Pcbnew: fix a serious bug in ZONE_CONTAINER::HitTestFilledArea( ) which could break connectivity calculations relative to copper areas.

Fix also very minor issues relative to copper zones.
Update boost::polygon from Boost svn repository.
This commit is contained in:
jean-pierre charras 2010-11-13 20:21:16 +01:00
parent 3dbae0b84c
commit 746dea5ae3
15 changed files with 387 additions and 216 deletions

View File

@ -253,8 +253,13 @@ public:
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, HIGH, orient_, !is_hole_);
++itrhb;
} else {
itrhib = itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>();
//in this case we have no holes so we just need the iterhib == itrhie, which
//is always true if they were default initialized in the initial case or
//both point to end of the previous hole processed
//no need to explicitly reset them, and it causes an stl debug assertion to use
//the default constructed iterator this way
//itrhib = itrhie = iterator_geometry_to_set<polygon_90_concept,
// typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>();
}
} else {
++itrhib;
@ -266,8 +271,9 @@ public:
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>(*itrhb, HIGH, orient_, !is_hole_);
++itrhb;
} else {
itrhib = itrhie = iterator_geometry_to_set<polygon_90_concept,
typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>();
//this is the same case as above
//itrhib = itrhie = iterator_geometry_to_set<polygon_90_concept,
// typename polygon_with_holes_traits<polygon_with_holes_type>::hole_type>();
}
}
}

View File

@ -0,0 +1,125 @@
namespace boost { namespace polygon { namespace detail {
template <typename coordinate_type>
struct minkowski_offset {
typedef point_data<coordinate_type> point;
typedef polygon_set_data<coordinate_type> polygon_set;
typedef polygon_with_holes_data<coordinate_type> polygon;
typedef std::pair<point, point> edge;
static void convolve_two_segments(std::vector<point>& figure, const edge& a, const edge& b) {
figure.clear();
figure.push_back(point(a.first));
figure.push_back(point(a.first));
figure.push_back(point(a.second));
figure.push_back(point(a.second));
convolve(figure[0], b.second);
convolve(figure[1], b.first);
convolve(figure[2], b.first);
convolve(figure[3], b.second);
}
template <typename itrT1, typename itrT2>
static void convolve_two_point_sequences(polygon_set& result, itrT1 ab, itrT1 ae, itrT2 bb, itrT2 be) {
if(ab == ae || bb == be)
return;
point first_a = *ab;
point prev_a = *ab;
std::vector<point> vec;
polygon poly;
++ab;
for( ; ab != ae; ++ab) {
point first_b = *bb;
point prev_b = *bb;
itrT2 tmpb = bb;
++tmpb;
for( ; tmpb != be; ++tmpb) {
convolve_two_segments(vec, std::make_pair(prev_b, *tmpb), std::make_pair(prev_a, *ab));
set_points(poly, vec.begin(), vec.end());
result.insert(poly);
prev_b = *tmpb;
}
prev_a = *ab;
}
}
template <typename itrT>
static void convolve_point_sequence_with_polygons(polygon_set& result, itrT b, itrT e, const std::vector<polygon>& polygons) {
for(std::size_t i = 0; i < polygons.size(); ++i) {
convolve_two_point_sequences(result, b, e, begin_points(polygons[i]), end_points(polygons[i]));
for(typename polygon_with_holes_traits<polygon>::iterator_holes_type itrh = begin_holes(polygons[i]);
itrh != end_holes(polygons[i]); ++itrh) {
convolve_two_point_sequences(result, b, e, begin_points(*itrh), end_points(*itrh));
}
}
}
static void convolve_two_polygon_sets(polygon_set& result, const polygon_set& a, const polygon_set& b) {
result.clear();
std::vector<polygon> a_polygons;
std::vector<polygon> b_polygons;
a.get(a_polygons);
b.get(b_polygons);
for(std::size_t ai = 0; ai < a_polygons.size(); ++ai) {
convolve_point_sequence_with_polygons(result, begin_points(a_polygons[ai]),
end_points(a_polygons[ai]), b_polygons);
for(typename polygon_with_holes_traits<polygon>::iterator_holes_type itrh = begin_holes(a_polygons[ai]);
itrh != end_holes(a_polygons[ai]); ++itrh) {
convolve_point_sequence_with_polygons(result, begin_points(*itrh),
end_points(*itrh), b_polygons);
}
for(std::size_t bi = 0; bi < b_polygons.size(); ++bi) {
polygon tmp_poly = a_polygons[ai];
result.insert(convolve(tmp_poly, *(begin_points(b_polygons[bi]))));
tmp_poly = b_polygons[bi];
result.insert(convolve(tmp_poly, *(begin_points(a_polygons[ai]))));
}
}
}
};
}
template<typename T>
inline polygon_set_data<T>&
polygon_set_data<T>::resize(coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments) {
using namespace ::boost::polygon::operators;
if(!corner_fill_arc) {
if(resizing < 0)
return shrink(-resizing);
if(resizing > 0)
return bloat(resizing);
return *this;
}
if(resizing == 0) return *this;
if(empty()) return *this;
if(num_circle_segments < 3) num_circle_segments = 4;
rectangle_data<coordinate_type> rect;
extents(rect);
if(resizing < 0) {
::boost::polygon::bloat(rect, 10);
(*this) = rect - (*this); //invert
}
//make_arc(std::vector<point_data< T> >& return_points,
//point_data< double> start, point_data< double> end,
//point_data< double> center, double r, unsigned int num_circle_segments)
std::vector<point_data<coordinate_type> > circle;
point_data<double> center(0.0, 0.0), start(0.0, (double)resizing);
make_arc(circle, start, start, center, std::abs((double)resizing),
num_circle_segments);
polygon_data<coordinate_type> poly;
set_points(poly, circle.begin(), circle.end());
polygon_set_data<coordinate_type> offset_set;
offset_set += poly;
polygon_set_data<coordinate_type> result;
detail::minkowski_offset<coordinate_type>::convolve_two_polygon_sets
(result, *this, offset_set);
if(resizing < 0) {
result = result & rect;//eliminate overhang
result = result ^ rect;//invert
}
*this = result;
return *this;
}
}}

