between two vectors in the plane.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.
* The z-component of the cross product is returned.\n
*
* ttl_util::crossProduct2d can be used.
*/
static real_type crossProduct2d(const Dart& v, const NodePtr& p) {
Dart d0 = v; d0.alpha0();
return ttl_util::crossProduct2d(d0.x() - v.x(), d0.y() - v.y(),
p->GetX() - v.x(), p->GetY() - v.y());
return ttl_util::CrossProduct2D( d0.X() - aV.X(), d0.Y() - aV.Y(),
aP->GetX() - aV.X(), aP->GetY() - aV.Y() );
}
/**
* Let \e n1 and \e n2 be the nodes associated with two darts, and let \e p
* be a point in the plane. Return a positive value if \e n1, \e n2,
* and \e p occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*/
static REAL_TYPE Orient2D( const DART& aN1, const DART& aN2, const NODE_PTR& aP )
{
REAL_TYPE pa[2];
REAL_TYPE pb[2];
REAL_TYPE pc[2];
//----------------------------------------------------------------------------------------------
/** Let \e n1 and \e n2 be the nodes associated with two darts, and let \e p
* be a point in the plane. Return a positive value if \e n1, \e n2,
* and \e p occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*/
static real_type orient2d(const Dart& n1, const Dart& n2, const NodePtr& p) {
real_type pa[2]; real_type pb[2]; real_type pc[2];
pa[0] = n1.x(); pa[1] = n1.y();
pb[0] = n2.x(); pb[1] = n2.y();
pc[0] = p->GetX(); pc[1] = p->GetY();
return ttl_util::orient2dfast(pa, pb, pc);
pa[0] = aN1.X();
pa[1] = aN1.Y();
pb[0] = aN2.X();
pb[1] = aN2.Y();
pc[0] = aP->GetX();
pc[1] = aP->GetY();
return ttl_util::Orient2DFast( pa, pb, pc );
}
/**
* This is the same predicate as represented with the function above,
* but with a slighty different interface:
* The last parameter is given as a dart where the source node of the dart
* represents a point in the plane.
* This function is required for constrained triangulation.
*/
static REAL_TYPE Orient2D( const DART& aN1, const DART& aN2, const DART& aP )
{
REAL_TYPE pa[2];
REAL_TYPE pb[2];
REAL_TYPE pc[2];
//----------------------------------------------------------------------------------------------
/** This is the same predicate as represented with the function above,
* but with a slighty different interface:
* The last parameter is given as a dart where the source node of the dart
* represents a point in the plane.
* This function is required for constrained triangulation.
*/
static real_type orient2d(const Dart& n1, const Dart& n2, const Dart& p) {
real_type pa[2]; real_type pb[2]; real_type pc[2];
pa[0] = n1.x(); pa[1] = n1.y();
pb[0] = n2.x(); pb[1] = n2.y();
pc[0] = p.x(); pc[1] = p.y();
return ttl_util::orient2dfast(pa, pb, pc);
pa[0] = aN1.X();
pa[1] = aN1.Y();
pb[0] = aN2.X();
pb[1] = aN2.Y();
pc[0] = aP.X();
pc[1] = aP.Y();
return ttl_util::Orient2DFast( pa, pb, pc );
}
//@} // End of Geometric Predicates Group
};
};
}; // End of hed namespace

View File

@ -42,11 +42,9 @@
#ifndef _HE_TRIANG_H_
#define _HE_TRIANG_H_
#define TTL_USE_NODE_ID // Each node gets it's own unique id
#define TTL_USE_NODE_FLAG // Each node gets a flag (can be set to true or false)
#include <list>
#include <vector>
#include <iostream>
@ -55,43 +53,40 @@
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
namespace ttl {
class TriangulationHelper;
namespace ttl
{
class TRIANGULATION_HELPER;
};
//--------------------------------------------------------------------------------------------------
// The half-edge data structure
//--------------------------------------------------------------------------------------------------
namespace hed {
// Helper typedefs
class Node;
class Edge;
typedef boost::shared_ptr<Node> NodePtr;
typedef boost::shared_ptr<Edge> EdgePtr;
typedef boost::weak_ptr<Edge> EdgeWeakPtr;
typedef std::vector<NodePtr> NodesContainer;
//------------------------------------------------------------------------------------------------
// Node class for data structures
//------------------------------------------------------------------------------------------------
/** \class Node
* \brief \b Node class for data structures (Inherits from HandleId)
*
* \note
* - To enable node IDs, TTL_USE_NODE_ID must be defined.
