pcb_calculator : do not overwrite input parameters

Split the computing / displaying code into different functions
Add coloured warnings when a value is not finite / illogical .

Fixes https://gitlab.com/kicad/code/kicad/-/issues/1849
This commit is contained in:
Fabien Corona 2020-08-07 00:09:33 +00:00 committed by Seth Hillbrand
parent 0ff5dcee69
commit 8de6aa161f
20 changed files with 1803 additions and 1663 deletions

View File

@ -19,11 +19,12 @@
*/
#include <wx/app.h>
#include <wx/msgdlg.h>
#include <wx/colour.h>
#include <wx/log.h>
#include <wx/msgdlg.h>
#include <pcb_calculator_frame_base.h>
#include <pcb_calculator.h>
#include <pcb_calculator_frame_base.h>
#include <transline.h>
/*
@ -56,17 +57,25 @@ double DoubleFromString( const wxString& TextValue )
while( brk_point < buf.Len() )
{
wxChar ch = buf[brk_point];
if( !( (ch >= '0' && ch <='9') || (ch == decimal_point)
|| (ch == '-') || (ch == '+') || (ch == 'e') || (ch == 'E') ) )
if( !( ( ch >= '0' && ch <= '9' ) || ( ch == decimal_point ) || ( ch == '-' )
|| ( ch == '+' ) || ( ch == 'e' ) || ( ch == 'E' ) ) )
{
break;
}
++brk_point;
}
/* Extract the numeric part */
buf.Left( brk_point ).ToDouble( &value );
// Check for strings that cannot qualify as a number
if( brk_point == 0 )
{
return std::nan( "" );
}
/* Extract the numeric part */
if( !buf.Left( brk_point ).ToDouble( &value ) )
{
return std::nan( "" );
}
return value;
}
@ -80,6 +89,12 @@ void SetPropertyInDialog( enum PRMS_ID aPrmId, double value )
frame->SetPrmValue( aPrmId, value );
}
void SetPropertyBgColorInDialog( enum PRMS_ID aPrmId, const KIGFX::COLOR4D* aCol )
{
PCB_CALCULATOR_FRAME* frame = (PCB_CALCULATOR_FRAME*) wxTheApp->GetTopWindow();
frame->SetPrmBgColor( aPrmId, aCol );
}
/* Puts the text into the given result line.
*/
void SetResultInDialog( int line, const char* aText )
@ -132,8 +147,6 @@ double PCB_CALCULATOR_FRAME::GetPrmValue( enum PRMS_ID aPrmId )
if( aPrmId == prm->m_Id )
return prm->m_NormalizedValue;
}
wxLogMessage( wxT("GetPrmValue: prm %d not found"), (int) aPrmId );
return 1.0;
}
@ -149,9 +162,9 @@ void PCB_CALCULATOR_FRAME::SetPrmValue( enum PRMS_ID aPrmId, double aValue )
for( unsigned ii = 0; ii < tr_ident->GetPrmsCount(); ii++ )
{
TRANSLINE_PRM* prm = tr_ident->GetPrm( ii );
if( aPrmId == prm->m_Id )
{
prm->m_Value = prm->m_NormalizedValue = aValue;
prm->m_NormalizedValue = aValue;
prm->m_Value = prm->m_NormalizedValue * prm->ToUserUnit();
wxString msg;
@ -160,10 +173,43 @@ void PCB_CALCULATOR_FRAME::SetPrmValue( enum PRMS_ID aPrmId, double aValue )
return;
}
}
wxLogMessage( wxT( "GetPrmValue: prm %d not found" ), (int) aPrmId );
}
/**
* Function SetPrmBgColor
* Set the background color for a given parameter
* @param aPrmId = @ref PRMS_ID of the parameter
* @param aCol = color ( @ref KIGFX::COLOR4D * )
*/
void PCB_CALCULATOR_FRAME::SetPrmBgColor( enum PRMS_ID aPrmId, const KIGFX::COLOR4D* aCol )
{
wxColour wxcol = wxColour( static_cast<unsigned char>( aCol->r * 255 ),
static_cast<unsigned char>( aCol->g * 255 ),
static_cast<unsigned char>( aCol->b * 255 ) );
if( !wxcol.IsOk() )
{
return;
}
TRANSLINE_IDENT* tr_ident = m_transline_list[m_currTransLineType];
for( unsigned ii = 0; ii < tr_ident->GetPrmsCount(); ii++ )
{
TRANSLINE_PRM* prm = tr_ident->GetPrm( ii );
wxTextCtrl* ctl = static_cast<wxTextCtrl*>( prm->m_ValueCtrl );
if( aPrmId == prm->m_Id )
{
ctl->SetBackgroundColour( wxcol );
ctl->SetStyle( 0, -1, ctl->GetDefaultStyle() );
return;
}
}
}
/**
* Function SetResult
* Puts the text into the given result line.
@ -214,4 +260,3 @@ bool PCB_CALCULATOR_FRAME::IsPrmSelected( enum PRMS_ID aPrmId )
}
return false;
}

View File

@ -26,10 +26,10 @@
#include <pcb_calculator_frame_base.h>
#include <transline.h> // Included for SUBST_PRMS_ID definition.
#include <transline_ident.h>
#include <attenuator_classes.h>
#include <class_regulator_data.h>
#include <transline.h> // Included for SUBST_PRMS_ID definition.
#include <transline_ident.h>
extern const wxString PcbCalcDataFileExt;
@ -66,13 +66,11 @@ private:
wxString m_lastSelectedRegulatorName; // last regulator name selected
public:
PCB_CALCULATOR_FRAME( KIWAY* aKiway, wxWindow* aParent );
~PCB_CALCULATOR_FRAME();
private:
// Event handlers
void OnClosePcbCalc( wxCloseEvent& event ) override;
@ -154,23 +152,23 @@ private:
* Function TWCalculateWidth
* Calculate track width required based on given current and temperature rise.
*/
double TWCalculateWidth( double aCurrent, double aThickness, double aDeltaT_C,
bool aUseInternalLayer );
double TWCalculateWidth(
double aCurrent, double aThickness, double aDeltaT_C, bool aUseInternalLayer );
/**
* Function TWCalculateCurrent
* Calculate maximum current based on given width and temperature rise.
*/
double TWCalculateCurrent( double aWidth, double aThickness, double aDeltaT_C,
bool aUseInternalLayer );
double TWCalculateCurrent(
double aWidth, double aThickness, double aDeltaT_C, bool aUseInternalLayer );
/**
* Function TWDisplayValues
* Displays the results of a calculation (including resulting values such
* as the resistance and power loss).
*/
void TWDisplayValues( double aCurrent, double aExtWidth, double aIntWidth,
double aExtThickness, double aIntThickness );
void TWDisplayValues( double aCurrent, double aExtWidth, double aIntWidth, double aExtThickness,
double aIntThickness );
/**
* Function TWUpdateModeDisplay
@ -360,6 +358,12 @@ public:
*/
void SetResult( int aLineNumber, const wxString& aText );
/** Function SetPrgmBgColor
* Set the background color of a parameter
* @param aPrmId = param id to set
* @param aCol = new color
*/
void SetPrmBgColor( enum PRMS_ID aPrmId, const KIGFX::COLOR4D* aCol );
/**
* Function GetPrmValue
* Returns a param value.
@ -380,7 +384,10 @@ public:
void BoardClassesUpdateData( double aUnitScale );
// Calculator doesn't host a tool framework
wxWindow* GetToolCanvas() const override { return nullptr; }
wxWindow* GetToolCanvas() const override
{
return nullptr;
}
};