View File

@ -478,7 +478,7 @@ namespace boost { namespace polygon{
ct counts[4];
};
typedef Vertex45CountT<signed char> Vertex45Count;
typedef Vertex45CountT<int> Vertex45Count;
// inline std::ostream& operator<< (std::ostream& o, const Vertex45Count& c) {
// o << c[0] << ", " << c[1] << ", ";

View File

@ -455,6 +455,10 @@ namespace boost { namespace polygon{
//truncate downward if it went up due to negative number
if(x < x_unit) --x_unit;
if(y < y_unit) --y_unit;
if(is_horizontal(he1))
y_unit = he1.first.y();
if(is_horizontal(he2))
y_unit = he2.first.y();
//if(x != exp_x || y != exp_y)
// std::cout << exp_x << " " << exp_y << " " << x << " " << y << std::endl;
//Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
@ -464,11 +468,11 @@ namespace boost { namespace polygon{
if(!projected && !contains(rect1, result, true)) return false;
if(!projected && !contains(rect2, result, true)) return false;
if(projected) {
rectangle_data<long double> inf_rect((long double)(std::numeric_limits<Unit>::min)(),
(long double) (std::numeric_limits<Unit>::min)(),
rectangle_data<long double> inf_rect(-(long double)(std::numeric_limits<Unit>::max)(),
-(long double) (std::numeric_limits<Unit>::max)(),
(long double)(std::numeric_limits<Unit>::max)(),
(long double) (std::numeric_limits<Unit>::max)() );
if(contains(inf_rect, intersection, true)) {
if(contains(inf_rect, point_data<long double>(x, y), true)) {
intersection = result;
return true;
} else
@ -477,6 +481,7 @@ namespace boost { namespace polygon{
intersection = result;
return true;
}
inline bool compute_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
bool projected = false, bool round_closest = false) {
if(!projected && !intersects(he1, he2))
@ -491,6 +496,13 @@ namespace boost { namespace polygon{
} else {
return lazy_success;
}
return compute_exact_intersection(intersection, he1, he2, projected, round_closest);
}
inline bool compute_exact_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
bool projected = false, bool round_closest = false) {
if(!projected && !intersects(he1, he2))
return false;
typedef rectangle_data<Unit> Rectangle;
Rectangle rect1, rect2;
set_points(rect1, he1.first, he1.second);
@ -542,6 +554,7 @@ namespace boost { namespace polygon{
y_den = (dx1 * dy2 - dx2 * dy1);
x = x_num / x_den;
y = y_num / y_den;
//std::cout << x << " " << y << std::endl;
//std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << std::endl;
//std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << std::endl;
//Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
@ -555,6 +568,10 @@ namespace boost { namespace polygon{
//truncate downward if it went up due to negative number
if(x < (high_precision)x_unit) --x_unit;
if(y < (high_precision)y_unit) --y_unit;
if(is_horizontal(he1))
y_unit = he1.first.y();
if(is_horizontal(he2))
y_unit = he2.first.y();
//if(x != exp_x || y != exp_y)
// std::cout << exp_x << " " << exp_y << " " << x << " " << y << std::endl;
//Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
@ -564,14 +581,9 @@ namespace boost { namespace polygon{
if(!contains(rect1, result, true)) return false;
if(!contains(rect2, result, true)) return false;
if(projected) {
rectangle_data<long double> inf_rect((long double)(std::numeric_limits<Unit>::min)(),
(long double) (std::numeric_limits<Unit>::min)(),
(long double)(std::numeric_limits<Unit>::max)(),
(long double) (std::numeric_limits<Unit>::max)() );
if(contains(inf_rect, intersection, true)) {
intersection = result;
return true;
} else
high_precision b1 = (high_precision) (std::numeric_limits<Unit>::min)();
high_precision b2 = (high_precision) (std::numeric_limits<Unit>::max)();
if(x > b2 || y > b2 || x < b1 || y < b1)
return false;
}
intersection = result;
@ -641,6 +653,10 @@ namespace boost { namespace polygon{
//truncate downward if it went up due to negative number
if(x < (high_precision)x_unit) --x_unit;
if(y < (high_precision)y_unit) --y_unit;
if(is_horizontal(he1))
y_unit = he1.first.y();
if(is_horizontal(he2))
y_unit = he2.first.y();
//if(x != exp_x || y != exp_y)
// std::cout << exp_x << " " << exp_y << " " << x << " " << y << std::endl;
//Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);