* - To enable node flags, TTL_USE_NODE_FLAG must be defined.
* - TTL_USE_NODE_ID and TTL_USE_NODE_FLAG should only be enabled if this functionality is
* required by the application, because they increase the memory usage for each Node object.
*/
class Node {
/**
* The half-edge data structure
*/
namespace hed
{
// Helper typedefs
class NODE;
class EDGE;
typedef boost::shared_ptr<NODE> NODE_PTR;
typedef boost::shared_ptr<EDGE> EDGE_PTR;
typedef boost::weak_ptr<EDGE> EDGE_WEAK_PTR;
typedef std::vector<NODE_PTR> NODES_CONTAINER;
/**
* \class NODE
* \brief \b Node class for data structures (Inherits from HandleId)
*
* \note
* - To enable node IDs, TTL_USE_NODE_ID must be defined.
* - To enable node flags, TTL_USE_NODE_FLAG must be defined.
* - TTL_USE_NODE_ID and TTL_USE_NODE_FLAG should only be enabled if this functionality is
* required by the application, because they increase the memory usage for each Node object.
*/
class NODE
{
protected:
#ifdef TTL_USE_NODE_FLAG
/// TTL_USE_NODE_FLAG must be defined
bool flag_;
bool m_flag;
#endif
#ifdef TTL_USE_NODE_ID
@ -99,303 +94,378 @@ protected:
static int id_count;
/// A unique id for each node (TTL_USE_NODE_ID must be defined)
int id_;
int m_id;
#endif
int x_, y_;
/// Node coordinates
int m_x, m_y;
unsigned int refCount_;
/// Reference count
unsigned int m_refCount;
public:
/// Constructor
Node( int x = 0, int y = 0 ) :
NODE( int aX = 0, int aY = 0 ) :
#ifdef TTL_USE_NODE_FLAG
flag_( false ),
m_flag( false ),
#endif
#ifdef TTL_USE_NODE_ID
id_( id_count++ ),
m_id( id_count++ ),
#endif
x_( x ), y_( y ), refCount_( 0 ) {}
m_x( aX ), m_y( aY ), m_refCount( 0 )
{
}
/// Destructor
~Node() {}
~NODE() {}
/// Returns the x-coordinate
int GetX() const { return x_; }
int GetX() const
{
return m_x;
}
/// Returns the y-coordinate
int GetY() const { return y_; }
int GetY() const
{
return m_y;
}
#ifdef TTL_USE_NODE_ID
/// Returns the id (TTL_USE_NODE_ID must be defined)
int Id() const { return id_; }
int Id() const
{
return m_id;
}
#endif
#ifdef TTL_USE_NODE_FLAG
/// Sets the flag (TTL_USE_NODE_FLAG must be defined)
void SetFlag(bool aFlag) { flag_ = aFlag; }
void SetFlag( bool aFlag )
{
m_flag = aFlag;
}
/// Returns the flag (TTL_USE_NODE_FLAG must be defined)
const bool& GetFlag() const { return flag_; }
const bool& GetFlag() const
{
return m_flag;
}
#endif
void IncRefCount() { refCount_++; }
void DecRefCount() { refCount_--; }
unsigned int GetRefCount() const { return refCount_; }
}; // End of class Node
void IncRefCount()
{
m_refCount++;
}
void DecRefCount()
{
m_refCount--;
}
unsigned int GetRefCount() const
{
return m_refCount;
}
};
//------------------------------------------------------------------------------------------------
// Edge class in the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \class Edge
* \brief \b %Edge class in the in the half-edge data structure.
*/
class Edge {
public:
/**
* \class EDGE
* \brief \b %Edge class in the in the half-edge data structure.