View File

@ -31,43 +31,16 @@
#include <cstdlib>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <microstrip.h>
#include <c_microstrip.h>
#include <microstrip.h>
#include <transline.h>
#include <units.h>
C_MICROSTRIP::C_MICROSTRIP() : TRANSLINE()
{
m_Name = "Coupled_MicroStrip";
aux_ms = NULL;
// Initialize these variables mainly to avoid warnings from a static analyzer
h = 0.0; // height of substrate
ht = 0.0; // height to the top of box
t = 0.0; // thickness of top metal
rough = 0.0; // Roughness of top metal
w = 0.0; // width of lines
w_t_e = 0.0; // even-mode thickness-corrected line width
w_t_o = 0.0; // odd-mode thickness-corrected line width
l = 0.0; // length of lines
s = 0.0; // spacing of lines
Z0_e_0 = 0.0; // static even-mode impedance
Z0_o_0 = 0.0; // static odd-mode impedance
Z0e = 0.0; // even-mode impedance
Z0o = 0.0; // odd-mode impedance
c_e = 0.0; // even-mode capacitance
c_o = 0.0; // odd-mode capacitance
ang_l_e = 0.0; // even-mode electrical length in angle
ang_l_o = 0.0; // odd-mode electrical length in angle
er_eff_e = 0.0; // even-mode effective dielectric constant
er_eff_o = 0.0; // odd-mode effective dielectric constant
er_eff_e_0 = 0.0; // static even-mode effective dielectric constant
er_eff_o_0 = 0.0; // static odd-mode effective dielectric constant
w_eff = 0.0; // Effective width of line
atten_dielectric_e = 0.0; // even-mode dielectric losses (dB)
atten_cond_e = 0.0; // even-mode conductors losses (dB)
atten_dielectric_o = 0.0; // odd-mode conductors losses (dB)
atten_cond_o = 0.0; // odd-mode conductors losses (dB)
Init();
}
@ -99,6 +72,7 @@ double C_MICROSTRIP::delta_u_thickness_single( double u, double t_h )
log( ( 2.0 +
(4.0 * M_PI * u -
2.0) / ( 1.0 + exp( -100.0 * ( u - 1.0 / (2.0 * M_PI) ) ) ) ) / t_h ) );
}
else
{
@ -122,10 +96,10 @@ void C_MICROSTRIP::delta_u_thickness()
double e_r, u, g, t_h;
double delta_u, delta_t, delta_u_e, delta_u_o;
e_r = er;
u = w / h; /* normalized line width */
g = s / h; /* normalized line spacing */
t_h = t / h; /* normalized strip thickness */
e_r = m_parameters[EPSILONR_PRM];
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalized line width */
g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
t_h = m_parameters[T_PRM] / m_parameters[H_PRM]; /* normalized strip thickness */
if( t_h > 0.0 )
{
@ -141,8 +115,8 @@ void C_MICROSTRIP::delta_u_thickness()
delta_u_e = delta_u_o = 0.0;
}
w_t_e = w + delta_u_e * h;
w_t_o = w + delta_u_o * h;
w_t_e = m_parameters[PHYS_WIDTH_PRM] + delta_u_e * m_parameters[H_PRM];
w_t_o = m_parameters[PHYS_WIDTH_PRM] + delta_u_o * m_parameters[H_PRM];
}
@ -155,15 +129,15 @@ void C_MICROSTRIP::compute_single_line()
aux_ms = new MICROSTRIP();
/* prepare parameters for single microstrip computations */
aux_ms->er = er;
aux_ms->w = w;
aux_ms->h = h;
aux_ms->t = 0.0;
aux_ms->m_parameters[EPSILONR_PRM] = m_parameters[EPSILONR_PRM];
aux_ms->m_parameters[PHYS_WIDTH_PRM] = m_parameters[PHYS_WIDTH_PRM];
aux_ms->m_parameters[H_PRM] = m_parameters[H_PRM];
aux_ms->m_parameters[T_PRM] = 0.0;
//aux_ms->t = t;
aux_ms->ht = 1e12; /* arbitrarily high */
aux_ms->m_freq = m_freq;
aux_ms->m_murC = m_murC;
//aux_ms->m_parameters[H_T_PRM] = m_parameters[H_T_PRM];
aux_ms->m_parameters[H_T_PRM] = 1e12; /* arbitrarily high */
aux_ms->m_parameters[FREQUENCY_PRM] = m_parameters[FREQUENCY_PRM];
aux_ms->m_parameters[MURC_PRM] = m_parameters[MURC_PRM];
aux_ms->microstrip_Z0();
aux_ms->dispersion();
}
@ -180,8 +154,8 @@ double C_MICROSTRIP::filling_factor_even( double u, double g, double e_r )
v = u * ( 20.0 + g * g ) / ( 10.0 + g * g ) + g * exp( -g );
v3 = v * v * v;
v4 = v3 * v;
a_e = 1.0 + log( (v4 + v * v / 2704.0) / (v4 + 0.432) ) / 49.0 + log( 1.0 + v3 / 5929.741 )
/ 18.7;
a_e = 1.0 + log( ( v4 + v * v / 2704.0 ) / ( v4 + 0.432 ) ) / 49.0
+ log( 1.0 + v3 / 5929.741 ) / 18.7;
b_e = 0.564 * pow( ( ( e_r - 0.9 ) / ( e_r + 3.0 ) ), 0.053 );
/* filling factor, with width corrected for thickness */
@ -263,17 +237,20 @@ void C_MICROSTRIP::er_eff_static()
double u_t_e, u_t_o, g, h2, h2h;
double a_o, t_h, q, q_c, q_t, q_inf;
double er_eff_single;
double er;
er = m_parameters[EPSILONR_PRM];
/* compute zero-thickness single line parameters */
compute_single_line();
er_eff_single = aux_ms->er_eff_0;
h2 = ht;
u_t_e = w_t_e / h; /* normalized even_mode line width */
u_t_o = w_t_o / h; /* normalized odd_mode line width */
g = s / h; /* normalized line spacing */
h2h = h2 / h; /* normalized cover height */
t_h = t / h; /* normalized strip thickness */
h2 = m_parameters[H_T_PRM];
u_t_e = w_t_e / m_parameters[H_PRM]; /* normalized even_mode line width */
u_t_o = w_t_o / m_parameters[H_PRM]; /* normalized odd_mode line width */
g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
h2h = h2 / m_parameters[H_PRM]; /* normalized cover height */
t_h = m_parameters[T_PRM] / m_parameters[H_PRM]; /* normalized strip thickness */
/* filling factor, computed with thickness corrected width */
q_inf = filling_factor_even( u_t_e, g, er );
@ -387,11 +364,11 @@ void C_MICROSTRIP::Z0_even_odd()
double Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8, Q_9, Q_10;
double delta_Z0_e_0, delta_Z0_o_0, Z0_single, er_eff_single;
h2 = ht;
u_t_e = w_t_e / h; /* normalized even-mode line width */
u_t_o = w_t_o / h; /* normalized odd-mode line width */
g = s / h; /* normalized line spacing */
h2h = h2 / h; /* normalized cover height */
h2 = m_parameters[H_T_PRM];
u_t_e = w_t_e / m_parameters[H_PRM]; /* normalized even-mode line width */
u_t_o = w_t_o / m_parameters[H_PRM]; /* normalized odd-mode line width */
g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalized line spacing */
h2h = h2 / m_parameters[H_PRM]; /* normalized cover height */
Z0_single = aux_ms->Z0_0;
er_eff_single = aux_ms->er_eff_0;
@ -400,16 +377,13 @@ void C_MICROSTRIP::Z0_even_odd()
er_eff = er_eff_e_0;
Q_1 = 0.8695 * pow( u_t_e, 0.194 );
Q_2 = 1.0 + 0.7519 * g + 0.189 * pow( g, 2.31 );
Q_3 = 0.1975 +
pow( ( 16.6 +
pow( (8.4 / g),
6.0 ) ),
-0.387 ) + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 3.4, 10.0 ) ) ) / 241.0;
Q_4 = 2.0 * Q_1 /
( Q_2 * ( exp( -g ) * pow( u_t_e, Q_3 ) + ( 2.0 - exp( -g ) ) * pow( u_t_e, -Q_3 ) ) );
Q_3 = 0.1975 + pow( ( 16.6 + pow( ( 8.4 / g ), 6.0 ) ), -0.387 )
+ log( pow( g, 10.0 ) / ( 1.0 + pow( g / 3.4, 10.0 ) ) ) / 241.0;
Q_4 = 2.0 * Q_1
/ ( Q_2 * ( exp( -g ) * pow( u_t_e, Q_3 ) + ( 2.0 - exp( -g ) ) * pow( u_t_e, -Q_3 ) ) );
/* static even-mode impedance */
Z0_e_0 = Z0_single *
sqrt( er_eff_single / er_eff ) / (1.0 - sqrt( er_eff_single ) * Q_4 * Z0_single / ZF0);
Z0_e_0 = Z0_single * sqrt( er_eff_single / er_eff )
/ ( 1.0 - sqrt( er_eff_single ) * Q_4 * Z0_single / ZF0 );
/* correction for cover */
delta_Z0_e_0 = delta_Z0_even_cover( g, u_t_e, h2h ) / sqrt( er_eff );
@ -418,17 +392,16 @@ void C_MICROSTRIP::Z0_even_odd()
/* odd-mode */
er_eff = er_eff_o_0;
Q_5 = 1.794 + 1.14 * log( 1.0 + 0.638 / ( g + 0.517 * pow( g, 2.43 ) ) );
Q_6 = 0.2305 + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 5.8, 10.0 ) ) ) / 281.3 + log(
1.0 + 0.598 * pow( g, 1.154 ) ) / 5.1;
Q_6 = 0.2305 + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 5.8, 10.0 ) ) ) / 281.3
+ log( 1.0 + 0.598 * pow( g, 1.154 ) ) / 5.1;
Q_7 = ( 10.0 + 190.0 * g * g ) / ( 1.0 + 82.3 * g * g * g );
Q_8 = exp( -6.5 - 0.95 * log( g ) - pow( g / 0.15, 5.0 ) );
Q_9 = log( Q_7 ) * ( Q_8 + 1.0 / 16.5 );
Q_10 = ( Q_2 * Q_4 - Q_5 * exp( log( u_t_o ) * Q_6 * pow( u_t_o, -Q_9 ) ) ) / Q_2;
/* static odd-mode impedance */
Z0_o_0 = Z0_single *
sqrt( er_eff_single /
er_eff ) / (1.0 - sqrt( er_eff_single ) * Q_10 * Z0_single / ZF0);
Z0_o_0 = Z0_single * sqrt( er_eff_single / er_eff )
/ ( 1.0 - sqrt( er_eff_single ) * Q_10 * Z0_single / ZF0 );
/* correction for cover */
delta_Z0_o_0 = delta_Z0_odd_cover( g, u_t_o, h2h ) / sqrt( er_eff );
@ -446,32 +419,33 @@ void C_MICROSTRIP::er_eff_freq()
double F_e, F_o;
double er_eff, u, g, f_n;
u = w / h; /* normalize line width */
g = s / h; /* normalize line spacing */
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalize line width */
g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalize line spacing */
/* normalized frequency [GHz * mm] */
f_n = m_freq * h / 1e06;
f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;
er_eff = er_eff_e_0;
P_1 = 0.27488 + ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) * u - 0.065683 * exp(
-8.7513 * u );
P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * er ) );
P_1 = 0.27488 + ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) * u
- 0.065683 * exp( -8.7513 * u );
P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * m_parameters[EPSILONR_PRM] ) );
P_3 = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( er / 15.916, 8.0 ) ) );
P_5 = 0.334 * exp( -3.3 * pow( er / 15.0, 3.0 ) ) + 0.746;
P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( m_parameters[EPSILONR_PRM] / 15.916, 8.0 ) ) );
P_5 = 0.334 * exp( -3.3 * pow( m_parameters[EPSILONR_PRM] / 15.0, 3.0 ) ) + 0.746;
P_6 = P_5 * exp( -pow( f_n / 18.0, 0.368 ) );
P_7 = 1.0 +
4.069* P_6* pow( g, 0.479 ) * exp( -1.347 * pow( g, 0.595 ) - 0.17 * pow( g, 2.5 ) );
P_7 = 1.0
+ 4.069 * P_6 * pow( g, 0.479 ) * exp( -1.347 * pow( g, 0.595 ) - 0.17 * pow( g, 2.5 ) );