View File

@ -125,5 +125,5 @@ namespace boost { namespace polygon {
}
}
//==
#endif

View File

@ -198,6 +198,16 @@ namespace boost { namespace polygon{
typedef double coordinate_distance;
};
template <>
struct coordinate_traits<long double> {
typedef long double coordinate_type;
typedef long double area_type;
typedef long double manhattan_area_type;
typedef long double unsigned_area_type;
typedef long double coordinate_difference;
typedef long double coordinate_distance;
};
template <typename T>
struct scaling_policy {
template <typename T2>
@ -222,6 +232,8 @@ namespace boost { namespace polygon{
struct geometry_concept<float> { typedef coordinate_concept type; };
template <>
struct geometry_concept<double> { typedef coordinate_concept type; };
template <>
struct geometry_concept<long double> { typedef coordinate_concept type; };
#ifndef BOOST_POLYGON_NO_DEPS
struct gtl_no : mpl::bool_<false> {};

View File

@ -244,37 +244,47 @@ namespace boost { namespace polygon{
// get the scanline orientation of the polygon set
inline orientation_2d orient() const { return orient_; }
polygon_90_set_data<coordinate_type>& operator-=(const polygon_90_set_data& that) {
sort();
that.sort();
value_type data;
std::swap(data, data_);
applyBooleanBinaryOp(data.begin(), data.end(),
that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryNot>());
return *this;
}
polygon_90_set_data<coordinate_type>& operator^=(const polygon_90_set_data& that) {
sort();
that.sort();
value_type data;
std::swap(data, data_);
applyBooleanBinaryOp(data.begin(), data.end(),
that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryXor>());
return *this;
}
polygon_90_set_data<coordinate_type>& operator&=(const polygon_90_set_data& that) {
sort();
that.sort();
value_type data;
std::swap(data, data_);
applyBooleanBinaryOp(data.begin(), data.end(),
that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryAnd>());
return *this;
}
polygon_90_set_data<coordinate_type>& operator|=(const polygon_90_set_data& that) {
insert(that);
return *this;
}
// Start BM
// The problem: If we have two polygon sets with two different scanline orientations:
// I tried changing the orientation of one to coincide with other (If not, resulting boolean operation
// produces spurious results).
// First I tried copying polygon data from one of the sets into another set with corrected orientation
// using one of the copy constructor that takes in orientation (see somewhere above in this file) --> copy constructor throws error
// Then I tried another approach:(see below). This approach also fails to produce the desired results when test case is run.
// Here is the part that beats me: If I comment out the whole section, I can do all the operations (^=, -=, &= )these commented out
// operations perform. So then why do we need them?. Hence, I commented out this whole section.
// End BM
// polygon_90_set_data<coordinate_type>& operator-=(const polygon_90_set_data& that) {
// sort();
// that.sort();
// value_type data;
// std::swap(data, data_);
// applyBooleanBinaryOp(data.begin(), data.end(),
// that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryNot>());
// return *this;
// }
// polygon_90_set_data<coordinate_type>& operator^=(const polygon_90_set_data& that) {
// sort();
// that.sort();
// value_type data;
// std::swap(data, data_);
// applyBooleanBinaryOp(data.begin(), data.end(),
// that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryXor>());
// return *this;
// }
// polygon_90_set_data<coordinate_type>& operator&=(const polygon_90_set_data& that) {
// sort();
// that.sort();
// value_type data;
// std::swap(data, data_);
// applyBooleanBinaryOp(data.begin(), data.end(),
// that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryAnd>());
// return *this;
// }
// polygon_90_set_data<coordinate_type>& operator|=(const polygon_90_set_data& that) {
// insert(that);
// return *this;
// }
void clean() const {
sort();
@ -439,7 +449,7 @@ namespace boost { namespace polygon{
static bool remove_colinear_pts(std::vector<point_data<coordinate_type> >& poly) {
bool found_colinear = true;
while(found_colinear) {
while(found_colinear && poly.size() >= 4) {
found_colinear = false;
typename std::vector<point_data<coordinate_type> >::iterator itr = poly.begin();
itr += poly.size() - 1; //get last element position
@ -504,9 +514,9 @@ namespace boost { namespace polygon{
//polygon_45_data<coordinate_type> testpoly(*itrh);
if(resize_poly_down((*itrh).coords_, west_bloating, east_bloating, south_bloating, north_bloating)) {
iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
begin_input(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
end_input(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
insert(begin_input, end_input, orient_);
begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
end_input2(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
insert(begin_input2, end_input2, orient_);
//polygon_90_set_data<coordinate_type> pstesthole;
//pstesthole.insert(rect);
//iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
@ -569,9 +579,9 @@ namespace boost { namespace polygon{
//polygon_45_data<coordinate_type> testpoly(*itrh);
resize_poly_up((*itrh).coords_, -west_shrinking, -east_shrinking, -south_shrinking, -north_shrinking);
iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
begin_input(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
end_input(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
insert(begin_input, end_input, orient_);
begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
end_input2(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
insert(begin_input2, end_input2, orient_);
//polygon_90_set_data<coordinate_type> pstesthole;
//pstesthole.insert(rect);
//iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
@ -638,8 +648,7 @@ namespace boost { namespace polygon{
return shrink(0, shrinking, 0, 0);
if(dir == SOUTH)
return shrink(0, 0, shrinking, 0);
if(dir == NORTH)
return shrink(0, 0, 0, shrinking);
return shrink(0, 0, 0, shrinking);
}
polygon_90_set_data&
@ -650,8 +659,7 @@ namespace boost { namespace polygon{
return bloat(0, shrinking, 0, 0);
if(dir == SOUTH)
return bloat(0, 0, shrinking, 0);
if(dir == NORTH)
return bloat(0, 0, 0, shrinking);
return bloat(0, 0, 0, shrinking);
}
polygon_90_set_data&