*/
class EDGE
{
public:
/// Constructor
Edge() : weight_(0), isLeadingEdge_(false) {}
EDGE() : m_weight( 0 ), m_isLeadingEdge( false )
{
}
/// Destructor
virtual ~Edge() {}
virtual ~EDGE()
{
}
/// Sets the source node
void setSourceNode(const NodePtr& node) { sourceNode_ = node; }
void SetSourceNode( const NODE_PTR& aNode )
{
m_sourceNode = aNode;
}
/// Sets the next edge in face
void setNextEdgeInFace(const EdgePtr& edge) { nextEdgeInFace_ = edge; }
void SetNextEdgeInFace( const EDGE_PTR& aEdge )
{
m_nextEdgeInFace = aEdge;
}
/// Sets the twin edge
void setTwinEdge(const EdgePtr& edge) { twinEdge_ = edge; }
void SetTwinEdge( const EDGE_PTR& aEdge )
{
m_twinEdge = aEdge;
}
/// Sets the edge as a leading edge
void setAsLeadingEdge(bool val=true) { isLeadingEdge_ = val; }
void SetAsLeadingEdge( bool aLeading = true )
{
m_isLeadingEdge = aLeading;
}
/// Checks if an edge is a leading edge
bool isLeadingEdge() const { return isLeadingEdge_; }
bool IsLeadingEdge() const
{
return m_isLeadingEdge;
}
/// Returns the twin edge
EdgePtr getTwinEdge() const { return twinEdge_.lock(); };
EDGE_PTR GetTwinEdge() const
{
return m_twinEdge.lock();
}
void clearTwinEdge() { twinEdge_.reset(); }
void ClearTwinEdge()
{
m_twinEdge.reset();
}
/// Returns the next edge in face
const EdgePtr& getNextEdgeInFace() const { return nextEdgeInFace_; }
const EDGE_PTR& GetNextEdgeInFace() const
{
return m_nextEdgeInFace;
}
/// Retuns the source node
const NodePtr& getSourceNode() const { return sourceNode_; }
const NODE_PTR& GetSourceNode() const
{
return m_sourceNode;
}
/// Returns the target node
virtual const NodePtr& getTargetNode() const { return nextEdgeInFace_->getSourceNode(); }
void setWeight( unsigned int weight ) { weight_ = weight; }
unsigned int getWeight() const { return weight_; }
void clear()
virtual const NODE_PTR& GetTargetNode() const
{
sourceNode_.reset();
nextEdgeInFace_.reset();
return m_nextEdgeInFace->GetSourceNode();
}
if( !twinEdge_.expired() )
void SetWeight( unsigned int weight )
{
m_weight = weight;
}
unsigned int GetWeight() const
{
return m_weight;
}
void Clear()
{
m_sourceNode.reset();
m_nextEdgeInFace.reset();
if( !m_twinEdge.expired() )
{
twinEdge_.lock()->clearTwinEdge();
twinEdge_.reset();
m_twinEdge.lock()->ClearTwinEdge();
m_twinEdge.reset();
}
}
protected:
NodePtr sourceNode_;
EdgeWeakPtr twinEdge_;
EdgePtr nextEdgeInFace_;
unsigned int weight_;
bool isLeadingEdge_;
}; // End of class Edge
protected:
NODE_PTR m_sourceNode;
EDGE_WEAK_PTR m_twinEdge;
EDGE_PTR m_nextEdgeInFace;
unsigned int m_weight;
bool m_isLeadingEdge;
};
/** \class EdgeMST
* \brief \b Specialization of %Edge class to be used for Minimum Spanning Tree algorithm.
/**
* \class EDGE_MST
* \brief \b Specialization of %EDGE class to be used for Minimum Spanning Tree algorithm.