F_e = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 * P_7 ) * f_n, 1.5763 );
/* even-mode effective dielectric constant */
er_eff_e = er - (er - er_eff) / (1.0 + F_e);
er_eff_e = m_parameters[EPSILONR_PRM] - ( m_parameters[EPSILONR_PRM] - er_eff ) / ( 1.0 + F_e );
er_eff = er_eff_o_0;
P_8 = 0.7168 * ( 1.0 + 1.076 / ( 1.0 + 0.0576 * (er - 1.0) ) );
P_9 = P_8 - 0.7913 *
( 1.0 - exp( -pow( f_n / 20.0, 1.424 ) ) ) * atan( 2.481 * pow( er / 8.0, 0.946 ) );
P_10 = 0.242 * pow( er - 1.0, 0.55 );
P_8 = 0.7168 * ( 1.0 + 1.076 / ( 1.0 + 0.0576 * ( m_parameters[EPSILONR_PRM] - 1.0 ) ) );
P_9 = P_8
- 0.7913 * ( 1.0 - exp( -pow( f_n / 20.0, 1.424 ) ) )
* atan( 2.481 * pow( m_parameters[EPSILONR_PRM] / 8.0, 0.946 ) );
P_10 = 0.242 * pow( m_parameters[EPSILONR_PRM] - 1.0, 0.55 );
P_11 = 0.6366 * ( exp( -0.3401 * f_n ) - 1.0 ) * atan( 1.263 * pow( u / 3.0, 1.629 ) );
P_12 = P_9 + ( 1.0 - P_9 ) / ( 1.0 + 1.183 * pow( u, 1.376 ) );
P_13 = 1.695 * P_10 / ( 0.414 + 1.605 * P_10 );
@ -480,7 +454,7 @@ void C_MICROSTRIP::er_eff_freq()
F_o = P_1 * P_2 * pow( ( P_3 * P_4 + 0.1844 ) * f_n * P_15, 1.5763 );
/* odd-mode effective dielectric constant */
er_eff_o = er - (er - er_eff) / (1.0 + F_o);
er_eff_o = m_parameters[EPSILONR_PRM] - ( m_parameters[EPSILONR_PRM] - er_eff ) / ( 1.0 + F_o );
}
@ -497,34 +471,40 @@ void C_MICROSTRIP::conductor_losses()
e_r_eff_o_0 = er_eff_o_0;
Z0_h_e = Z0_e_0 * sqrt( e_r_eff_e_0 ); /* homogeneous stripline impedance */
Z0_h_o = Z0_o_0 * sqrt( e_r_eff_o_0 ); /* homogeneous stripline impedance */
delta = m_skindepth;
delta = m_parameters[SKIN_DEPTH_PRM];
if( m_freq > 0.0 )
if( m_parameters[FREQUENCY_PRM] > 0.0 )
{
/* current distribution factor (same for the two modes) */
K = exp( -1.2 * pow( ( Z0_h_e + Z0_h_o ) / ( 2.0 * ZF0 ), 0.7 ) );
/* skin resistance */
R_s = 1.0 / (m_sigma * delta);
R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta );
/* correction for surface roughness */
R_s *= 1.0 + ( (2.0 / M_PI) * atan( 1.40 * pow( (rough / delta), 2.0 ) ) );
R_s *= 1.0
+ ( ( 2.0 / M_PI )
* atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) );
/* even-mode strip inductive quality factor */
Q_c_e = (M_PI * Z0_h_e * w * m_freq) / (R_s * C0 * K);
Q_c_e = ( M_PI * Z0_h_e * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
/ ( R_s * C0 * K );
/* even-mode losses per unith length */
alpha_c_e = ( 20.0 * M_PI / log( 10.0 ) ) * m_freq * sqrt( e_r_eff_e_0 ) / (C0 * Q_c_e);
alpha_c_e = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM]
* sqrt( e_r_eff_e_0 ) / ( C0 * Q_c_e );
/* odd-mode strip inductive quality factor */
Q_c_o = (M_PI * Z0_h_o * w * m_freq) / (R_s * C0 * K);
Q_c_o = ( M_PI * Z0_h_o * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
/ ( R_s * C0 * K );
/* odd-mode losses per unith length */
alpha_c_o = ( 20.0 * M_PI / log( 10.0 ) ) * m_freq * sqrt( e_r_eff_o_0 ) / (C0 * Q_c_o);
alpha_c_o = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM]
* sqrt( e_r_eff_o_0 ) / ( C0 * Q_c_o );
}
else
{
alpha_c_e = alpha_c_o = 0.0;
}
atten_cond_e = alpha_c_e * l;
atten_cond_o = alpha_c_o * l;
atten_cond_e = alpha_c_e * m_parameters[PHYS_LEN_PRM];
atten_cond_o = alpha_c_o * m_parameters[PHYS_LEN_PRM];
}
@ -537,21 +517,19 @@ void C_MICROSTRIP::dielectric_losses()
double e_r, e_r_eff_e_0, e_r_eff_o_0;
double alpha_d_e, alpha_d_o;
e_r = er;
e_r = m_parameters[EPSILONR_PRM];
e_r_eff_e_0 = er_eff_e_0;
e_r_eff_o_0 = er_eff_o_0;
alpha_d_e =
( 20.0 * M_PI /
log( 10.0 ) ) *
(m_freq / C0) * ( e_r / sqrt( e_r_eff_e_0 ) ) * ( (e_r_eff_e_0 - 1.0) / (e_r - 1.0) ) * m_tand;
alpha_d_o =
( 20.0 * M_PI /
log( 10.0 ) ) *
(m_freq / C0) * ( e_r / sqrt( e_r_eff_o_0 ) ) * ( (e_r_eff_o_0 - 1.0) / (e_r - 1.0) ) * m_tand;
alpha_d_e = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
* ( e_r / sqrt( e_r_eff_e_0 ) ) * ( ( e_r_eff_e_0 - 1.0 ) / ( e_r - 1.0 ) )
* m_parameters[TAND_PRM];
alpha_d_o = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
* ( e_r / sqrt( e_r_eff_o_0 ) ) * ( ( e_r_eff_o_0 - 1.0 ) / ( e_r - 1.0 ) )
* m_parameters[TAND_PRM];
atten_dielectric_e = alpha_d_e * l;
atten_dielectric_o = alpha_d_o * l;
atten_dielectric_e = alpha_d_e * m_parameters[PHYS_LEN_PRM];
atten_dielectric_o = alpha_d_o * m_parameters[PHYS_LEN_PRM];
}
@ -561,7 +539,7 @@ void C_MICROSTRIP::dielectric_losses()
*/
void C_MICROSTRIP::attenuation()
{
m_skindepth = skin_depth();
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
conductor_losses();
dielectric_losses();
}
@ -583,22 +561,17 @@ void C_MICROSTRIP::line_angle()
/* odd-mode velocity */
v_o = C0 / sqrt( e_r_eff_o );
/* even-mode wavelength */
lambda_g_e = v_e / m_freq;
lambda_g_e = v_e / m_parameters[FREQUENCY_PRM];
/* odd-mode wavelength */
lambda_g_o = v_o / m_freq;
lambda_g_o = v_o / m_parameters[FREQUENCY_PRM];
/* electrical angles */
ang_l_e = 2.0 * M_PI * l / lambda_g_e; /* in radians */
ang_l_o = 2.0 * M_PI * l / lambda_g_o; /* in radians */
ang_l_e = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g_e; /* in radians */
ang_l_o = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g_o; /* in radians */
}
void C_MICROSTRIP::syn_err_fun( double* f1,
double* f2,
double s_h,
double w_h,
double e_r,
double w_h_se,
double w_h_so )
void C_MICROSTRIP::syn_err_fun(
double* f1, double* f2, double s_h, double w_h, double e_r, double w_h_se, double w_h_so )
{
double g, he;
@ -637,33 +610,34 @@ void C_MICROSTRIP::synth_width()
double eps = 1e-04;
f1 = f2 = 0;
e_r = er;
e_r = m_parameters[EPSILONR_PRM];
Z0 = Z0e / 2.0;
Z0 = m_parameters[Z0_E_PRM] / 2.0;
/* Wheeler formula for single microstrip synthesis */
a = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
w_h_se = 8.0 * sqrt( a * ( ( 7.0 + 4.0 / e_r ) / 11.0 ) + ( ( 1.0 + 1.0 / e_r ) / 0.81 ) ) / a;
Z0 = Z0o / 2.0;
Z0 = m_parameters[Z0_O_PRM] / 2.0;
/* Wheeler formula for single microstrip synthesis */
a = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
w_h_so = 8.0 * sqrt( a * ( ( 7.0 + 4.0 / e_r ) / 11.0 ) + ( ( 1.0 + 1.0 / e_r ) / 0.81 ) ) / a;
ce = cosh( 0.5 * M_PI * w_h_se );
co = cosh( 0.5 * M_PI * w_h_so );
/* first guess at s/h */
/* first guess at m_parameters[PHYS_S_PRM]/h */
s_h = ( 2.0 / M_PI ) * acosh( ( ce + co - 2.0 ) / ( co - ce ) );
/* first guess at w/h */
w_h = acosh( ( ce * co - 1.0 ) / ( co - ce ) ) / M_PI - s_h / 2.0;
s = s_h * h;
w = w_h * h;
m_parameters[PHYS_S_PRM] = s_h * m_parameters[H_PRM];
m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];
syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );
/* rather crude Newton-Rhapson; we need this beacuse the estimate of */
/* w_h is often quite far from the true value (see Akhtarzad S. et al.) */
do {
do
{
/* compute Jacobian */
syn_err_fun( &ft1, &ft2, s_h + eps, w_h, e_r, w_h_se, w_h_so );
j11 = ( ft1 - f1 ) / eps;
@ -691,8 +665,8 @@ void C_MICROSTRIP::synth_width()
} while( err > 1e-04 );
s = s_h * h;
w = w_h * h;
m_parameters[PHYS_S_PRM] = s_h * m_parameters[H_PRM];
m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];
}
@ -711,62 +685,54 @@ void C_MICROSTRIP::Z0_dispersion()
double f_n, g, u, e_r;
double R_1, R_2, R_7, R_10, R_11, R_12, R_15, R_16, tmpf;
e_r = er;
e_r = m_parameters[EPSILONR_PRM];
u = w / h; /* normalize line width */
g = s / h; /* normalize line spacing */
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM]; /* normalize line width */
g = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM]; /* normalize line spacing */
/* normalized frequency [GHz * mm] */
f_n = m_freq * h / 1e06;
f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;
e_r_eff_single_f = aux_ms->er_eff;
e_r_eff_single_0 = aux_ms->er_eff_0;
Z0_single_f = aux_ms->Z0;
Z0_single_f = aux_ms->m_parameters[Z0_PRM];
e_r_eff_o_f = er_eff_o;
e_r_eff_o_0 = er_eff_o_0;
Q_11 = 0.893 * ( 1.0 - 0.3 / ( 1.0 + 0.7 * ( e_r - 1.0 ) ) );
Q_12 = 2.121 * ( pow( f_n / 20.0, 4.91 ) / ( 1.0 + Q_11 * pow( f_n / 20.0, 4.91 ) ) ) * exp(
-2.87 * g ) * pow( g, 0.902 );
Q_12 = 2.121 * ( pow( f_n / 20.0, 4.91 ) / ( 1.0 + Q_11 * pow( f_n / 20.0, 4.91 ) ) )
* exp( -2.87 * g ) * pow( g, 0.902 );
Q_13 = 1.0 + 0.038 * pow( e_r / 8.0, 5.1 );
Q_14 = 1.0 + 1.203 * pow( e_r / 15.0, 4.0 ) / ( 1.0 + pow( e_r / 15.0, 4.0 ) );
Q_15 = 1.887 *
exp( -1.5 *
pow( g,
0.84 ) ) *
pow( g,
Q_14 ) /
( 1.0 + 0.41 *
pow( f_n / 15.0, 3.0 ) * pow( u, 2.0 / Q_13 ) / ( 0.125 + pow( u, 1.626 / Q_13 ) ) );
Q_15 = 1.887 * exp( -1.5 * pow( g, 0.84 ) ) * pow( g, Q_14 )
/ ( 1.0
+ 0.41 * pow( f_n / 15.0, 3.0 ) * pow( u, 2.0 / Q_13 )
/ ( 0.125 + pow( u, 1.626 / Q_13 ) ) );
Q_16 = ( 1.0 + 9.0 / ( 1.0 + 0.403 * pow( e_r - 1.0, 2 ) ) ) * Q_15;
Q_17 = 0.394 *
( 1.0 -
exp( -1.47 * pow( u / 7.0, 0.672 ) ) ) * ( 1.0 - exp( -4.25 * pow( f_n / 20.0, 1.87 ) ) );
Q_17 = 0.394 * ( 1.0 - exp( -1.47 * pow( u / 7.0, 0.672 ) ) )
* ( 1.0 - exp( -4.25 * pow( f_n / 20.0, 1.87 ) ) );
Q_18 = 0.61 * ( 1.0 - exp( -2.13 * pow( u / 8.0, 1.593 ) ) ) / ( 1.0 + 6.544 * pow( g, 4.17 ) );
Q_19 = 0.21 * g * g * g * g /
( ( 1.0 + 0.18 * pow( g, 4.9 ) ) * (1.0 + 0.1 * u * u) * ( 1.0 + pow( f_n / 24.0, 3.0 ) ) );
Q_19 = 0.21 * g * g * g * g
/ ( ( 1.0 + 0.18 * pow( g, 4.9 ) ) * ( 1.0 + 0.1 * u * u )
* ( 1.0 + pow( f_n / 24.0, 3.0 ) ) );