View File

@ -1,6 +1,6 @@
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
@ -22,7 +22,7 @@ namespace boost { namespace polygon {
template <typename T>
static inline T round_down(double val) {
T rounded_val = (T)(val);
if(val < (double)rounded_val)
if(val < (double)rounded_val)
--rounded_val;
return rounded_val;
}
@ -57,11 +57,11 @@ namespace boost { namespace polygon {
}
// copy constructor
inline polygon_set_data(const polygon_set_data& that) :
inline polygon_set_data(const polygon_set_data& that) :
data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {}
// copy constructor
template <typename ltype, typename rtype, int op_type>
template <typename ltype, typename rtype, int op_type>
inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that);
// destructor
@ -150,10 +150,10 @@ namespace boost { namespace polygon {
insert(polygon_object, is_hole, polygon_concept()); }
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_concept());
for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
begin_holes(polygon_with_holes_object);
itr != end_holes(polygon_with_holes_object); ++itr) {
insert(*itr, !is_hole, polygon_concept());
@ -161,12 +161,12 @@ namespace boost { namespace polygon {
}
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_45_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
template <typename polygon_with_holes_type>
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
polygon_90_with_holes_concept ) {
insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
@ -212,7 +212,7 @@ namespace boost { namespace polygon {
first_point = previous_point = current_point;
} else {
if(previous_point != current_point) {
element_type elem(edge_type(previous_point, current_point),
element_type elem(edge_type(previous_point, current_point),
( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
insert_clean(elem);
}
@ -222,7 +222,7 @@ namespace boost { namespace polygon {
current_point = first_point;
if(!first_iteration) {
if(previous_point != current_point) {
element_type elem(edge_type(previous_point, current_point),
element_type elem(edge_type(previous_point, current_point),
( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
insert_clean(elem);
}
@ -270,14 +270,14 @@ namespace boost { namespace polygon {
}
}
// equivalence operator
// equivalence operator
inline bool operator==(const polygon_set_data& p) const {
clean();
p.clean();
return data_ == p.data_;
}
// inequivalence operator
// inequivalence operator
inline bool operator!=(const polygon_set_data& p) const {
return !((*this) == p);
}
@ -335,7 +335,7 @@ namespace boost { namespace polygon {
}
void set(const value_type& value) {
data_ = value;
data_ = value;
dirty_ = true;
unsorted_ = true;
}
@ -359,27 +359,10 @@ namespace boost { namespace polygon {
}
inline polygon_set_data&
resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0) {
if(!corner_fill_arc) {
if(resizing < 0)
return shrink(-resizing);
if(resizing > 0)
return bloat(resizing);
return *this;
}
if(resizing == 0) return *this;
std::list<polygon_with_holes_data<coordinate_type> > pl;
get(pl);
clear();
for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = pl.begin(); itr != pl.end(); ++itr) {
insert_with_resize(*itr, resizing, corner_fill_arc, num_circle_segments);
}
clean();
return *this;
}
resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0);
template <typename transform_type>
inline polygon_set_data&
inline polygon_set_data&
transform(const transform_type& tr) {
std::vector<polygon_with_holes_data<T> > polys;
get(polys);
@ -393,7 +376,7 @@ namespace boost { namespace polygon {
return *this;
}
inline polygon_set_data&
inline polygon_set_data&
scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
::boost::polygon::scale_up((*itr).first.first, factor);
@ -401,8 +384,8 @@ namespace boost { namespace polygon {
}
return *this;
}
inline polygon_set_data&
inline polygon_set_data&
scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
::boost::polygon::scale_down((*itr).first.first, factor);
@ -412,9 +395,9 @@ namespace boost { namespace polygon {
dirty_ = true;
return *this;
}
template <typename scaling_type>
inline polygon_set_data& scale(polygon_set_data& polygon_set,
inline polygon_set_data& scale(polygon_set_data& polygon_set,
const scaling_type& scaling) {
for(typename value_type::iterator itr = begin(); itr != end(); ++itr) {
::boost::polygon::scale((*itr).first.first, scaling);
@ -425,37 +408,53 @@ namespace boost { namespace polygon {
return *this;
}