*/
class EdgeMST : public Edge
{
private:
NodePtr target_;
class EDGE_MST : public EDGE
{
private:
NODE_PTR m_target;
public:
EdgeMST( const NodePtr& source, const NodePtr& target, unsigned int weight = 0 ) :
target_(target)
{ sourceNode_ = source; weight_ = weight; }
EdgeMST( const Edge& edge )
public:
EDGE_MST( const NODE_PTR& aSource, const NODE_PTR& aTarget, unsigned int aWeight = 0 ) :
m_target( aTarget )
{
sourceNode_ = edge.getSourceNode();
target_ = edge.getTargetNode();
weight_ = edge.getWeight();
m_sourceNode = aSource;
m_weight = aWeight;
}
~EdgeMST() {};
EDGE_MST( const EDGE& edge )
{
m_sourceNode = edge.GetSourceNode();
m_target = edge.GetTargetNode();
m_weight = edge.GetWeight();
}
~EDGE_MST()
{
}
/// @copydoc Edge::setSourceNode()
virtual const NodePtr& getTargetNode() const { return target_; }
};
virtual const NODE_PTR& GetTargetNode() const
{
return m_target;
}
};
class DART; // Forward declaration (class in this namespace)
//------------------------------------------------------------------------------------------------
class Dart; // Forward declaration (class in this namespace)
/**
* \class TRIANGULATION
* \brief \b %Triangulation class for the half-edge data structure with adaption to TTL.
*/
class TRIANGULATION
{
protected:
/// One half-edge for each arc
std::list<EDGE_PTR> m_leadingEdges;
//------------------------------------------------------------------------------------------------
// Triangulation class in the half-edge data structure
//------------------------------------------------------------------------------------------------
ttl::TRIANGULATION_HELPER* m_helper;
/** \class Triangulation
* \brief \b %Triangulation class for the half-edge data structure with adaption to TTL.
*/
class Triangulation {
protected:
std::list<EdgePtr> leadingEdges_; // one half-edge for each arc
ttl::TriangulationHelper* helper;
void addLeadingEdge(EdgePtr& edge) {
edge->setAsLeadingEdge();
leadingEdges_.push_front( edge );
void addLeadingEdge( EDGE_PTR& aEdge )
{
aEdge->SetAsLeadingEdge();
m_leadingEdges.push_front( aEdge );
}
bool removeLeadingEdgeFromList(EdgePtr& leadingEdge);
bool removeLeadingEdgeFromList( EDGE_PTR& aLeadingEdge );
void cleanAll();
/** Swaps the edge associated with \e dart in the actual data structure.
*
* <center>
* \image html swapEdge.gif
* </center>
*
* \param dart
* Some of the functions require a dart as output.
* If this is required by the actual function, the dart should be delivered
* back in a position as seen if it was glued to the edge when swapping (rotating)
* the edge CCW; see the figure.
*
* \note
* - If the edge is \e constrained, or if it should not be swapped for
* some other reason, this function need not do the actual swap of the edge.
* - Some functions in TTL require that \c swapEdge is implemented such that
* darts outside the quadrilateral are not affected by the swap.
*/
void swapEdge(Dart& dart);
*
* <center>
* \image html swapEdge.gif
* </center>
*
* \param aDart
* Some of the functions require a dart as output.
* If this is required by the actual function, the dart should be delivered
* back in a position as seen if it was glued to the edge when swapping (rotating)
* the edge CCW; see the figure.
*
* \note
* - If the edge is \e constrained, or if it should not be swapped for
* some other reason, this function need not do the actual swap of the edge.
* - Some functions in TTL require that \c swapEdge is implemented such that
* darts outside the quadrilateral are not affected by the swap.
*/
void swapEdge( DART& aDart );
/** Splits the triangle associated with \e dart in the actual data structure into
* three new triangles joining at \e point.
*
* <center>
* \image html splitTriangle.gif
* </center>
*
* \param dart
* Output: A CCW dart incident with the new node; see the figure.
*/
void splitTriangle(Dart& dart, const NodePtr& point);
/**
* Splits the triangle associated with \e dart in the actual data structure into
* three new triangles joining at \e point.
*
* <center>
* \image html splitTriangle.gif
* </center>
*
* \param aDart
* Output: A CCW dart incident with the new node; see the figure.
*/
void splitTriangle( DART& aDart, const NODE_PTR& aPoint );
/** The reverse operation of TTLtraits::splitTriangle.
* This function is only required for functions that involve
* removal of interior nodes; see for example TrinagulationHelper::removeInteriorNode.