Q_20 = ( 0.09 + 1.0 / ( 1.0 + 0.1 * pow( e_r - 1, 2.7 ) ) ) * Q_19;
Q_21 =
fabs( 1.0 - 42.54 *
pow( g, 0.133 ) * exp( -0.812 * g ) * pow( u, 2.5 ) / ( 1.0 + 0.033 * pow( u, 2.5 ) ) );
Q_21 = fabs( 1.0
- 42.54 * pow( g, 0.133 ) * exp( -0.812 * g ) * pow( u, 2.5 )
/ ( 1.0 + 0.033 * pow( u, 2.5 ) ) );
r_e = pow( f_n / 28.843, 12 );
q_e = 0.016 + pow( 0.0514 * e_r * Q_21, 4.524 );
p_e = 4.766 * exp( -3.228 * pow( u, 0.641 ) );
d_e = 5.086 * q_e *
( r_e /
(0.3838 + 0.386 *
q_e) ) *
( exp( -22.2 *
pow( u,
1.92 ) ) /
(1.0 + 1.2992 * r_e) ) * ( pow( e_r - 1.0, 6.0 ) / ( 1.0 + 10 * pow( e_r - 1.0, 6.0 ) ) );
C_e = 1.0 + 1.275 *
( 1.0 -
exp( -0.004625 * p_e *
pow( e_r,
1.674 ) * pow( f_n / 18.365, 2.745 ) ) ) - Q_12 + Q_16 - Q_17 + Q_18 + Q_20;
d_e = 5.086 * q_e * ( r_e / ( 0.3838 + 0.386 * q_e ) )
* ( exp( -22.2 * pow( u, 1.92 ) ) / ( 1.0 + 1.2992 * r_e ) )
* ( pow( e_r - 1.0, 6.0 ) / ( 1.0 + 10 * pow( e_r - 1.0, 6.0 ) ) );
C_e = 1.0
+ 1.275
* ( 1.0
- exp( -0.004625 * p_e * pow( e_r, 1.674 )
* pow( f_n / 18.365, 2.745 ) ) )
- Q_12 + Q_16 - Q_17 + Q_18 + Q_20;
R_1 = 0.03891 * pow( e_r, 1.4 );
@ -781,8 +747,8 @@ void C_MICROSTRIP::Z0_dispersion()
Q_0 = R_7 * ( 1.0 - 1.1241 * ( R_12 / R_16 ) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) );
/* even-mode frequency-dependent characteristic impedances */
Z0e = Z0_e_0 * pow( 0.9408 * pow( e_r_eff_single_f, C_e ) - 0.9603, Q_0 ) / pow(
(0.9408 - d_e) * pow( e_r_eff_single_0, C_e ) - 0.9603, Q_0 );
m_parameters[Z0_E_PRM] = Z0_e_0 * pow( 0.9408 * pow( e_r_eff_single_f, C_e ) - 0.9603, Q_0 )
/ pow( ( 0.9408 - d_e ) * pow( e_r_eff_single_0, C_e ) - 0.9603, Q_0 );
Q_29 = 15.16 / ( 1.0 + 0.196 * pow( e_r - 1.0, 2.0 ) );
tmpf = pow( e_r - 1.0, 3.0 );
@ -793,23 +759,22 @@ void C_MICROSTRIP::Z0_dispersion()
Q_26 = 30.0 - 22.2 * ( tmpf / ( 1.0 + 3.0 * tmpf ) ) - Q_29;
tmpf = ( e_r - 1.0 ) * ( e_r - 1.0 );
Q_25 = ( 0.3 * f_n * f_n / ( 10.0 + f_n * f_n ) ) * ( 1.0 + 2.333 * tmpf / ( 5.0 + tmpf ) );
Q_24 =
2.506* Q_28* pow( u,
0.894 ) *
pow( (1.0 + 1.3 * u) * f_n / 99.25, 4.29 ) / ( 3.575 + pow( u, 0.894 ) );
Q_23 = 1.0 + 0.005 * f_n * Q_27 /
( ( 1.0 + 0.812 * pow( f_n / 15.0, 1.9 ) ) * (1.0 + 0.025 * u * u) );
Q_24 = 2.506 * Q_28 * pow( u, 0.894 ) * pow( ( 1.0 + 1.3 * u ) * f_n / 99.25, 4.29 )
/ ( 3.575 + pow( u, 0.894 ) );
Q_23 = 1.0
+ 0.005 * f_n * Q_27
/ ( ( 1.0 + 0.812 * pow( f_n / 15.0, 1.9 ) ) * ( 1.0 + 0.025 * u * u ) );
Q_22 = 0.925 * pow( f_n / Q_26, 1.536 ) / ( 1.0 + 0.3 * pow( f_n / 30.0, 1.536 ) );
/* odd-mode frequency-dependent characteristic impedances */
Z0o = Z0_single_f +
(Z0_o_0 *
pow( e_r_eff_o_f / e_r_eff_o_0,
Q_22 ) - Z0_single_f * Q_23) / (1.0 + Q_24 + pow( 0.46 * g, 2.2 ) * Q_25);
m_parameters[Z0_O_PRM] =
Z0_single_f
+ ( Z0_o_0 * pow( e_r_eff_o_f / e_r_eff_o_0, Q_22 ) - Z0_single_f * Q_23 )
/ ( 1.0 + Q_24 + pow( 0.46 * g, 2.2 ) * Q_25 );
}
void C_MICROSTRIP::calc()
void C_MICROSTRIP::calcAnalyze()
{
/* compute thickness corrections */
delta_u_thickness();
@ -828,67 +793,62 @@ void C_MICROSTRIP::calc()
}
/*
* get_microstrip_sub
* get and assign microstrip substrate parameters
* into microstrip structure
*/
void C_MICROSTRIP::get_c_microstrip_sub()
void C_MICROSTRIP::showAnalyze()
{
er = getProperty( EPSILONR_PRM );
m_murC = getProperty( MURC_PRM );
h = getProperty( H_PRM );
ht = getProperty( H_T_PRM );
t = getProperty( T_PRM );
m_sigma = 1.0/getProperty( RHO_PRM );
m_tand = getProperty( TAND_PRM );
rough = getProperty( ROUGH_PRM );
setProperty( Z0_E_PRM, m_parameters[Z0_E_PRM] );
setProperty( Z0_O_PRM, m_parameters[Z0_O_PRM] );
setProperty( ANG_L_PRM, sqrt( ang_l_e * ang_l_o ) );
//Check for errors
if( !std::isfinite( m_parameters[Z0_O_PRM] ) || m_parameters[Z0_O_PRM] <= 0.0 )
setErrorLevel( Z0_O_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[Z0_E_PRM] ) || m_parameters[Z0_E_PRM] <= 0.0 )
setErrorLevel( Z0_E_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] <= 0.0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0.0 )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0.0 )
setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] <= 0.0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
}
/*
* get_c_microstrip_comp
* get and assign microstrip component parameters
* into microstrip structure
*/
void C_MICROSTRIP::get_c_microstrip_comp()
void C_MICROSTRIP::showSynthesize()
{
m_freq = getProperty( FREQUENCY_PRM );
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
setProperty( PHYS_S_PRM, m_parameters[PHYS_S_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
//Check for errors
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0.0 )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0.0 )
setErrorLevel( PHYS_S_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] <= 0.0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[Z0_O_PRM] ) || m_parameters[Z0_O_PRM] <= 0.0 )
setErrorLevel( Z0_O_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[Z0_E_PRM] ) || m_parameters[Z0_E_PRM] <= 0.0 )
setErrorLevel( Z0_E_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] <= 0.0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
/*
* get_c_microstrip_elec
* get and assign microstrip electrical parameters
* into microstrip structure
*/
void C_MICROSTRIP::get_c_microstrip_elec()
{
Z0e = getProperty( Z0_E_PRM );
Z0o = getProperty( Z0_O_PRM );
ang_l_e = getProperty( ANG_L_PRM );
ang_l_o = getProperty( ANG_L_PRM );
}
/*
* get_c_microstrip_phys
* get and assign microstrip physical parameters
* into microstrip structure
*/
void C_MICROSTRIP::get_c_microstrip_phys()
{
w = getProperty( PHYS_WIDTH_PRM );
s = getProperty( PHYS_S_PRM );
l = getProperty( PHYS_LEN_PRM );
}
void C_MICROSTRIP::show_results()
{
setProperty( Z0_E_PRM, Z0e );
setProperty( Z0_O_PRM , Z0o );
setProperty( ANG_L_PRM, sqrt( ang_l_e * ang_l_o ) );
setResult( 0, er_eff_e, "" );
setResult( 1, er_eff_o, "" );
@ -897,83 +857,54 @@ void C_MICROSTRIP::show_results()
setResult( 4, atten_dielectric_e, "dB" );
setResult( 5, atten_dielectric_o, "dB" );
setResult( 6, m_skindepth / UNIT_MICRON, "µm" );
setResult( 6, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
/*
* analysis function
*/
void C_MICROSTRIP::analyze()
void C_MICROSTRIP::syn_fun(
double* f1, double* f2, double s_h, double w_h, double Z0_e, double Z0_o )
{
/* Get and assign substrate parameters */
get_c_microstrip_sub();
/* Get and assign component parameters */
get_c_microstrip_comp();
/* Get and assign physical parameters */
get_c_microstrip_phys();
m_parameters[PHYS_S_PRM] = s_h * m_parameters[H_PRM];
m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];
/* compute coupled microstrip parameters */
calc();
/* print results in the subwindow */
show_results();
}
calcAnalyze();
void C_MICROSTRIP::syn_fun( double* f1,
double* f2,
double s_h,
double w_h,
double Z0_e,
double Z0_o )
{
s = s_h * h;
w = w_h * h;
/* compute coupled microstrip parameters */
calc();
*f1 = Z0e - Z0_e;
*f2 = Z0o - Z0_o;
*f1 = m_parameters[Z0_E_PRM] - Z0_e;
*f2 = m_parameters[Z0_O_PRM] - Z0_o;
}
/*
* synthesis function
*/
void C_MICROSTRIP::synthesize()
void C_MICROSTRIP::calcSynthesize()
{
double Z0_e, Z0_o;
double Z0_e, Z0_o, ang_l_dest;
double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
double eps = 1e-04;
double w_h, s_h, le, lo;
/* Get and assign substrate parameters */
get_c_microstrip_sub();
/* Get and assign component parameters */
get_c_microstrip_comp();
/* Get and assign electrical parameters */
get_c_microstrip_elec();
/* Get and assign physical parameters */
/* at present it is required only for getting strips length */
get_c_microstrip_phys();
/* required value of Z0_e and Z0_o */
Z0_e = Z0e;
Z0_o = Z0o;
Z0_e = m_parameters[Z0_E_PRM];
Z0_o = m_parameters[Z0_O_PRM];
ang_l_e = m_parameters[ANG_L_PRM];
ang_l_o = m_parameters[ANG_L_PRM];
ang_l_dest = m_parameters[ANG_L_PRM];
/* calculate width and use for initial value in Newton's method */
synth_width();
w_h = w / h;
s_h = s / h;
w_h = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
s_h = m_parameters[PHYS_S_PRM] / m_parameters[H_PRM];
f1 = f2 = 0;
/* rather crude Newton-Rhapson */
do {
do
{
/* compute Jacobian */
syn_fun( &ft1, &ft2, s_h + eps, w_h, Z0_e, Z0_o );
j11 = ( ft1 - f1 ) / eps;
@ -997,21 +928,18 @@ void C_MICROSTRIP::synthesize()
} while( err > 1e-04 );
/* denormalize computed width and spacing */
s = s_h * h;
w = w_h * h;
m_parameters[PHYS_S_PRM] = s_h * m_parameters[H_PRM];
m_parameters[PHYS_WIDTH_PRM] = w_h * m_parameters[H_PRM];
setProperty( PHYS_WIDTH_PRM, w );
setProperty( PHYS_S_PRM, s );
/* calculate physical length */
ang_l_e = getProperty( ANG_L_PRM );
ang_l_o = getProperty( ANG_L_PRM );
le = C0 / m_freq / sqrt( er_eff_e ) * ang_l_e / 2.0 / M_PI;
lo = C0 / m_freq / sqrt( er_eff_o ) * ang_l_o / 2.0 / M_PI;
l = sqrt( le * lo );
setProperty( PHYS_LEN_PRM, l );
le = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff_e ) * ang_l_dest / 2.0 / M_PI;
lo = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff_o ) * ang_l_dest / 2.0 / M_PI;
m_parameters[PHYS_LEN_PRM] = sqrt( le * lo );
calc();
/* print results in the subwindow */
show_results();
calcAnalyze();
m_parameters[ANG_L_PRM] = ang_l_dest;
m_parameters[Z0_E_PRM] = Z0_e;
m_parameters[Z0_O_PRM] = Z0_o;
}