static inline void compute_offset_edge(point_data<coordinate_type>& pt1, point_data<coordinate_type>& pt2,
const point_data<coordinate_type>& prev_pt,
const point_data<coordinate_type>& current_pt,
coordinate_type distance, int multiplier) {
coordinate_type dx = current_pt.x() - prev_pt.x();
coordinate_type dy = current_pt.y() - prev_pt.y();
double ddx = (double)dx;
double ddy = (double)dy;
double edge_length = std::sqrt(ddx*ddx + ddy*ddy);
double dnx = dy;
double dny = -dx;
dnx = dnx * (double)distance / edge_length;
dny = dny * (double)distance / edge_length;
dnx = std::floor(dnx+0.5);
dny = std::floor(dny+0.5);
pt1.x(prev_pt.x() + (coordinate_type)dnx * (coordinate_type)multiplier);
pt2.x(current_pt.x() + (coordinate_type)dnx * (coordinate_type)multiplier);
pt1.y(prev_pt.y() + (coordinate_type)dny * (coordinate_type)multiplier);
pt2.y(current_pt.y() + (coordinate_type)dny * (coordinate_type)multiplier);
static inline void compute_offset_edge(point_data<long double>& pt1, point_data<long double>& pt2,
const point_data<long double>& prev_pt,
const point_data<long double>& current_pt,
long double distance, int multiplier) {
long double dx = current_pt.x() - prev_pt.x();
long double dy = current_pt.y() - prev_pt.y();
long double edge_length = std::sqrt(dx*dx + dy*dy);
long double dnx = dy;
long double dny = -dx;
dnx = dnx * (long double)distance / edge_length;
dny = dny * (long double)distance / edge_length;
pt1.x(prev_pt.x() + (long double)dnx * (long double)multiplier);
pt2.x(current_pt.x() + (long double)dnx * (long double)multiplier);
pt1.y(prev_pt.y() + (long double)dny * (long double)multiplier);
pt2.y(current_pt.y() + (long double)dny * (long double)multiplier);
}
static inline void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>& prev_pt,
const point_data<coordinate_type>& current_pt, const point_data<coordinate_type>& next_pt,
coordinate_type distance, coordinate_type multiplier) {
std::pair<point_data<coordinate_type>, point_data<coordinate_type> > he1(prev_pt, current_pt), he2(current_pt, next_pt);
std::pair<point_data<long double>, point_data<long double> > he1, he2;
he1.first.x((long double)(prev_pt.x()));
he1.first.y((long double)(prev_pt.y()));
he1.second.x((long double)(current_pt.x()));
he1.second.y((long double)(current_pt.y()));
he2.first.x((long double)(current_pt.x()));
he2.first.y((long double)(current_pt.y()));
he2.second.x((long double)(next_pt.x()));
he2.second.y((long double)(next_pt.y()));
compute_offset_edge(he1.first, he1.second, prev_pt, current_pt, distance, multiplier);
compute_offset_edge(he2.first, he2.second, current_pt, next_pt, distance, multiplier);
typename scanline_base<coordinate_type>::compute_intersection_pack pack;
if(!pack.compute_lazy_intersection(pt, he1, he2, true, true)) {
pt = he1.second; //colinear offset edges use shared point
typename scanline_base<long double>::compute_intersection_pack pack;
point_data<long double> rpt;
point_data<long double> bisectorpt((he1.second.x()+he2.first.x())/2,
(he1.second.y()+he2.first.y())/2);
point_data<long double> orig_pt((long double)pt.x(), (long double)pt.y());
if(euclidean_distance(bisectorpt, orig_pt) < distance/2) {
if(!pack.compute_lazy_intersection(rpt, he1, he2, true, false)) {
rpt = he1.second; //colinear offset edges use shared point
}
} else {
if(!pack.compute_lazy_intersection(rpt, he1, std::pair<point_data<long double>, point_data<long double> >(orig_pt, bisectorpt), true, false)) {
rpt = he1.second; //colinear offset edges use shared point
}
}
pt.x((coordinate_type)(std::floor(rpt.x()+0.5)));
pt.y((coordinate_type)(std::floor(rpt.y()+0.5)));
}
static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
@ -566,8 +565,8 @@ namespace boost { namespace polygon {
}
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
polygon_with_holes_concept tag) {
insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept());
for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
@ -579,14 +578,14 @@ namespace boost { namespace polygon {
}
template <typename geometry_type>
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
inline polygon_set_data&
insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
polygon_concept tag) {
if (resizing==0)
return *this;
// one dimensional used to store CCW/CW flag
//direction_1d wdir = winding(poly);
// LOW==CLOCKWISE just faster to type
@ -615,7 +614,7 @@ namespace boost { namespace polygon {
// for all corners
polygon_set_data<T> sizingSet;
bool sizing_sign = resizing>0;