*
* <center>
* \image html reverse_splitTriangle.gif
* </center>
*/
void reverse_splitTriangle(Dart& dart);
/**
* The reverse operation of TTLtraits::splitTriangle.
* This function is only required for functions that involve
* removal of interior nodes; see for example TrinagulationHelper::RemoveInteriorNode.
*
* <center>
* \image html reverse_splitTriangle.gif
* </center>
*/
void reverseSplitTriangle( DART& aDart );
/** Removes a triangle with an edge at the boundary of the triangulation
* in the actual data structure
*/
void removeBoundaryTriangle(Dart& d);
/**
* Removes a triangle with an edge at the boundary of the triangulation
* in the actual data structure
*/
void removeBoundaryTriangle( DART& aDart );
public:
public:
/// Default constructor
Triangulation();
TRIANGULATION();
/// Copy constructor
Triangulation(const Triangulation& tr);
TRIANGULATION( const TRIANGULATION& aTriangulation );
/// Destructor
~Triangulation();
~TRIANGULATION();
/// Creates a Delaunay triangulation from a set of points
void createDelaunay(NodesContainer::iterator first,
NodesContainer::iterator last);
void CreateDelaunay( NODES_CONTAINER::iterator aFirst, NODES_CONTAINER::iterator aLast );
/// Creates an initial Delaunay triangulation from two enclosing triangles
// When using rectangular boundary - loop through all points and expand.
// (Called from createDelaunay(...) when starting)
EdgePtr initTwoEnclosingTriangles(NodesContainer::iterator first,
NodesContainer::iterator last);
EDGE_PTR InitTwoEnclosingTriangles( NODES_CONTAINER::iterator aFirst,
NODES_CONTAINER::iterator aLast );
// These two functions are required by TTL for Delaunay triangulation
/// Swaps the edge associated with diagonal
void swapEdge(EdgePtr& diagonal);
void SwapEdge( EDGE_PTR& aDiagonal );
/// Splits the triangle associated with edge into three new triangles joining at point
EdgePtr splitTriangle(EdgePtr& edge, const NodePtr& point);
EDGE_PTR SplitTriangle( EDGE_PTR& aEdge, const NODE_PTR& aPoint );
// Functions required by TTL for removing nodes in a Delaunay triangulation
/// Removes the boundary triangle associated with edge
void removeTriangle(EdgePtr& edge); // boundary triangle required
void RemoveTriangle( EDGE_PTR& aEdge ); // boundary triangle required
/// The reverse operation of removeTriangle
void reverse_splitTriangle(EdgePtr& edge);
void ReverseSplitTriangle( EDGE_PTR& aEdge );
/// Creates an arbitrary CCW dart
Dart createDart();
DART CreateDart();
/// Returns a list of "triangles" (one leading half-edge for each triangle)
const std::list<EdgePtr>& getLeadingEdges() const { return leadingEdges_; }
const std::list<EDGE_PTR>& GetLeadingEdges() const
{
return m_leadingEdges;
}
/// Returns the number of triangles
int noTriangles() const { return (int)leadingEdges_.size(); }
int NoTriangles() const
{
return (int) m_leadingEdges.size();
}
/// Returns a list of half-edges (one half-edge for each arc)
std::list<EdgePtr>* getEdges(bool skip_boundary_edges = false) const;
std::list<EDGE_PTR>* GetEdges( bool aSkipBoundaryEdges = false ) const;
#ifdef TTL_USE_NODE_FLAG
/// Sets flag in all the nodes
void flagNodes(bool flag) const;
void FlagNodes( bool aFlag ) const;
/// Returns a list of nodes. This function requires TTL_USE_NODE_FLAG to be defined. \see Node.