View File

@ -25,9 +25,13 @@
#ifndef _C_MICROSTRIP_H_
#define _C_MICROSTRIP_H_
#include <microstrip.h>
#include <transline.h>
class C_MICROSTRIP : public TRANSLINE
{
public: C_MICROSTRIP();
public:
C_MICROSTRIP();
~C_MICROSTRIP();
private:
@ -58,10 +62,6 @@ private:
double atten_dielectric_o; // odd-mode dielectric losses (dB)
double atten_cond_o; // odd-mode conductors losses (dB)
public:
void analyze() override;
void synthesize() override;
private:
double delta_u_thickness_single( double, double );
void delta_u_thickness();
@ -82,12 +82,11 @@ private:
void syn_err_fun( double*, double*, double, double, double, double, double );
void synth_width();
void Z0_dispersion();
void calc();
void get_c_microstrip_sub();
void get_c_microstrip_comp();
void get_c_microstrip_elec();
void get_c_microstrip_phys();
void show_results();
void calcAnalyze() override;
void calcSynthesize() override;
void showAnalyze() override;
void showSynthesize() override;
void show_results() override;
void syn_fun( double*, double*, double, double, double, double );

View File

@ -27,86 +27,26 @@
* coax.c - Puts up window for microstrip and
* performs the associated calculations
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <coax.h>
#include <units.h>
COAX::COAX() : TRANSLINE()
{
m_Name = "Coax";
// Initialize these variables mainly to avoid warnings from a static analyzer
mur = 0.0; // magnetic permeability of substrate
din = 0.0; // Inner diameter of cable
dout = 0.0; // Outer diameter of cable
l = 0.0; // Length of cable
Z0 = 0.0; // characteristic impedance
ang_l = 0.0; // Electrical length in angle
atten_dielectric = 0.0; // Loss in dielectric (dB)
atten_cond = 0.0; // Loss in conductors (dB)
fc = 0.0; // Cutoff frequency for higher order modes
Init();
}
/*
* get_coax_sub() - get and assign coax substrate parameters into coax
* structure
*/
void COAX::get_coax_sub()
{
er = getProperty( EPSILONR_PRM );
mur = getProperty( MUR_PRM );
m_murC = getProperty( MURC_PRM );
m_tand = getProperty( TAND_PRM );
m_sigma = 1.0 / getProperty( RHO_PRM );
}
/*
* get_coax_comp() - get and assign coax component parameters into
* coax structure
*/
void COAX::get_coax_comp()
{
m_freq = getProperty( FREQUENCY_PRM );
}
/*
* get_coax_elec() - get and assign coax electrical parameters into
* coax structure
*/
void COAX::get_coax_elec()
{
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
}
/*
* get_coax_phys() - get and assign coax physical parameters into coax
* structure
*/
void COAX::get_coax_phys()
{
din = getProperty( PHYS_DIAM_IN_PRM );
dout = getProperty( PHYS_DIAM_OUT_PRM );
l = getProperty( PHYS_LEN_PRM );
}
double COAX::alphad_coax()
{
double ad;
ad = (M_PI / C0) * m_freq * sqrt( er ) * m_tand;
ad = ( M_PI / C0 ) * m_parameters[FREQUENCY_PRM] * sqrt( m_parameters[EPSILONR_PRM] )
* m_parameters[TAND_PRM];
ad = ad * 20.0 / log( 10.0 );
return ad;
}
@ -116,86 +56,165 @@ double COAX::alphac_coax()
{
double ac, Rs;
Rs = sqrt( M_PI * m_freq * m_murC * MU0 / m_sigma );
ac = sqrt( er ) * ( ( (1 / din) + (1 / dout) ) / log( dout / din ) ) * (Rs / ZF0);
Rs = sqrt( M_PI * m_parameters[FREQUENCY_PRM] * m_parameters[MURC_PRM] * MU0
/ m_parameters[SIGMA_PRM] );
ac = sqrt( m_parameters[EPSILONR_PRM] )
* ( ( ( 1 / m_parameters[PHYS_DIAM_IN_PRM] ) + ( 1 / m_parameters[PHYS_DIAM_OUT_PRM] ) )
/ log( m_parameters[PHYS_DIAM_OUT_PRM] / m_parameters[PHYS_DIAM_IN_PRM] ) )
* ( Rs / ZF0 );
ac = ac * 20.0 / log( 10.0 );
return ac;
}
/*
* analyze() - analysis function
*/
void COAX::analyze()
/**
* \f$ Z_0 = \frac{Z_{0_{\mathrm{vaccum}}}}{\sqrt{\epsilon_r}}\log_{10}\left( \frac{D_{\mathrm{out}}}{D_{\mathrm{in}}}\right) \f$
*
* \f$ \lambda_g = \frac{c}{f \cdot \sqrt{ \epsilon_r \cdot \mu_r}} \f$
*
* \f$ L_{[\mathrm{rad}]} = \frac{ 2\pi\cdot L_{[\mathrm{m}]}}{\lambda_g} \f$
* */
void COAX::calcAnalyze()
{
double lambda_g;
/* Get and assign substrate parameters */
get_coax_sub();
/* Get and assign component parameters */
get_coax_comp();
m_parameters[Z0_PRM] =
( ZF0 / 2 / M_PI / sqrt( m_parameters[EPSILONR_PRM] ) )
* log( m_parameters[PHYS_DIAM_OUT_PRM] / m_parameters[PHYS_DIAM_IN_PRM] );
/* Get and assign physical parameters */
get_coax_phys();
if( din != 0.0 )
{
Z0 = ( ZF0 / 2 / M_PI / sqrt( er ) ) * log( dout / din );
}
lambda_g = ( C0 / (m_freq) ) / sqrt( er * mur );
lambda_g = ( C0 / ( m_parameters[FREQUENCY_PRM] ) )
/ sqrt( m_parameters[EPSILONR_PRM] * m_parameters[MUR_PRM] );
/* calculate electrical angle */
ang_l = (2.0 * M_PI * l) / lambda_g; /* in radians */
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
show_results();
m_parameters[ANG_L_PRM] =
( 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] ) / lambda_g; /* in radians */
}
/*
* synthesize() - synthesis function
*/
void COAX::synthesize()
/**
* \f$ D_{\mathrm{in}} = D_{\mathrm{out}} \cdot e^{-\frac{Z_0*\sqrt{\epsilon_r}}{2\pi \cdot Z_{0_{\mathrm{vaccum}}}}} \f$
*
* \f$ D_{\mathrm{out}} = D_{\mathrm{in}} \cdot e^{ \frac{Z_0*\sqrt{\epsilon_r}}{2\pi \cdot Z_{0_{\mathrm{vaccum}}}}} \f$
*
* \f$ \lambda_g = \frac{c}{f \cdot \sqrt{ \epsilon_r \cdot \mu_r}} \f$
*
* \f$ L_{[\mathrm{m}]} = \frac{ \lambda_g cdot L_{[\mathrm{m}]}}{2\pi} \f$
* */
void COAX::calcSynthesize()
{
double lambda_g;
/* Get and assign substrate parameters */
get_coax_sub();
/* Get and assign component parameters */
get_coax_comp();
/* Get and assign electrical parameters */
get_coax_elec();
/* Get and assign physical parameters */
get_coax_phys();
if( isSelected( PHYS_DIAM_IN_PRM ) )
{
/* solve for din */
din = dout / exp( Z0 * sqrt( er ) / ZF0 * 2 * M_PI );
setProperty( PHYS_DIAM_IN_PRM, din );
m_parameters[PHYS_DIAM_IN_PRM] =
m_parameters[PHYS_DIAM_OUT_PRM]
/ exp( m_parameters[Z0_PRM] * sqrt( m_parameters[EPSILONR_PRM] ) / ZF0 * 2 * M_PI );
}
else if( isSelected( PHYS_DIAM_OUT_PRM ) )
{
/* solve for dout */
dout = din * exp( Z0 * sqrt( er ) / ZF0 * 2 * M_PI );
setProperty( PHYS_DIAM_OUT_PRM, dout );
m_parameters[PHYS_DIAM_OUT_PRM] =
m_parameters[PHYS_DIAM_IN_PRM]
* exp( m_parameters[Z0_PRM] * sqrt( m_parameters[EPSILONR_PRM] ) / ZF0 * 2 * M_PI );
}
lambda_g = ( C0 / (m_freq) ) / sqrt( er * mur );
lambda_g = ( C0 / ( m_parameters[FREQUENCY_PRM] ) )
/ sqrt( m_parameters[EPSILONR_PRM] * m_parameters[MUR_PRM] );
/* calculate physical length */
l = (lambda_g * ang_l) / (2.0 * M_PI); /* in m */
setProperty( PHYS_LEN_PRM, l );
show_results();
m_parameters[PHYS_LEN_PRM] = ( lambda_g * m_parameters[ANG_L_PRM] ) / ( 2.0 * M_PI ); /* in m */
}
void COAX::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
{
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
{
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
}
// Find warnings to display - physical parameters
if( !std::isfinite( m_parameters[PHYS_DIAM_IN_PRM] ) || m_parameters[PHYS_DIAM_IN_PRM] <= 0.0 )
{
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_DIAM_OUT_PRM] )
|| m_parameters[PHYS_DIAM_OUT_PRM] <= 0.0 )
{
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_WARNING );
}
if( m_parameters[PHYS_DIAM_IN_PRM] > m_parameters[PHYS_DIAM_OUT_PRM] )
{
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_WARNING );
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0.0 )
{
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
}
}
void COAX::showSynthesize()
{
if( isSelected( PHYS_DIAM_IN_PRM ) )
setProperty( PHYS_DIAM_IN_PRM, m_parameters[PHYS_DIAM_IN_PRM] );
else if( isSelected( PHYS_DIAM_OUT_PRM ) )
setProperty( PHYS_DIAM_OUT_PRM, m_parameters[PHYS_DIAM_OUT_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[PHYS_DIAM_IN_PRM] ) || m_parameters[PHYS_DIAM_IN_PRM] <= 0.0 )
{
if( isSelected( PHYS_DIAM_IN_PRM ) )
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_ERROR );
else
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_DIAM_OUT_PRM] )
|| m_parameters[PHYS_DIAM_OUT_PRM] <= 0.0 )
{
if( isSelected( PHYS_DIAM_OUT_PRM ) )
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_ERROR );
else
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_WARNING );
}
if( m_parameters[PHYS_DIAM_IN_PRM] > m_parameters[PHYS_DIAM_OUT_PRM] )
{
if( isSelected( PHYS_DIAM_IN_PRM ) )
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_ERROR );
else if( isSelected( PHYS_DIAM_OUT_PRM ) )
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0.0 )
{
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
}
// Check for warnings
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
{
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
{
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
}
/*
* show_results() - show results
*/
@ -204,45 +223,57 @@ void COAX::show_results()
int m, n;
char text[256], txt[256];
atten_dielectric = alphad_coax() * l;
atten_cond = alphac_coax() * l;
m_parameters[LOSS_DIELECTRIC_PRM] = alphad_coax() * m_parameters[PHYS_LEN_PRM];
m_parameters[LOSS_CONDUCTOR_PRM] = alphac_coax() * m_parameters[PHYS_LEN_PRM];
setResult( 0, er, "" );
setResult( 1, atten_cond, "dB" );
setResult( 2, atten_dielectric, "dB" );
setResult( 0, m_parameters[EPSILONR_PRM], "" );
setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
n = 1;
fc = C0 / (M_PI * (dout + din) / (double) n);
if( fc > m_freq )
m_parameters[CUTOFF_FREQUENCY_PRM] =
C0
/ ( M_PI * ( m_parameters[PHYS_DIAM_OUT_PRM] + m_parameters[MUR_PRM] ) / (double) n );
if( m_parameters[CUTOFF_FREQUENCY_PRM] > m_parameters[FREQUENCY_PRM] )
strcpy( text, "none" );
else
{
strcpy( text, "H(1,1) " );
m = 2;
fc = C0 / ( 2 * (dout - din) / (double) (m - 1) );
while( (fc <= m_freq) && ( m < 10 ) )
m_parameters[CUTOFF_FREQUENCY_PRM] =
C0
/ ( 2 * ( m_parameters[PHYS_DIAM_OUT_PRM] - m_parameters[MUR_PRM] )
/ (double) ( m - 1 ) );
while( ( m_parameters[CUTOFF_FREQUENCY_PRM] <= m_parameters[FREQUENCY_PRM] ) && ( m < 10 ) )
{
sprintf( txt, "H(n,%d) ", m );
strcat( text, txt );
m++;
fc = C0 / ( 2 * (dout - din) / (double) (m - 1) );
m_parameters[CUTOFF_FREQUENCY_PRM] =
C0
/ ( 2 * ( m_parameters[PHYS_DIAM_OUT_PRM] - m_parameters[MUR_PRM] )
/ (double) ( m - 1 ) );
}
}
setResult( 3, text );
m = 1;
fc = C0 / (2 * (dout - din) / (double) m);
if( fc > m_freq )
m_parameters[CUTOFF_FREQUENCY_PRM] =
C0 / ( 2 * ( m_parameters[PHYS_DIAM_OUT_PRM] - m_parameters[MUR_PRM] ) / (double) m );
if( m_parameters[CUTOFF_FREQUENCY_PRM] > m_parameters[FREQUENCY_PRM] )
strcpy( text, "none" );
else
{
strcpy( text, "" );
while( (fc <= m_freq) && ( m < 10 ) )
while( ( m_parameters[CUTOFF_FREQUENCY_PRM] <= m_parameters[FREQUENCY_PRM] ) && ( m < 10 ) )
{
sprintf( txt, "E(n,%d) ", m );
strcat( text, txt );
m++;
fc = C0 / (2 * (dout - din) / (double) m);
m_parameters[CUTOFF_FREQUENCY_PRM] =
C0
/ ( 2 * ( m_parameters[PHYS_DIAM_OUT_PRM] - m_parameters[MUR_PRM] )
/ (double) m );
}
}
setResult( 4, text );