bool sizing_sign = resizing<0;
bool prev_concave = true;
point_data<T> prev_point;
//int iCtr=0;
@ -631,7 +630,7 @@ namespace boost { namespace polygon {
point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x());
double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y();
bool convex = direction>0;
bool treat_as_concave = !convex;
if(sizing_sign)
treat_as_concave = convex;
@ -644,12 +643,12 @@ namespace boost { namespace polygon {
if (prev_concave)
//TODO missing round_down()
curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y());
else
else
curr_prev = prev_point;
// around concave corners - insert rectangle
// if previous corner is concave it's point info may be ignored
if ( treat_as_concave) {
if ( treat_as_concave) {
std::vector<point_data<T> > pts;
pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y()));
@ -670,13 +669,13 @@ namespace boost { namespace polygon {
direction_1d winding;
winding = convex?COUNTERCLOCKWISE:CLOCKWISE;
if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing
, num_circle_segments, corner_fill_arc))
, num_circle_segments, corner_fill_arc))
{
if (first_pts.size()) {
for (unsigned int i=0; i<pts.size(); i++) {
sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
}
} else {
first_pts = pts[0];
first_wdir = resize_wdir;
@ -685,7 +684,7 @@ namespace boost { namespace polygon {
}
}
prev_point = curr_prev;
} else {
treat_as_concave = true;
}
@ -708,7 +707,7 @@ namespace boost { namespace polygon {
first_pts[first_pts.size()-1]=prev_point;
}
sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false);
polygon_set_data<coordinate_type> tmp;
//insert original shape
@ -722,7 +721,7 @@ namespace boost { namespace polygon {
inline polygon_set_data&
interact(const polygon_set_data& that);
interact(const polygon_set_data& that);
inline bool downcast(polygon_45_set_data<coordinate_type>& result) const {
if(!is_45_) return false;
@ -811,7 +810,7 @@ namespace boost { namespace polygon {
// }
template <typename T>
inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
point_data<T>& curr_prev, bool ignore_prev_point,
point_data< T> start, point_data<T> middle, point_data< T> end,
double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) {
@ -844,7 +843,7 @@ namespace boost { namespace polygon {
int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments);
curr_prev = round_down<T>(mid2_offset);
return num;
}
std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset);
@ -882,21 +881,21 @@ namespace boost { namespace polygon {
// returnPoints will start with the first point after start
// returnPoints vector may be empty
template <typename T>
inline int make_arc(std::vector<point_data< T> >& return_points,
inline int make_arc(std::vector<point_data< T> >& return_points,
point_data< double> start, point_data< double> end,
point_data< double> center, double r, unsigned int num_circle_segments) {
const double our_pi=3.1415926535897932384626433832795028841971;
// derive start and end angles
// derive start and end angles
double ps = atan2(start.y()-center.y(), start.x()-center.x());
double pe = atan2(end.y()-center.y(), end.x()-center.x());
if (ps < 0.0)
if (ps < 0.0)
ps += 2.0 * our_pi;
if (pe <= 0.0)
if (pe <= 0.0)
pe += 2.0 * our_pi;
if (ps >= 2.0 * our_pi)
if (ps >= 2.0 * our_pi)
ps -= 2.0 * our_pi;
while (pe <= ps)
while (pe <= ps)
pe += 2.0 * our_pi;
double delta_angle = (2.0 * our_pi) / (double)num_circle_segments;
if ( start==end) // full circle?
@ -942,12 +941,12 @@ namespace boost { namespace polygon {
inline connectivity_extraction() : ce_(), nodeCount_(0) {}
inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_),
nodeCount_(that.nodeCount_) {}
inline connectivity_extraction& operator=(const connectivity_extraction& that) {
ce_ = that.ce_;
inline connectivity_extraction& operator=(const connectivity_extraction& that) {
ce_ = that.ce_;
nodeCount_ = that.nodeCount_; {}
return *this;
}
//insert a polygon set graph node, the value returned is the id of the graph node
inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) {
ps.clean();
@ -960,7 +959,7 @@ namespace boost { namespace polygon {
ps.insert(geoObj);
return insert(ps);
}
//extract connectivity and store the edges in the graph
//graph must be indexable by graph node id and the indexed value must be a std::set of
//graph node id
@ -996,5 +995,6 @@ namespace boost { namespace polygon {
#include "detail/polygon_set_view.hpp"
#include "polygon_set_concept.hpp"
#include "detail/minkowski.hpp"
#endif