std::list<NodePtr>* getNodes() const;
std::list<NODE_PTR>* GetNodes() const;
#endif
/// Swaps edges until the triangulation is Delaunay (constrained edges are not swapped)
void optimizeDelaunay();
void OptimizeDelaunay();
/// Checks if the triangulation is Delaunay
bool checkDelaunay() const;
bool CheckDelaunay() const;
/// Returns an arbitrary interior node (as the source node of the returned edge)
EdgePtr getInteriorNode() const;
EDGE_PTR GetInteriorNode() const;
EdgePtr getBoundaryEdgeInTriangle(const EdgePtr& e) const;
EDGE_PTR GetBoundaryEdgeInTriangle( const EDGE_PTR& aEdge ) const;
/// Returns an arbitrary boundary edge
EdgePtr getBoundaryEdge() const;
EDGE_PTR GetBoundaryEdge() const;
/// Print edges for plotting with, e.g., gnuplot
void printEdges(std::ofstream& os) const;
friend class ttl::TriangulationHelper;
}; // End of class Triangulation
void PrintEdges( std::ofstream& aOutput ) const;
friend class ttl::TRIANGULATION_HELPER;
};
}; // End of hed namespace
#endif

File diff suppressed because it is too large Load Diff

View File

@ -3,11 +3,11 @@
* Applied Mathematics, Norway.
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* SINTEF ICT, DeaPArtment of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of TTL.
* This file is aPArt of TTL.
*
* TTL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
@ -16,7 +16,7 @@
*
* TTL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* MERCHANTABILITY or FITNESS FOR A aPARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
@ -40,28 +40,22 @@
#ifndef _TTL_UTIL_H_
#define _TTL_UTIL_H_
#include <vector>
#include <algorithm>
#ifdef _MSC_VER
# if _MSC_VER < 1300
# include <minmax.h>
# endif
#endif
//using namespace std;
/** \brief Utilities
*
* This name space contains utility functions for TTL.\n
* This name saPAce contains utility functions for TTL.\n
*
* Point and vector algebra such as scalar product and cross product
* between vectors are implemented here.
* These functions are required by functions in the \ref ttl namespace,
* These functions are required by functions in the \ref ttl namesaPAce,
* where they are assumed to be present in the \ref hed::TTLtraits "TTLtraits" class.
* Thus, the user can call these functions from the traits class.
* For efficiency reasons, the user may consider implementing these
@ -77,67 +71,59 @@
* ttl and \ref api
*
* \author
* Øyvind Hjelle, oyvindhj@ifi.uio.no
* <EFBFBD>yvind Hjelle, oyvindhj@ifi.uio.no
*/
namespace ttl_util
{
/** @name Computational geometry */
//@{
/** Scalar product between two 2D vectors.
*
* \aPAr Returns:
* \code
* aDX1*aDX2 + aDY1*aDY2
* \endcode
*/
template <class REAL_TYPE>
REAL_TYPE ScalarProduct2D( REAL_TYPE aDX1, REAL_TYPE aDY1, REAL_TYPE aDX2, REAL_TYPE aDY2 )
{
return aDX1 * aDX2 + aDY1 * aDY2;
}
namespace ttl_util {
/** Cross product between two 2D vectors. (The z-component of the actual cross product.)
*
* \aPAr Returns:
* \code
* aDX1*aDY2 - aDY1*aDX2
* \endcode
*/
template <class REAL_TYPE>
REAL_TYPE CrossProduct2D( REAL_TYPE aDX1, REAL_TYPE aDY1, REAL_TYPE aDX2, REAL_TYPE aDY2 )
{
return aDX1 * aDY2 - aDY1 * aDX2;
}
/** Returns a positive value if the 2D nodes/points \e aPA, \e aPB, and
* \e aPC occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*
* \note
* - This is a finite arithmetic fast version. It can be made more robust using
* exact arithmetic schemes by Jonathan Richard Shewchuk. See
* http://www-2.cs.cmu.edu/~quake/robust.html
*/
template <class REAL_TYPE>
REAL_TYPE Orient2DFast( REAL_TYPE aPA[2], REAL_TYPE aPB[2], REAL_TYPE aPC[2] )
{
REAL_TYPE acx = aPA[0] - aPC[0];
REAL_TYPE bcx = aPB[0] - aPC[0];
REAL_TYPE acy = aPA[1] - aPC[1];
REAL_TYPE bcy = aPB[1] - aPC[1];
//------------------------------------------------------------------------------------------------
// ------------------------------ Computational Geometry Group ----------------------------------
//------------------------------------------------------------------------------------------------
/** @name Computational geometry */
//@{
//------------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors.