View File

@ -25,35 +25,21 @@
#ifndef __COAX_H
#define __COAX_H
#include <transline.h>
class COAX : public TRANSLINE
{
public: COAX();
private:
double mur; // magnetic permeability of substrate
double din; // Inner diameter of cable
double dout; // Outer diameter of cable
double l; // Length of cable
double Z0; // characteristic impedance
double ang_l; // Electrical length in angle
double atten_dielectric; // Loss in dielectric (dB)
double atten_cond; // Loss in conductors (dB)
double fc; // Cutoff frequency for higher order modes
public:
void analyze() override;
void synthesize() override;
COAX();
private:
void get_coax_sub();
void get_coax_comp();
void get_coax_phys();
void get_coax_elec();
void fixdin();
void fixdout();
void calcAnalyze() override;
void calcSynthesize() override;
void showAnalyze() override;
void showSynthesize() override;
double alphad_coax();
double alphac_coax();
void show_results();
void show_results() override;
};
#endif // __COAX_H

View File

@ -28,26 +28,14 @@
#include <cstdlib>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <coplanar.h>
#include <units.h>
COPLANAR::COPLANAR() : TRANSLINE()
{
m_Name = "CoPlanar";
backMetal = false;
// Initialize these variables mainly to avoid warnings from a static analyzer
h = 0.0; // height of substrate
t = 0.0; // thickness of top metal
w = 0.0; // width of line
s = 0.0; // width of gap between line and ground
len = 0.0; // length of line
Z0 = 0.0; // characteristic impedance
ang_l = 0.0; // Electrical length in angle
atten_dielectric = 0.0; // Loss in dielectric (dB)
atten_cond = 0.0; // Loss in conductors (dB)
er_eff = 1.0; // Effective dielectric constant
Init();
}
@ -59,64 +47,57 @@ GROUNDEDCOPLANAR::GROUNDEDCOPLANAR() : COPLANAR()
// -------------------------------------------------------------------
void COPLANAR::getProperties()
void COPLANAR::calcAnalyze()
{
m_freq = getProperty( FREQUENCY_PRM );
w = getProperty( PHYS_WIDTH_PRM );
s = getProperty( PHYS_S_PRM );
len = getProperty( PHYS_LEN_PRM );
h = getProperty( H_PRM );
t = getProperty( T_PRM );
er = getProperty( EPSILONR_PRM );
m_murC = getProperty( MURC_PRM );
m_tand = getProperty( TAND_PRM );
m_sigma = 1.0 / getProperty( RHO_PRM );
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
}
// -------------------------------------------------------------------
void COPLANAR::calc()
{
m_skindepth = skin_depth();
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
// other local variables (quasi-static constants)
double k1, kk1, kpk1, k2, k3, q1, q2, q3 = 0, qz, er0 = 0;
double zl_factor;
// compute the necessary quasi-static approx. (K1, K3, er(0) and Z(0))
k1 = w / (w + s + s);
k1 = m_parameters[PHYS_WIDTH_PRM]
/ ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM] + m_parameters[PHYS_S_PRM] );
kk1 = ellipk( k1 );
kpk1 = ellipk( sqrt( 1 - k1 * k1 ) );
q1 = kk1 / kpk1;
// backside is metal
if( backMetal )
{
k3 = tanh( (M_PI / 4) * (w / h) ) / tanh( (M_PI / 4) * (w + s + s) / h );
k3 = tanh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ) )
/ tanh( ( M_PI / 4 )
* ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM]
+ m_parameters[PHYS_S_PRM] )
/ m_parameters[H_PRM] );
q3 = ellipk( k3 ) / ellipk( sqrt( 1 - k3 * k3 ) );
qz = 1 / ( q1 + q3 );
er0 = 1 + q3 * qz * (er - 1);
er0 = 1 + q3 * qz * ( m_parameters[EPSILONR_PRM] - 1 );
zl_factor = ZF0 / 2 * qz;
}
// backside is air
else
{
k2 = sinh( (M_PI / 4) * (w / h) ) / sinh( (M_PI / 4) * (w + s + s) / h );
k2 = sinh( ( M_PI / 4 ) * ( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] ) )
/ sinh( ( M_PI / 4 )
* ( m_parameters[PHYS_WIDTH_PRM] + m_parameters[PHYS_S_PRM]
+ m_parameters[PHYS_S_PRM] )
/ m_parameters[H_PRM] );
q2 = ellipk( k2 ) / ellipk( sqrt( 1 - k2 * k2 ) );
er0 = 1 + (er - 1) / 2 * q2 / q1;
er0 = 1 + ( m_parameters[EPSILONR_PRM] - 1 ) / 2 * q2 / q1;
zl_factor = ZF0 / 4 / q1;
}
// adds effect of strip thickness
if( t > 0 )
if( m_parameters[T_PRM] > 0 )
{
double d, se, We, ke, qe;
d = (t * 1.25 / M_PI) * ( 1 + log( 4 * M_PI * w / t ) );
se = s - d;
We = w + d;
d = ( m_parameters[T_PRM] * 1.25 / M_PI )
* ( 1 + log( 4 * M_PI * m_parameters[PHYS_WIDTH_PRM] / m_parameters[T_PRM] ) );
se = m_parameters[PHYS_S_PRM] - d;
We = m_parameters[PHYS_WIDTH_PRM] + d;
// modifies k1 accordingly (k1 = ke)
ke = We / ( We + se + se ); // ke = k1 + (1 - k1 * k1) * d / 2 / s;
@ -126,7 +107,7 @@ void COPLANAR::calc()
if( backMetal )
{
qz = 1 / ( qe + q3 );
er0 = 1 + q3 * qz * (er - 1);
er0 = 1 + q3 * qz * ( m_parameters[EPSILONR_PRM] - 1 );
zl_factor = ZF0 / 2 * qz;
}
// backside is air
@ -136,177 +117,147 @@ void COPLANAR::calc()
}
// modifies er0 as well
er0 = er0 - (0.7 * (er0 - 1) * t / s) / ( q1 + (0.7 * t / s) );
er0 = er0
- ( 0.7 * ( er0 - 1 ) * m_parameters[T_PRM] / m_parameters[PHYS_S_PRM] )
/ ( q1 + ( 0.7 * m_parameters[T_PRM] / m_parameters[PHYS_S_PRM] ) );
}
// pre-compute square roots
double sr_er = sqrt( er );
double sr_er = sqrt( m_parameters[EPSILONR_PRM] );
double sr_er0 = sqrt( er0 );
// cut-off frequency of the TE0 mode
double fte = (C0 / 4) / ( h * sqrt( er - 1 ) );
double fte = ( C0 / 4 ) / ( m_parameters[H_PRM] * sqrt( m_parameters[EPSILONR_PRM] - 1 ) );
// dispersion factor G
double p = log( w / h );
double p = log( m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM] );
double u = 0.54 - ( 0.64 - 0.015 * p ) * p;
double v = 0.43 - ( 0.86 - 0.54 * p ) * p;
double G = exp( u * log( w / s ) + v );
double G = exp( u * log( m_parameters[PHYS_WIDTH_PRM] / m_parameters[PHYS_S_PRM] ) + v );
// loss constant factors (computed only once for efficiency's sake)
double ac = 0;
if( t > 0 )
if( m_parameters[T_PRM] > 0 )
{
// equations by GHIONE
double n = (1 - k1) * 8 * M_PI / ( t * (1 + k1) );
double a = w / 2;
double b = a + s;
double n = ( 1 - k1 ) * 8 * M_PI / ( m_parameters[T_PRM] * ( 1 + k1 ) );
double a = m_parameters[PHYS_WIDTH_PRM] / 2;
double b = a + m_parameters[PHYS_S_PRM];
ac = ( M_PI + log( n * a ) ) / a + ( M_PI + log( n * b ) ) / b;
}
double ac_factor = ac / ( 4 * ZF0 * kk1 * kpk1 * ( 1 - k1 * k1 ) );
double ad_factor = ( er / (er - 1) ) * m_tand * M_PI / C0;
double ad_factor = ( m_parameters[EPSILONR_PRM] / ( m_parameters[EPSILONR_PRM] - 1 ) )
* m_parameters[TAND_PRM] * M_PI / C0;
// ....................................................
double sr_er_f = sr_er0;
// add the dispersive effects to er0
sr_er_f += (sr_er - sr_er0) / ( 1 + G * pow( m_freq / fte, -1.8 ) );
sr_er_f += ( sr_er - sr_er0 ) / ( 1 + G * pow( m_parameters[FREQUENCY_PRM] / fte, -1.8 ) );
// for now, the loss are limited to strip losses (no radiation
// losses yet) losses in neper/length
atten_cond = 20.0 / log( 10.0 ) * len
* ac_factor * sr_er0 * sqrt( M_PI * MU0 * m_freq / m_sigma );
atten_dielectric = 20.0 / log( 10.0 ) * len
* ad_factor * m_freq * (sr_er_f * sr_er_f - 1) / sr_er_f;
m_parameters[LOSS_CONDUCTOR_PRM] =
20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * ac_factor * sr_er0
* sqrt( M_PI * MU0 * m_parameters[FREQUENCY_PRM] / m_parameters[SIGMA_PRM] );
m_parameters[LOSS_DIELECTRIC_PRM] = 20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * ad_factor
* m_parameters[FREQUENCY_PRM] * ( sr_er_f * sr_er_f - 1 )
/ sr_er_f;
ang_l = 2.0 * M_PI * len * sr_er_f * m_freq / C0; /* in radians */
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] * sr_er_f
* m_parameters[FREQUENCY_PRM] / C0; /* in radians */
er_eff = sr_er_f * sr_er_f;
Z0 = zl_factor / sr_er_f;
m_parameters[EPSILON_EFF_PRM] = sr_er_f * sr_er_f;
m_parameters[Z0_PRM] = zl_factor / sr_er_f;
}
// -------------------------------------------------------------------
void COPLANAR::show_results()
{
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
setResult( 0, er_eff, "" );
setResult( 1, atten_cond, "dB" );
setResult( 2, atten_dielectric, "dB" );
setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
setResult( 3, m_skindepth / UNIT_MICRON, "µm" );
}
// -------------------------------------------------------------------
void COPLANAR::analyze()
{
getProperties();
/* compute coplanar parameters */
calc();
/* print results in the subwindow */
show_results();
setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
#define MAX_ERROR 0.000001
// -------------------------------------------------------------------
void COPLANAR::synthesize()
/* @function calcSynthesize
*
* @TODO Add a warning in case the synthetizin algorithm did not converge.
* Add it for all transmission lines that uses @ref minimizeZ0Error1D .
*/
void COPLANAR::calcSynthesize()
{
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
int iteration;
getProperties();
/* required value of Z0 */
Z0_dest = Z0;
double ang_l_tmp = getProperty( ANG_L_PRM );
// compute inital coplanar parameters. This function modify Z0 and ang_l
// (set to NaN in some cases)
calc();
if( std::isnan( Z0 ) ) // cannot be synthesized with current parameters
{
Z0 = Z0_dest;
ang_l= ang_l_tmp;
if( isSelected( PHYS_WIDTH_PRM ) )
{
setProperty( PHYS_WIDTH_PRM, NAN );
minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );
}
else
{
setProperty( PHYS_S_PRM, NAN );
minimizeZ0Error1D( &( m_parameters[PHYS_S_PRM] ) );
}
}
setProperty( PHYS_LEN_PRM, NAN );
/* print results in the subwindow */
show_results();
return;
}
/* Newton's method */
iteration = 0;
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
while( error > MAX_ERROR )
// -------------------------------------------------------------------
void COPLANAR::showSynthesize()
{
iteration++;
if( isSelected( PHYS_WIDTH_PRM ) )
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
if( isSelected( PHYS_S_PRM ) )
setProperty( PHYS_S_PRM, m_parameters[PHYS_S_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0 )
{
increment = w / 100.0;
w += increment;
}
if( isSelected( PHYS_S_PRM ) )
setErrorLevel( PHYS_S_PRM, TRANSLINE_ERROR );
else
{
increment = s / 100.0;
s += increment;
setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING );
}
/* compute coplanar parameters */
calc();
Z0_result = Z0;
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = (Z0_result - Z0_current) / increment;
slope = (Z0_dest - Z0_current) / slope - increment;
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0 )
{
if( isSelected( PHYS_WIDTH_PRM ) )
w += slope;
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
else
s += slope;
if( w <= 0.0 )
w = increment;
if( s <= 0.0 )
s = increment;
/* find new error */
/* compute coplanar parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
if( iteration > 100 )
break;
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
setProperty( PHYS_WIDTH_PRM, w );
setProperty( PHYS_S_PRM, s );
/* calculate physical length */
ang_l = getProperty( ANG_L_PRM );
len = C0 / m_freq / sqrt( er_eff ) * ang_l / 2.0 / M_PI; /* in m */
setProperty( PHYS_LEN_PRM, len );
/* compute coplanar parameters */
calc();
void COPLANAR::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
/* print results in the subwindow */
show_results();
if( !std::isfinite( m_parameters[PHYS_S_PRM] ) || m_parameters[PHYS_S_PRM] <= 0 )
setErrorLevel( PHYS_S_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] <= 0 )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
}