View File

@ -29,6 +29,7 @@ ZONE_CONTAINER::ZONE_CONTAINER( BOARD* parent ) :
m_NetCode = -1; // Net number for fast comparisons
m_CornerSelection = -1;
m_IsFilled = false; // fill status : true when the zone is filled
m_FillMode = 0; // How to fill areas: 0 = use filled polygons, != 0 fill with segments
utility = 0; // flags used in polygon calculations
utility2 = 0; // flags used in polygon calculations
m_Poly = new CPolyLine(); // Outlines
@ -903,6 +904,8 @@ bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos )
inside = true;
break;
}
// Prepare test of next area which starts after the current indexend (if exists)
indexstart = indexend+1;
}
}
return inside;

View File

@ -41,7 +41,7 @@ public:
int m_CornerSelection; // For corner moving, corner index to drag, or -1 if no selection
int m_ZoneClearance; // clearance value
int m_ZoneMinThickness; // Min thickness value in filled areas
int m_FillMode; // How to fillingareas: 0 = use polygonal areas , != 0 fill with segments
int m_FillMode; // How to fill areas: 0 = use filled polygons, != 0 fill with segments
int m_ArcToSegmentsCount; // number of segments to convert a circle to a polygon
// (uses ARC_APPROX_SEGMENTS_COUNT_LOW_DEF or ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF)
int m_PadOption; //

View File

@ -24,7 +24,7 @@
ZONE_SETTING::ZONE_SETTING( void )
{
m_FillMode = 1; // Mode for filling zone : 1 use segments, 0 use polygons
m_FillMode = 0; // Mode for filling zone : 1 use segments, 0 use polygons
m_ZoneClearance = 200; // Clearance value
m_ZoneMinThickness = 100; // Min thickness value in filled areas
m_NetcodeSelection = 0; // Net code selection for the current zone

View File

@ -19,9 +19,10 @@
#include "dialog_copper_zones.h"
wxString dialog_copper_zone::m_netNameShowFilter( wxT( "*" ) ); /* the filter to show nets (default * "*").
* static to keep this pattern for an entire pcbnew session
*/
/* the filter to show nets (default * "*").
* static to keep this pattern for an entire pcbnew session
*/
wxString dialog_copper_zone::m_netNameShowFilter( wxT( "*" ) );
/************************************************************************************************/
dialog_copper_zone::dialog_copper_zone( WinEDA_PcbFrame* parent, ZONE_SETTING* zone_setting ) :
@ -31,8 +32,10 @@ dialog_copper_zone::dialog_copper_zone( WinEDA_PcbFrame* parent, ZONE_SETTING* z
m_Parent = parent;
m_Config = wxGetApp().m_EDA_Config;
m_Zone_Setting = zone_setting;
m_NetSorting = 1; // 0 = alphabetic sort, 1 = pad count sort, and filtering net names
m_OnExitCode = ZONE_ABORT;
m_NetSortingByPadCount = true; /* false = alphabetic sort.
* true = pad count sort.
*/
m_OnExitCode = ZONE_ABORT;
SetReturnCode( ZONE_ABORT ); // Will be changed on buttons click
@ -156,7 +159,7 @@ void dialog_copper_zone::initDialog()
else
m_NetDisplayOption->SetSelection( 1 );
m_ShowNetNameFilter->SetValue(m_netNameShowFilter);
m_ShowNetNameFilter->SetValue( m_netNameShowFilter );
initListNetsParams();
// Build list of nets:
@ -392,7 +395,7 @@ void dialog_copper_zone::OnPadsInZoneClick( wxCommandEvent& event )
}
/** init m_NetSorting and m_NetFiltering values
/** init m_NetSortingByPadCount and m_NetFiltering values
* according to m_NetDisplayOption selection
*/
void dialog_copper_zone::initListNetsParams()
@ -400,22 +403,22 @@ void dialog_copper_zone::initListNetsParams()
switch( m_NetDisplayOption->GetSelection() )
{
case 0:
m_NetSorting = true;
m_NetSortingByPadCount = false;
m_NetFiltering = false;
break;
case 1:
m_NetSorting = false;
m_NetSortingByPadCount = true;
m_NetFiltering = false;
break;
case 2:
m_NetSorting = true;
m_NetSortingByPadCount = false;
m_NetFiltering = true;
break;
case 3:
m_NetSorting = false;
m_NetSortingByPadCount = true;
m_NetFiltering = true;
break;
}
@ -429,6 +432,7 @@ void dialog_copper_zone::initListNetsParams()
void dialog_copper_zone::OnRunFiltersButtonClick( wxCommandEvent& event )
{
m_netNameShowFilter = m_ShowNetNameFilter->GetValue();
// Ensure filtered option for nets:
if( m_NetDisplayOption->GetSelection() == 0 )
m_NetDisplayOption->SetSelection( 2 );
@ -443,8 +447,7 @@ void dialog_copper_zone::buildAvailableListOfNets()
{
wxArrayString listNetName;
m_Parent->GetBoard()->ReturnSortedNetnamesList(
listNetName, m_NetSorting == 0 ? false : true );
m_Parent->GetBoard()->ReturnSortedNetnamesList( listNetName, m_NetSortingByPadCount );
if( m_NetFiltering )
{

View File

@ -18,7 +18,9 @@ private:
*/
ZONE_SETTING* m_Zone_Setting;
long m_NetSorting;
bool m_NetSortingByPadCount; /* false = alphabetic sort.
* true = pad count sort.
*/
long m_NetFiltering;
int m_LayerId[LAYER_COUNT]; // Handle the real layer number from layer name position in m_LayerSelectionCtrl
static wxString m_netNameShowFilter; /* the filter to show nets (default * "*").