*
* \par Returns:
* \code
* dx1*dx2 + dy1*dy2
* \endcode
*/
template <class real_type>
real_type scalarProduct2d(real_type dx1, real_type dy1, real_type dx2, real_type dy2) {
return dx1*dx2 + dy1*dy2;
}
//------------------------------------------------------------------------------------------------
/** Cross product between two 2D vectors. (The z-component of the actual cross product.)
*
* \par Returns:
* \code
* dx1*dy2 - dy1*dx2
* \endcode
*/
template <class real_type>
real_type crossProduct2d(real_type dx1, real_type dy1, real_type dx2, real_type dy2) {
return dx1*dy2 - dy1*dx2;
}
//------------------------------------------------------------------------------------------------
/** Returns a positive value if the 2D nodes/points \e pa, \e pb, and
* \e pc occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*
* \note
* - This is a finite arithmetic fast version. It can be made more robust using
* exact arithmetic schemes by Jonathan Richard Shewchuk. See
* http://www-2.cs.cmu.edu/~quake/robust.html
*/
template <class real_type>
real_type orient2dfast(real_type pa[2], real_type pb[2], real_type pc[2]) {
real_type acx = pa[0] - pc[0];
real_type bcx = pb[0] - pc[0];
real_type acy = pa[1] - pc[1];
real_type bcy = pb[1] - pc[1];
return acx * bcy - acy * bcx;
}
}
}; // End of ttl_util namespace scope
} // namespace ttl_util
#endif // _TTL_UTIL_H_

View File

@ -68,7 +68,7 @@ bool sortDistance( const RN_NODE_PTR& aOrigin, const RN_NODE_PTR& aNode1,
bool sortWeight( const RN_EDGE_PTR& aEdge1, const RN_EDGE_PTR& aEdge2 )
{
return aEdge1->getWeight() < aEdge2->getWeight();
return aEdge1->GetWeight() < aEdge2->GetWeight();
}
@ -92,7 +92,7 @@ bool operator!=( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond )
bool isEdgeConnectingNode( const RN_EDGE_PTR& aEdge, const RN_NODE_PTR& aNode )
{
return aEdge->getSourceNode() == aNode || aEdge->getTargetNode() == aNode;
return aEdge->GetSourceNode() == aNode || aEdge->GetTargetNode() == aNode;
}
@ -125,8 +125,8 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
{
RN_EDGE_PTR& dt = *aEdges.begin();
int srcTag = tags[dt->getSourceNode()];
int trgTag = tags[dt->getTargetNode()];
int srcTag = tags[dt->GetSourceNode()];
int trgTag = tags[dt->GetTargetNode()];
// Check if by adding this edge we are going to join two different forests
if( srcTag != trgTag )
@ -139,7 +139,7 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
// Move nodes that were marked with old tag to the list marked with the new tag
cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] );
if( dt->getWeight() == 0 ) // Skip already existing connections (weight == 0)
if( dt->GetWeight() == 0 ) // Skip already existing connections (weight == 0)
{
mstExpectedSize--;
}
@ -148,9 +148,9 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
// Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE,
// RN_EDGE_MST saves both source and target node and does not require any other
// edges to exist for getting source/target nodes
RN_EDGE_MST_PTR newEdge = boost::make_shared<RN_EDGE_MST>( dt->getSourceNode(),
dt->getTargetNode(),
dt->getWeight() );
RN_EDGE_MST_PTR newEdge = boost::make_shared<RN_EDGE_MST>( dt->GetSourceNode(),
dt->GetTargetNode(),
dt->GetWeight() );
mst->push_back( newEdge );
++mstSize;
}
@ -169,8 +169,8 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