View File

@ -25,39 +25,31 @@
#ifndef __COPLANAR_H
#define __COPLANAR_H
#include <transline.h>
class COPLANAR : public TRANSLINE
{
public: COPLANAR();
private:
double h; // height of substrate
double t; // thickness of top metal
double w; // width of line
double s; // width of gap between line and ground
double len; // length of line
double Z0; // characteristic impedance
double er_eff; // effective dielectric constant
double ang_l; // Electrical length in angle
double atten_dielectric; // Loss in dielectric (dB)
double atten_cond; // Loss in conductors (dB)
public:
COPLANAR();
public:
void analyze() override;
void synthesize() override;
void calcSynthesize() override;
protected:
bool backMetal;
private:
void calc();
void show_results();
void getProperties();
void calcAnalyze() override;
void showSynthesize() override;
void showAnalyze() override;
void show_results() override;
};
class GROUNDEDCOPLANAR : public COPLANAR
{
public: GROUNDEDCOPLANAR();
public:
GROUNDEDCOPLANAR();
};
#endif // __COPLANAR_H

View File

@ -34,32 +34,15 @@
#include <cstdlib>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <microstrip.h>
#include <transline.h>
#include <units.h>
MICROSTRIP::MICROSTRIP() : TRANSLINE()
{
m_Name = "MicroStrip";
// Initialize these variables mainly to avoid warnings from a static analyzer
h = 0.0; // height of substrate
ht = 0.0; // height to the top of box
t = 0.0; // thickness of top metal
rough = 0.0; // Roughness of top metal
mur = 0.0; // magnetic permeability of substrate
w = 0.0; // width of line
l = 0.0; // length of line
Z0_0 = 0.0; // static characteristic impedance
Z0 = 0.0; // characteristic impedance
ang_l = 0.0; // Electrical length in angle
er_eff_0 = 0.0; // Static effective dielectric constant
er_eff = 0.0; // Effective dielectric constant
mur_eff = 0.0; // Effective mag. permeability
w_eff = 0.0; // Effective width of line
atten_dielectric = 0.0; // Loss in dielectric (dB)
atten_cond = 0.0; // Loss in conductors (dB)
Z0_h_1 = 0.0; // homogeneous stripline impedance
Init();
}
@ -105,8 +88,7 @@ double MICROSTRIP::filling_factor( double u, double e_r )
u2 = u * u;
u3 = u2 * u;
u4 = u3 * u;
a = 1.0 +
log( (u4 + u2 / 2704) / (u4 + 0.432) ) / 49.0 + log( 1.0 + u3 / 5929.741 ) / 18.7;
a = 1.0 + log( ( u4 + u2 / 2704 ) / ( u4 + 0.432 ) ) / 49.0 + log( 1.0 + u3 / 5929.741 ) / 18.7;
b = 0.564 * pow( ( e_r - 0.9 ) / ( e_r + 3.0 ), 0.053 );
q_inf = pow( 1.0 + 10.0 / u, -a * b );
return q_inf;
@ -160,8 +142,8 @@ double MICROSTRIP::delta_u_thickness( double u, double t_h, double e_r )
if( t_h > 0.0 )
{
/* correction for thickness for a homogeneous microstrip */
delta_u = (t_h / M_PI) * log( 1.0 + (4.0 * M_E) * pow( tanh( sqrt(
6.517 * u ) ), 2.0 ) / t_h );
delta_u = ( t_h / M_PI )
* log( 1.0 + ( 4.0 * M_E ) * pow( tanh( sqrt( 6.517 * u ) ), 2.0 ) / t_h );
/* correction for strip on a substrate with relative permettivity e_r */
delta_u = 0.5 * delta_u * ( 1.0 + 1.0 / cosh( sqrt( e_r - 1.0 ) ) );
}
@ -182,11 +164,11 @@ void MICROSTRIP::microstrip_Z0()
double Z0_h_r;
double delta_u_1, delta_u_r, q_inf, q_c, q_t, e_r_eff, e_r_eff_t, q;
e_r = er;
h2 = ht;
h2h = h2 / h;
u = w / h;
t_h = t / h;
e_r = m_parameters[EPSILONR_PRM];
h2 = m_parameters[H_T_PRM];
h2h = h2 / m_parameters[H_PRM];
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
t_h = m_parameters[T_PRM] / m_parameters[H_PRM];
/* compute normalized width correction for e_r = 1.0 */
delta_u_1 = delta_u_thickness( u, t_h, 1.0 );
@ -215,11 +197,11 @@ void MICROSTRIP::microstrip_Z0()
/* characteristic impedance, corrected for thickness, cover */
/* and non homogeneous material */
Z0 = Z0_h_r / sqrt( e_r_eff_t );
m_parameters[Z0_PRM] = Z0_h_r / sqrt( e_r_eff_t );
w_eff = u * h;
w_eff = u * m_parameters[H_PRM];
er_eff_0 = e_r_eff;
Z0_0 = Z0;
Z0_0 = m_parameters[Z0_PRM];
}
@ -231,8 +213,8 @@ double MICROSTRIP::e_r_dispersion( double u, double e_r, double f_n )
{
double P_1, P_2, P_3, P_4, P;
P_1 = 0.27488 + u * ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) - 0.065683 * exp(
-8.7513 * u );
P_1 = 0.27488 + u * ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) )
- 0.065683 * exp( -8.7513 * u );
P_2 = 0.33622 * ( 1.0 - exp( -0.03442 * e_r ) );
P_3 = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
P_4 = 1.0 + 2.751 * ( 1.0 - exp( -pow( e_r / 15.916, 8.0 ) ) );
@ -247,11 +229,8 @@ double MICROSTRIP::e_r_dispersion( double u, double e_r, double f_n )
* Z0_dispersion() - computes the dispersion correction factor for the
* characteristic impedance
*/
double MICROSTRIP::Z0_dispersion( double u,
double e_r,
double e_r_eff_0,
double e_r_eff_f,
double f_n )
double MICROSTRIP::Z0_dispersion(
double u, double e_r, double e_r_eff_0, double e_r_eff_f, double f_n )
{
double R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_10, R_11, R_12, R_13, R_14, R_15, R_16,
R_17, D, tmpf;
@ -263,13 +242,14 @@ double MICROSTRIP::Z0_dispersion( double u,
R_5 = pow( f_n / 28.843, 12.0 );
R_6 = 22.2 * pow( u, 1.92 );
R_7 = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) );
R_8 = 1.0 + 1.275 *
( 1.0 - exp( -0.004625 * R_3 * pow( e_r, 1.674 ) * pow( f_n / 18.365, 2.745 ) ) );
R_8 = 1.0
+ 1.275
* ( 1.0
- exp( -0.004625 * R_3 * pow( e_r, 1.674 )
* pow( f_n / 18.365, 2.745 ) ) );
tmpf = pow( e_r - 1.0, 6.0 );
R_9 = 5.086 * R_4 *
( R_5 /
(0.3838 + 0.386 *
R_4) ) * ( exp( -R_6 ) / (1.0 + 1.2992 * R_5) ) * ( tmpf / (1.0 + 10.0 * tmpf) );
R_9 = 5.086 * R_4 * ( R_5 / ( 0.3838 + 0.386 * R_4 ) )
* ( exp( -R_6 ) / ( 1.0 + 1.2992 * R_5 ) ) * ( tmpf / ( 1.0 + 10.0 * tmpf ) );
R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184;
tmpf = pow( f_n / 19.47, 6.0 );
R_11 = tmpf / ( 1.0 + 0.0962 * tmpf );
@ -295,12 +275,12 @@ void MICROSTRIP::dispersion()
double e_r, e_r_eff_0;
double u, f_n, P, e_r_eff_f, D, Z0_f;
e_r = er;
e_r = m_parameters[EPSILONR_PRM];
e_r_eff_0 = er_eff_0;
u = w / h;
u = m_parameters[PHYS_WIDTH_PRM] / m_parameters[H_PRM];
/* normalized frequency [GHz * mm] */
f_n = m_freq * h / 1e06;
f_n = m_parameters[FREQUENCY_PRM] * m_parameters[H_PRM] / 1e06;
P = e_r_dispersion( u, e_r, f_n );
/* effective dielectric constant corrected for dispersion */
@ -310,7 +290,7 @@ void MICROSTRIP::dispersion()
Z0_f = Z0_0 * D;
er_eff = e_r_eff_f;
Z0 = Z0_f;
m_parameters[Z0_PRM] = Z0_f;
}
@ -324,20 +304,24 @@ double MICROSTRIP::conductor_losses()
double K, R_s, Q_c, alpha_c;
e_r_eff_0 = er_eff_0;
delta = m_skindepth;
delta = m_parameters[SKIN_DEPTH_PRM];
if( m_freq > 0.0 )
if( m_parameters[FREQUENCY_PRM] > 0.0 )
{
/* current distribution factor */
K = exp( -1.2 * pow( Z0_h_1 / ZF0, 0.7 ) );
/* skin resistance */
R_s = 1.0 / (m_sigma * delta);
R_s = 1.0 / ( m_parameters[SIGMA_PRM] * delta );
/* correction for surface roughness */
R_s *= 1.0 + ( (2.0 / M_PI) * atan( 1.40 * pow( (rough / delta), 2.0 ) ) );
R_s *= 1.0
+ ( ( 2.0 / M_PI )
* atan( 1.40 * pow( ( m_parameters[ROUGH_PRM] / delta ), 2.0 ) ) );
/* strip inductive quality factor */
Q_c = (M_PI * Z0_h_1 * w * m_freq) / (R_s * C0 * K);
alpha_c = ( 20.0 * M_PI / log( 10.0 ) ) * m_freq * sqrt( e_r_eff_0 ) / (C0 * Q_c);
Q_c = ( M_PI * Z0_h_1 * m_parameters[PHYS_WIDTH_PRM] * m_parameters[FREQUENCY_PRM] )
/ ( R_s * C0 * K );
alpha_c = ( 20.0 * M_PI / log( 10.0 ) ) * m_parameters[FREQUENCY_PRM] * sqrt( e_r_eff_0 )
/ ( C0 * Q_c );
}
else
{
@ -357,13 +341,12 @@ double MICROSTRIP::dielectric_losses()
double e_r, e_r_eff_0;
double alpha_d;
e_r = er;
e_r = m_parameters[EPSILONR_PRM];
e_r_eff_0 = er_eff_0;
alpha_d =
( 20.0 * M_PI /
log( 10.0 ) ) *
(m_freq / C0) * ( e_r / sqrt( e_r_eff_0 ) ) * ( (e_r_eff_0 - 1.0) / (e_r - 1.0) ) * m_tand;
alpha_d = ( 20.0 * M_PI / log( 10.0 ) ) * ( m_parameters[FREQUENCY_PRM] / C0 )
* ( e_r / sqrt( e_r_eff_0 ) ) * ( ( e_r_eff_0 - 1.0 ) / ( e_r - 1.0 ) )
* m_parameters[TAND_PRM];
return alpha_d;
}
@ -374,10 +357,10 @@ double MICROSTRIP::dielectric_losses()
*/
void MICROSTRIP::attenuation()
{
m_skindepth = skin_depth();
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
atten_cond = conductor_losses() * l;
atten_dielectric = dielectric_losses() * l;
atten_cond = conductor_losses() * m_parameters[PHYS_LEN_PRM];
atten_dielectric = dielectric_losses() * m_parameters[PHYS_LEN_PRM];
}
@ -386,7 +369,11 @@ void MICROSTRIP::attenuation()
*/
void MICROSTRIP::mur_eff_ms()
{
mur_eff = (2.0 * mur) / ( (1.0 + mur) + ( (1.0 - mur) * pow( ( 1.0 + (10.0 * h / w) ), -0.5 ) ) );
double* mur = &m_parameters[MUR_PRM];
double* h = &m_parameters[H_PRM];
double* w = &m_parameters[PHYS_WIDTH_PRM];
mur_eff = ( 2.0 * *mur )
/ ( ( 1.0 + *mur ) + ( ( 1.0 - *mur ) * pow( ( 1.0 + ( 10.0 * *h / *w ) ), -0.5 ) ) );
}
@ -396,11 +383,11 @@ double MICROSTRIP::synth_width()
double e_r, a, b;
double w_h, width;
e_r = er;
e_r = m_parameters[EPSILONR_PRM];
a = ( (Z0 / ZF0 / 2 /
M_PI) * sqrt( (e_r + 1) / 2. ) ) + ( (e_r - 1) / (e_r + 1) * ( 0.23 + (0.11 / e_r) ) );
b = ZF0 / 2 * M_PI / ( Z0 * sqrt( e_r ) );
a = ( ( m_parameters[Z0_PRM] / ZF0 / 2 / M_PI ) * sqrt( ( e_r + 1 ) / 2. ) )
+ ( ( e_r - 1 ) / ( e_r + 1 ) * ( 0.23 + ( 0.11 / e_r ) ) );
b = ZF0 / 2 * M_PI / ( m_parameters[Z0_PRM] * sqrt( e_r ) );
if( a > 1.52 )
{
@ -408,12 +395,13 @@ double MICROSTRIP::synth_width()
}
else
{
w_h = (2. / M_PI) * ( b - 1. -
log( (2 * b) - 1. ) + ( (e_r - 1) / (2 * e_r) ) * (log( b - 1. ) + 0.39 - 0.61 / e_r) );
w_h = ( 2. / M_PI )
* ( b - 1. - log( ( 2 * b ) - 1. )
+ ( ( e_r - 1 ) / ( 2 * e_r ) ) * ( log( b - 1. ) + 0.39 - 0.61 / e_r ) );
}
if( h > 0.0 )
width = w_h * h;
if( m_parameters[H_PRM] > 0.0 )
width = w_h * m_parameters[H_PRM];
else
width = 0;
@ -434,13 +422,13 @@ void MICROSTRIP::line_angle()
/* velocity */
v = C0 / sqrt( e_r_eff * mur_eff );
/* wavelength */
lambda_g = v / m_freq;
lambda_g = v / m_parameters[FREQUENCY_PRM];
/* electrical angles */
ang_l = 2.0 * M_PI * l / lambda_g; /* in radians */
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g; /* in radians */
}
void MICROSTRIP::calc()
void MICROSTRIP::calcAnalyze()
{
/* effective permeability */
mur_eff_ms();
@ -455,167 +443,78 @@ void MICROSTRIP::calc()
}
/*
* get_microstrip_sub () - get and assign microstrip substrate
* parameters into microstrip structure
*/
void MICROSTRIP::get_microstrip_sub()
{
er = getProperty( EPSILONR_PRM );
mur = getProperty( MUR_PRM );
h = getProperty( H_PRM );
ht = getProperty( H_T_PRM );
t = getProperty( T_PRM );
m_sigma = 1.0 / getProperty( RHO_PRM );
m_murC = getProperty( MURC_PRM );
m_tand = getProperty( TAND_PRM );
rough = getProperty( ROUGH_PRM );
}
/*
* get_microstrip_comp() - get and assign microstrip component
* parameters into microstrip structure
*/
void MICROSTRIP::get_microstrip_comp()
{
m_freq = getProperty( FREQUENCY_PRM );
}
/*
* get_microstrip_elec() - get and assign microstrip electrical
* parameters into microstrip structure
*/
void MICROSTRIP::get_microstrip_elec()
{
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
}
/*
* get_microstrip_phys() - get and assign microstrip physical
* parameters into microstrip structure
*/
void MICROSTRIP::get_microstrip_phys()
{
w = getProperty( PHYS_WIDTH_PRM );
l = getProperty( PHYS_LEN_PRM );
}
void MICROSTRIP::show_results()
{
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
setResult( 0, er_eff, "" );
setResult( 1, atten_cond, "dB" );
setResult( 2, atten_dielectric, "dB" );
setResult( 3, m_skindepth/UNIT_MICRON, "µm" );
setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
/*
* analysis function
*/
void MICROSTRIP::analyze()
void MICROSTRIP::showSynthesize()
{
/* Get and assign substrate parameters */
get_microstrip_sub();
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
/* Get and assign component parameters */
get_microstrip_comp();
// Check for errors
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
/* Get and assign physical parameters */
get_microstrip_phys();
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
/* compute microstrip parameters */
calc();
// Check for warnings
/* print results in the subwindow */
show_results();
if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) )
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
void MICROSTRIP::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
#define MAX_ERROR 0.000001
// Check for errors
if( !std::isfinite( m_parameters[Z0_PRM] ) || ( m_parameters[Z0_PRM] < 0 ) )
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || ( m_parameters[ANG_L_PRM] < 0 ) )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || ( m_parameters[PHYS_LEN_PRM] < 0 ) )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || ( m_parameters[PHYS_WIDTH_PRM] <= 0 ) )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
}
/*
* synthesis function
*/
void MICROSTRIP::synthesize()
void MICROSTRIP::calcSynthesize()
{
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
int iteration;
/* Get and assign substrate parameters */
get_microstrip_sub();
/* Get and assign component parameters */
get_microstrip_comp();
/* Get and assign electrical parameters */
get_microstrip_elec();
/* Get and assign physical parameters */
/* at present it is required only for getting strips length */
get_microstrip_phys();
double angl_dest, z0_dest;
z0_dest = m_parameters[Z0_PRM];
angl_dest = m_parameters[ANG_L_PRM];
/* calculate width and use for initial value in Newton's method */
w = synth_width();
/* required value of Z0 */
Z0_dest = Z0;
/* Newton's method */
iteration = 0;
/* compute microstrip parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
while( error > MAX_ERROR )
{
iteration++;
increment = (w / 100.0);
w += increment;
/* compute microstrip parameters */
calc();
Z0_result = Z0;
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = (Z0_result - Z0_current) / increment;
/* printf("%g\n",slope); */
w += (Z0_dest - Z0_current) / slope - increment;
/* printf("ms->w = %g\n", ms->w); */
/* find new error */
/* compute microstrip parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
/* printf("Iteration = %d\n",iteration);
* printf("w = %g\t Z0 = %g\n",ms->w, Z0_current); */
if( iteration > 100 )
break;
}
setProperty( PHYS_WIDTH_PRM, w );
/* calculate physical length */
ang_l = getProperty( ANG_L_PRM );
l = C0 / m_freq / sqrt( er_eff * mur_eff ) * ang_l / 2.0 / M_PI; /* in m */
setProperty( PHYS_LEN_PRM, l );
/* compute microstrip parameters */
calc();
/* print results in the subwindow */
show_results();
m_parameters[PHYS_WIDTH_PRM] = synth_width();
minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );
m_parameters[Z0_PRM] = z0_dest;
m_parameters[ANG_L_PRM] = angl_dest;
m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff )
* m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */
calcAnalyze();
m_parameters[Z0_PRM] = z0_dest;
m_parameters[ANG_L_PRM] = angl_dest;
m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM] / sqrt( er_eff * mur_eff )
* m_parameters[ANG_L_PRM] / 2.0 / M_PI; /* in m */
}