View File

@ -486,7 +486,6 @@ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb )
booleng = new Bool_Engine();
ArmBoolEng( booleng, true );
cornerBufferPolysToSubstract.clear();
// Test thermal stubs connections and add polygons to remove unconnected stubs.
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
@ -535,62 +534,60 @@ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb )
// translate point
ptTest[i] += pad->ReturnShapePos();
bool inside = HitTestFilledArea( ptTest[i] );
if( HitTestFilledArea( ptTest[i] ) )
continue;
if( inside == false )
// polygon buffer
std::vector<wxPoint> corners_buffer;
// polygons are rectangles with width of copper bridge value
// contour line width has to be taken into calculation to avoid "thermal stub bleed"
const int iDTRC =
( m_ThermalReliefCopperBridgeValue - m_ZoneMinThickness ) / 2;
switch( i )
{
// polygon buffer
std::vector<wxPoint> corners_buffer;
case 0:
corners_buffer.push_back( wxPoint( -iDTRC, dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, iDTRC ) );
break;
// polygons are rectangles with width of copper bridge value
// contour line width has to be taken into calculation to avoid "thermal stub bleed"
const int iDTRC =
( m_ThermalReliefCopperBridgeValue - m_ZoneMinThickness ) / 2;
case 1:
corners_buffer.push_back( wxPoint( -iDTRC, -dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, -dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, -iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, -iDTRC ) );
break;
switch( i )
{
case 0:
corners_buffer.push_back( wxPoint( -iDTRC, dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, iDTRC ) );
break;
case 2:
corners_buffer.push_back( wxPoint( dx, -iDTRC ) );
corners_buffer.push_back( wxPoint( dx, iDTRC ) );
corners_buffer.push_back( wxPoint( +iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( +iDTRC, -iDTRC ) );
break;
case 1:
corners_buffer.push_back( wxPoint( -iDTRC, -dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, -dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, -iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, -iDTRC ) );
break;
case 2:
corners_buffer.push_back( wxPoint( dx, -iDTRC ) );
corners_buffer.push_back( wxPoint( dx, iDTRC ) );
corners_buffer.push_back( wxPoint( +iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( +iDTRC, -iDTRC ) );
break;
case 3:
corners_buffer.push_back( wxPoint( -dx, -iDTRC ) );
corners_buffer.push_back( wxPoint( -dx, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, -iDTRC ) );
break;
}
case 3:
corners_buffer.push_back( wxPoint( -dx, -iDTRC ) );
corners_buffer.push_back( wxPoint( -dx, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, -iDTRC ) );
break;
}
// add computed polygon to list
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ReturnShapePos(); // Shift origin to position
CPolyPt corner;
corner.x = cpos.x;
corner.y = cpos.y;
corner.end_contour = ( ic < (corners_buffer.size() - 1) ) ? 0 : 1;
cornerBufferPolysToSubstract.push_back( corner );
}
// add computed polygon to list
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ReturnShapePos(); // Shift origin to position
CPolyPt corner;
corner.x = cpos.x;
corner.y = cpos.y;
corner.end_contour = ( ic < (corners_buffer.size() - 1) ) ? 0 : 1;
cornerBufferPolysToSubstract.push_back( corner );
}
}
}

View File

@ -83,8 +83,8 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
// with the horizontal line at the new refy position
// the line slope = seg_endY/seg_endX;
// and the x pos relative to the new origin is intersec_x = refy/slope
// Note: because horizontal segments are skipped, 1/slope exists (seg_end_y never == O)
double intersec_x = newrefy * seg_endX / seg_endY;
// Note: because horizontal segments are skipped, 1/slope exists (seg_endY never == O)
double intersec_x = (newrefy * seg_endX) / seg_endY;
if( newrefx < intersec_x ) // Intersection found with the semi-infinite line from refx to infinite
count++;
}
@ -101,7 +101,6 @@ bool TestPointInsidePolygon( wxPoint *aPolysList, int aCount,wxPoint aRefPoint )
// count intersection points to right of (refx,refy). If odd number, point (refx,refy) is inside polyline
int ics, ice;
int count = 0;
// find all intersection points of line with polyline sides
for( ics = 0, ice = aCount-1; ics < aCount; ice = ics++ )
{
@ -138,8 +137,8 @@ bool TestPointInsidePolygon( wxPoint *aPolysList, int aCount,wxPoint aRefPoint )
// with the horizontal line at the new refy position
// the line slope = seg_endY/seg_endX;
// and the x pos relative to the new origin is intersec_x = refy/slope
// Note: because horizontal segments are skipped, 1/slope exists (seg_end_y never == O)
double intersec_x = newrefy * seg_endX / seg_endY;
// Note: because horizontal segments are skipped, 1/slope exists (seg_endY never == O)
double intersec_x = (newrefy * seg_endX) / seg_endY;
if( newrefx < intersec_x ) // Intersection found with the semi-infinite line from refx to infinite
count++;
}