void RN_NET::validateEdge( RN_EDGE_PTR& aEdge )
{
RN_NODE_PTR source = aEdge->getSourceNode();
RN_NODE_PTR target = aEdge->getTargetNode();
RN_NODE_PTR source = aEdge->GetSourceNode();
RN_NODE_PTR target = aEdge->GetTargetNode();
bool valid = true;
// If any of nodes belonging to the edge has the flag set,
@ -280,13 +280,13 @@ void RN_NET::compute()
std::partial_sort_copy( boardNodes.begin(), boardNodes.end(), nodes.begin(), nodes.end() );
TRIANGULATOR triangulator;
triangulator.createDelaunay( nodes.begin(), nodes.end() );
boost::scoped_ptr<RN_LINKS::RN_EDGE_LIST> triangEdges( triangulator.getEdges() );
triangulator.CreateDelaunay( nodes.begin(), nodes.end() );
boost::scoped_ptr<RN_LINKS::RN_EDGE_LIST> triangEdges( triangulator.GetEdges() );
// Compute weight/distance for edges resulting from triangulation
RN_LINKS::RN_EDGE_LIST::iterator eit, eitEnd;
for( eit = (*triangEdges).begin(), eitEnd = (*triangEdges).end(); eit != eitEnd; ++eit )
(*eit)->setWeight( getDistance( (*eit)->getSourceNode(), (*eit)->getTargetNode() ) );
(*eit)->SetWeight( getDistance( (*eit)->GetSourceNode(), (*eit)->GetTargetNode() ) );
// Add the currently existing connections list to the results of triangulation
std::copy( boardEdges.begin(), boardEdges.end(), std::front_inserter( *triangEdges ) );
@ -508,8 +508,8 @@ void RN_NET::RemoveItem( const TRACK* aTrack )
RN_EDGE_PTR& edge = m_tracks.at( aTrack );
// Save nodes, so they can be cleared later
RN_NODE_PTR aBegin = edge->getSourceNode();
RN_NODE_PTR aEnd = edge->getTargetNode();
RN_NODE_PTR aBegin = edge->GetSourceNode();
RN_NODE_PTR aEnd = edge->GetTargetNode();
m_links.RemoveConnection( edge );
// Remove nodes associated with the edge. It is done in a safe way, there is a check
@ -696,8 +696,8 @@ std::list<RN_NODE_PTR> RN_NET::GetNodes( const BOARD_CONNECTED_ITEM* aItem ) con
const TRACK* track = static_cast<const TRACK*>( aItem );
RN_EDGE_PTR edge = m_tracks.at( track );
nodes.push_back( edge->getSourceNode() );
nodes.push_back( edge->getTargetNode() );
nodes.push_back( edge->GetSourceNode() );
nodes.push_back( edge->GetTargetNode() );
}
break;

View File

@ -50,13 +50,13 @@ class ZONE_CONTAINER;
class CPolyPt;
// Preserve KiCad coding style policy
typedef hed::Node RN_NODE;
typedef hed::NodePtr RN_NODE_PTR;
typedef hed::Edge RN_EDGE;
typedef hed::EdgePtr RN_EDGE_PTR;
typedef hed::EdgeMST RN_EDGE_MST;
typedef boost::shared_ptr<hed::EdgeMST> RN_EDGE_MST_PTR;
typedef hed::Triangulation TRIANGULATOR;
typedef hed::NODE RN_NODE;
typedef hed::NODE_PTR RN_NODE_PTR;
typedef hed::EDGE RN_EDGE;
typedef hed::EDGE_PTR RN_EDGE_PTR;
typedef hed::EDGE_MST RN_EDGE_MST;
typedef hed::TRIANGULATION TRIANGULATOR;
typedef boost::shared_ptr<hed::EDGE_MST> RN_EDGE_MST_PTR;
bool operator==( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond );
bool operator!=( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond );

View File

@ -97,8 +97,8 @@ void RATSNEST_VIEWITEM::ViewDraw( int aLayer, GAL* aGal ) const
BOOST_FOREACH( const RN_EDGE_PTR& edge, *edges )
{
const RN_NODE_PTR& sourceNode = edge->getSourceNode();
const RN_NODE_PTR& targetNode = edge->getTargetNode();
const RN_NODE_PTR& sourceNode = edge->GetSourceNode();
const RN_NODE_PTR& targetNode = edge->GetTargetNode();
VECTOR2D source( sourceNode->GetX(), sourceNode->GetY() );
VECTOR2D target( targetNode->GetX(), targetNode->GetY() );