View File

@ -25,9 +25,12 @@
#ifndef __MICROSTRIP_H
#define __MICROSTRIP_H
#include <transline.h>
class MICROSTRIP : public TRANSLINE
{
public: MICROSTRIP();
public:
MICROSTRIP();
friend class C_MICROSTRIP;
@ -52,10 +55,6 @@ private:
// private params
double Z0_h_1; // homogeneous stripline impedance
public:
void analyze() override;
void synthesize() override;
private:
double er_eff_freq();
double alpha_c();
@ -81,12 +80,11 @@ private:
void attenuation();
void mur_eff_ms();
void line_angle();
void calc();
void get_microstrip_sub();
void get_microstrip_comp();
void get_microstrip_elec();
void get_microstrip_phys();
void show_results();
void show_results() override;
void showSynthesize() override;
void showAnalyze() override;
void calcAnalyze() override;
void calcSynthesize() override;
};
#endif // __MICROSTRIP_H

View File

@ -25,27 +25,13 @@
#include <cstdio>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <rectwaveguide.h>
#include <units.h>
RECTWAVEGUIDE::RECTWAVEGUIDE() : TRANSLINE()
{
m_Name = "RectWaveGuide";
// Initialize these here variables mainly to avoid warnings from a static analyzer
mur = 0.0; // magnetic permeability of substrate
a = 0.0; // width of waveguide
b = 0.0; // height of waveguide
l = 0.0; // length of waveguide
Z0 = 0.0; // characteristic impedance
Z0EH = 0.0; // characteristic impedance of field quantities*/
ang_l = 0.0; // Electrical length in angle
er_eff = 0.0; // Effective dielectric constant
mur_eff = 0.0; // Effective mag. permeability
atten_dielectric = 0.0; // Loss in dielectric (dB)
atten_cond = 0.0; // Loss in conductors (dB)
fc10 = 0.0; // Cutoff frequency for TE10 mode
Init();
}
@ -56,7 +42,8 @@ double RECTWAVEGUIDE::kval_square()
{
double kval;
kval = 2.0* M_PI * m_freq * sqrt( mur * er ) / C0;
kval = 2.0 * M_PI * m_parameters[FREQUENCY_PRM]
* sqrt( m_parameters[MUR_PRM] * m_parameters[EPSILONR_PRM] ) / C0;
return kval * kval;
}
@ -68,7 +55,8 @@ double RECTWAVEGUIDE::kval_square()
*/
double RECTWAVEGUIDE::kc_square( int m, int n )
{
return pow( (m * M_PI / a), 2.0 ) + pow( (n * M_PI / b), 2.0 );
return pow( ( m * M_PI / m_parameters[PHYS_A_PRM] ), 2.0 )
+ pow( ( n * M_PI / m_parameters[PHYS_B_PRM] ), 2.0 );
}
@ -78,7 +66,8 @@ double RECTWAVEGUIDE::kc_square( int m, int n )
*/
double RECTWAVEGUIDE::fc( int m, int n )
{
return sqrt( kc_square( m, n ) / mur / er ) * C0 / 2.0 / M_PI;
return sqrt( kc_square( m, n ) / m_parameters[MUR_PRM] / m_parameters[EPSILONR_PRM] ) * C0 / 2.0
/ M_PI;
}
@ -91,10 +80,15 @@ double RECTWAVEGUIDE::alphac()
double Rs, f_c;
double ac;
short m, n, mmax, nmax;
double* a = &m_parameters[PHYS_A_PRM];
double* b = &m_parameters[PHYS_B_PRM];
double* f = &m_parameters[FREQUENCY_PRM];
double* murc = &m_parameters[MURC_PRM];
double* sigma = &m_parameters[SIGMA_PRM];
Rs = sqrt( M_PI * m_freq * m_murC * MU0 / m_sigma );
Rs = sqrt( M_PI * *f * *murc * MU0 / *sigma );
ac = 0.0;
mmax = (int) floor( m_freq / fc( 1, 0 ) );
mmax = (int) floor( *f / fc( 1, 0 ) );
nmax = mmax;
/* below from Ramo, Whinnery & Van Duzer */
@ -105,24 +99,24 @@ double RECTWAVEGUIDE::alphac()
for( m = 1; m <= mmax; m++ )
{
f_c = fc( m, n );
if( m_freq > f_c )
if( *f > f_c )
{
switch( n )
{
case 0:
ac += ( Rs / ( b * ZF0 * sqrt( 1.0 - pow( (f_c / m_freq), 2.0 ) ) ) ) *
( 1.0 + ( (2 * b / a) * pow( (f_c / m_freq), 2.0 ) ) );
ac += ( Rs / ( *b * ZF0 * sqrt( 1.0 - pow( ( f_c / *f ), 2.0 ) ) ) )
* ( 1.0 + ( ( 2 * *b / *a ) * pow( ( f_c / *f ), 2.0 ) ) );
break;
default:
ac += ( (2. * Rs) / ( b * ZF0 * sqrt( 1.0 - pow( (f_c / m_freq), 2.0 ) ) ) ) *
( ( ( 1. + (b / a) ) * pow( (f_c / m_freq), 2.0 ) ) +
( ( 1. -
pow( (f_c / m_freq),
2.0 ) ) *
( ( (b / a) * ( ( (b / a) * pow( m, 2. ) ) + pow( n, 2. ) ) ) /
( pow( (b * m / a),
2.0 ) + pow( n, 2.0 ) ) ) ) );
ac += ( ( 2. * Rs ) / ( *b * ZF0 * sqrt( 1.0 - pow( ( f_c / *f ), 2.0 ) ) ) )
* ( ( ( 1. + ( *b / *a ) ) * pow( ( f_c / *f ), 2.0 ) )
+ ( ( 1. - pow( ( f_c / *f ), 2.0 ) )
* ( ( ( *b / *a )
* ( ( ( *b / *a ) * pow( m, 2. ) )
+ pow( n, 2. ) ) )
/ ( pow( ( *b * m / *a ), 2.0 )
+ pow( n, 2.0 ) ) ) ) );
break;
}
}
@ -135,11 +129,11 @@ double RECTWAVEGUIDE::alphac()
for( m = 1; m <= mmax; m++ )
{
f_c = fc( m, n );
if( m_freq > f_c )
if( *f > f_c )
{
ac += ( (2. * Rs) / ( b * ZF0 * sqrt( 1.0 - pow( (f_c / m_freq), 2.0 ) ) ) ) *
( ( ( pow( m, 2.0 ) * pow( (b / a), 3.0 ) ) + pow( n, 2. ) ) /
( ( pow( (m * b / a), 2. ) ) + pow( n, 2.0 ) ) );
ac += ( ( 2. * Rs ) / ( *b * ZF0 * sqrt( 1.0 - pow( ( f_c / *f ), 2.0 ) ) ) )
* ( ( ( pow( m, 2.0 ) * pow( ( *b / *a ), 3.0 ) ) + pow( n, 2. ) )
/ ( ( pow( ( m * *b / *a ), 2. ) ) + pow( n, 2.0 ) ) );
}
}
}
@ -173,7 +167,7 @@ double RECTWAVEGUIDE::alphad()
k_square = kval_square();
beta = sqrt( k_square - kc_square( 1, 0 ) );
ad = (k_square * m_tand) / (2.0 * beta);
ad = ( k_square * m_parameters[TAND_PRM] ) / ( 2.0 * beta );
ad = ad * 20.0 * log10( exp( 1. ) ); /* convert from Np/m to db/m */
return ad;
}
@ -186,11 +180,11 @@ double RECTWAVEGUIDE::alphad()
*/
void RECTWAVEGUIDE::get_rectwaveguide_sub()
{
er = getProperty( EPSILONR_PRM );
mur = getProperty( MUR_PRM );
m_murC = getProperty( MURC_PRM );
m_sigma = 1.0 / getProperty( RHO_PRM );
m_tand = getProperty( TAND_PRM );
m_parameters[EPSILONR_PRM] = getProperty( EPSILONR_PRM );
m_parameters[MUR_PRM] = getProperty( MUR_PRM );
m_parameters[MURC_PRM] = getProperty( MURC_PRM );
m_parameters[SIGMA_PRM] = 1.0 / getProperty( RHO_PRM );
m_parameters[TAND_PRM] = getProperty( TAND_PRM );
}
@ -201,7 +195,7 @@ void RECTWAVEGUIDE::get_rectwaveguide_sub()
*/
void RECTWAVEGUIDE::get_rectwaveguide_comp()
{
m_freq = getProperty( FREQUENCY_PRM );
m_parameters[FREQUENCY_PRM] = getProperty( FREQUENCY_PRM );
}
@ -212,8 +206,8 @@ void RECTWAVEGUIDE::get_rectwaveguide_comp()
*/
void RECTWAVEGUIDE::get_rectwaveguide_elec()
{
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
m_parameters[Z0_PRM] = getProperty( Z0_PRM );
m_parameters[ANG_L_PRM] = getProperty( ANG_L_PRM );
}
@ -224,29 +218,20 @@ void RECTWAVEGUIDE::get_rectwaveguide_elec()
*/
void RECTWAVEGUIDE::get_rectwaveguide_phys()
{
a = getProperty( PHYS_WIDTH_PRM );
b = getProperty( PHYS_S_PRM );
l = getProperty( PHYS_LEN_PRM );
m_parameters[PHYS_A_PRM] = getProperty( PHYS_A_PRM );
m_parameters[PHYS_B_PRM] = getProperty( PHYS_B_PRM );
m_parameters[PHYS_LEN_PRM] = getProperty( PHYS_LEN_PRM );
}
/*
* analyze - analysis function
*/
void RECTWAVEGUIDE::analyze()
void RECTWAVEGUIDE::calcAnalyze()
{
double lambda_g;
double k_square;
/* Get and assign substrate parameters */
get_rectwaveguide_sub();
/* Get and assign component parameters */
get_rectwaveguide_comp();
/* Get and assign physical parameters */
get_rectwaveguide_phys();
k_square = kval_square();
if( kc_square( 1, 0 ) <= k_square )
@ -254,92 +239,124 @@ void RECTWAVEGUIDE::analyze()
/* propagating modes */
// Z0 definition using fictive voltages and currents
Z0 = 2.0* ZF0* sqrt( mur / er ) * (b / a) / sqrt( 1.0 - pow( (fc( 1, 0 ) / m_freq), 2.0 ) );
m_parameters[Z0_PRM] =
2.0 * ZF0 * sqrt( m_parameters[MUR_PRM] / m_parameters[EPSILONR_PRM] )
* ( m_parameters[PHYS_B_PRM] / m_parameters[PHYS_A_PRM] )
/ sqrt( 1.0 - pow( ( fc( 1, 0 ) / m_parameters[FREQUENCY_PRM] ), 2.0 ) );
/* calculate electrical angle */
lambda_g = 2.0 * M_PI / sqrt( k_square - kc_square( 1, 0 ) );
ang_l = 2.0 * M_PI * l / lambda_g; /* in radians */
atten_cond = alphac() * l;
atten_dielectric = alphad() * l;
er_eff = ( 1.0 - pow( fc( 1, 0 ) / m_freq, 2.0 ) );
m_parameters[ANG_L_PRM] =
2.0 * M_PI * m_parameters[PHYS_LEN_PRM] / lambda_g; /* in radians */
m_parameters[LOSS_CONDUCTOR_PRM] = alphac() * m_parameters[PHYS_LEN_PRM];
m_parameters[LOSS_DIELECTRIC_PRM] = alphad() * m_parameters[PHYS_LEN_PRM];
m_parameters[EPSILON_EFF_PRM] =
( 1.0 - pow( fc( 1, 0 ) / m_parameters[FREQUENCY_PRM], 2.0 ) );
}
else
{
/* evanascent modes */
Z0 = 0;
ang_l = 0;
er_eff = 0;
atten_dielectric = 0.0;
atten_cond = alphac_cutoff() * l;
m_parameters[Z0_PRM] = 0;
m_parameters[ANG_L_PRM] = 0;
m_parameters[EPSILON_EFF_PRM] = 0;
m_parameters[LOSS_DIELECTRIC_PRM] = 0.0;
m_parameters[LOSS_CONDUCTOR_PRM] = alphac_cutoff() * m_parameters[PHYS_LEN_PRM];
}
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
show_results();
}
/*
* synthesize - synthesis function
*/
void RECTWAVEGUIDE::synthesize()
void RECTWAVEGUIDE::calcSynthesize()
{
double lambda_g, k_square, beta;
/* Get and assign substrate parameters */
get_rectwaveguide_sub();
/* Get and assign component parameters */
get_rectwaveguide_comp();
/* Get and assign electrical parameters */
get_rectwaveguide_elec();
/* Get and assign physical parameters */
get_rectwaveguide_phys();
if( isSelected( PHYS_S_PRM ) )
if( isSelected( PHYS_B_PRM ) )
{
/* solve for b */
b = Z0 * a * sqrt( 1.0 - pow( fc( 1, 0 ) / m_freq, 2.0 ) ) / ( 2.0 * ZF0 * sqrt( mur / er ) );
setProperty( PHYS_S_PRM, b );
m_parameters[PHYS_B_PRM] =
m_parameters[Z0_PRM] * m_parameters[PHYS_A_PRM]
* sqrt( 1.0 - pow( fc( 1, 0 ) / m_parameters[FREQUENCY_PRM], 2.0 ) )
/ ( 2.0 * ZF0 * sqrt( m_parameters[MUR_PRM] / m_parameters[EPSILONR_PRM] ) );
}
else if( isSelected( PHYS_WIDTH_PRM ) )
else if( isSelected( PHYS_A_PRM ) )
{
/* solve for a */
a = sqrt( pow( 2.0 * ZF0 * b / Z0, 2.0 ) + pow( C0 / (2.0 * m_freq), 2.0 ) );
setProperty( PHYS_WIDTH_PRM, a );
m_parameters[PHYS_A_PRM] =
sqrt( pow( 2.0 * ZF0 * m_parameters[PHYS_B_PRM] / m_parameters[Z0_PRM], 2.0 )
+ pow( C0 / ( 2.0 * m_parameters[FREQUENCY_PRM] ), 2.0 ) );
}
k_square = kval_square();
beta = sqrt( k_square - kc_square( 1, 0 ) );
lambda_g = 2.0 * M_PI / beta;
l = (ang_l * lambda_g) / (2.0 * M_PI); /* in m */
setProperty( PHYS_LEN_PRM, l );
m_parameters[PHYS_LEN_PRM] = ( m_parameters[ANG_L_PRM] * lambda_g ) / ( 2.0 * M_PI ); /* in m */
if( kc_square( 1, 0 ) <= k_square )
{
/*propagating modes */
beta = sqrt( k_square - kc_square( 1, 0 ) );
lambda_g = 2.0 * M_PI / beta;
atten_cond = alphac() * l;
atten_dielectric = alphad() * l;
er_eff = ( 1.0 - pow( (fc( 1, 0 ) / m_freq), 2.0 ) );
m_parameters[LOSS_CONDUCTOR_PRM] = alphac() * m_parameters[PHYS_LEN_PRM];
m_parameters[LOSS_DIELECTRIC_PRM] = alphad() * m_parameters[PHYS_LEN_PRM];
m_parameters[EPSILON_EFF_PRM] =
( 1.0 - pow( ( fc( 1, 0 ) / m_parameters[FREQUENCY_PRM] ), 2.0 ) );
}
else
{
/*evanascent modes */
Z0 = 0;
ang_l = 0;
er_eff = 0;
atten_dielectric = 0.0;
atten_cond = alphac_cutoff() * l;
m_parameters[Z0_PRM] = 0;
m_parameters[ANG_L_PRM] = 0;
m_parameters[EPSILON_EFF_PRM] = 0;
m_parameters[LOSS_DIELECTRIC_PRM] = 0.0;
m_parameters[LOSS_CONDUCTOR_PRM] = alphac_cutoff() * m_parameters[PHYS_LEN_PRM];
}
}
show_results();
void RECTWAVEGUIDE::showSynthesize()
{
if( isSelected( PHYS_A_PRM ) )
setProperty( PHYS_A_PRM, m_parameters[PHYS_A_PRM] );
if( isSelected( PHYS_B_PRM ) )
setProperty( PHYS_B_PRM, m_parameters[PHYS_B_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[PHYS_A_PRM] ) || m_parameters[PHYS_A_PRM] <= 0 )
setErrorLevel( PHYS_A_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[PHYS_B_PRM] ) || m_parameters[PHYS_B_PRM] <= 00 )
setErrorLevel( PHYS_B_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
void RECTWAVEGUIDE::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
// Check for warnings
if( !std::isfinite( m_parameters[PHYS_A_PRM] ) || m_parameters[PHYS_A_PRM] <= 0 )
setErrorLevel( PHYS_A_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_B_PRM] ) || m_parameters[PHYS_B_PRM] <= 00 )
setErrorLevel( PHYS_B_PRM, TRANSLINE_WARNING );
}
@ -353,12 +370,12 @@ void RECTWAVEGUIDE::show_results()
Z0EH = ZF0 * sqrt( kval_square() / ( kval_square() - kc_square( 1, 0 ) ) );
setResult( 0, Z0EH, "Ohm" );
setResult( 1, er_eff, "" );
setResult( 2, atten_cond, "dB" );
setResult( 3, atten_dielectric, "dB" );
setResult( 1, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 2, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 3, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
// show possible TE modes (H modes)
if( m_freq < fc( 1, 0 ) )
if( m_parameters[FREQUENCY_PRM] < fc( 1, 0 ) )
strcpy( text, "none" );
else
{
@ -369,7 +386,7 @@ void RECTWAVEGUIDE::show_results()
{
if( ( m == 0 ) && ( n == 0 ) )
continue;
if( m_freq >= ( fc( m, n ) ) )
if( m_parameters[FREQUENCY_PRM] >= ( fc( m, n ) ) )
{
sprintf( txt, "H(%d,%d) ", m, n );
if( ( strlen( text ) + strlen( txt ) + 5 ) < MAXSTRLEN )
@ -386,7 +403,7 @@ void RECTWAVEGUIDE::show_results()
setResult( 4, text );
// show possible TM modes (E modes)
if( m_freq < fc( 1, 1 ) )
if( m_parameters[FREQUENCY_PRM] < fc( 1, 1 ) )
strcpy( text, "none" );
else
{
@ -395,7 +412,7 @@ void RECTWAVEGUIDE::show_results()
{
for( n = 1; n <= max; n++ )
{
if( m_freq >= fc( m, n ) )
if( m_parameters[FREQUENCY_PRM] >= fc( m, n ) )
{
sprintf( txt, "E(%d,%d) ", m, n );
if( ( strlen( text ) + strlen( txt ) + 5 ) < MAXSTRLEN )

View File

@ -25,9 +25,16 @@
#ifndef __RECTWAVEGUIDE_H
#define __RECTWAVEGUIDE_H
#include <transline.h>
#define PHYS_A_PRM PHYS_WIDTH_PRM
#define PHYS_B_PRM PHYS_S_PRM
class RECTWAVEGUIDE : public TRANSLINE
{
public: RECTWAVEGUIDE();
public:
RECTWAVEGUIDE();
private:
double mur; // magnetic permeability of substrate
@ -44,9 +51,6 @@ private:
double fc10; // Cutoff frequency for TE10 mode
public:
void analyze() override;
void synthesize() override;
private:
double kval_square();
double kc_square( int, int );
@ -58,7 +62,11 @@ private:
void get_rectwaveguide_comp();
void get_rectwaveguide_phys();
void get_rectwaveguide_elec();
void show_results();
void show_results() override;
void calcAnalyze() override;
void calcSynthesize() override;
void showAnalyze() override;
void showSynthesize() override;
};
#endif // __RECTWAVEGUIDE_H

View File

@ -27,44 +27,13 @@
#include <cstdlib>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <stripline.h>
#include <units.h>
STRIPLINE::STRIPLINE() : TRANSLINE()
{
m_Name = "StripLine";
// Initialize these variables mainly to avoid warnings from a static analyzer
h = 0.0; // height of substrate
a = 0.0; // distance of strip to top metal
t = 0.0; // thickness of top metal
w = 0.0; // width of line
len = 0.0; // length of line
Z0 = 0.0; // characteristic impedance
ang_l = 0.0; // Electrical length in angle
er_eff = 0.0; // effective dielectric constant
atten_dielectric = 0.0; // Loss in dielectric (dB)
atten_cond = 0.0; // Loss in conductors (dB)
}
// -------------------------------------------------------------------
void STRIPLINE::getProperties()
{
m_freq = getProperty( FREQUENCY_PRM );
w = getProperty( PHYS_WIDTH_PRM );
len = getProperty( PHYS_LEN_PRM );
h = getProperty( H_PRM);
a = getProperty( STRIPLINE_A_PRM );
t = getProperty( T_PRM );
er = getProperty( EPSILONR_PRM );
m_murC = getProperty( MURC_PRM );
m_tand = getProperty( TAND_PRM );
m_sigma = 1.0 / getProperty( RHO_PRM );
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
Init();
}
@ -73,30 +42,34 @@ void STRIPLINE::getProperties()
double STRIPLINE::lineImpedance( double height, double& ac )
{
double ZL;
double hmt = height - t;
double hmt = height - m_parameters[T_PRM];
ac = sqrt( m_freq / m_sigma / 17.2 );
if( w / hmt >= 0.35 )
ac = sqrt( m_parameters[FREQUENCY_PRM] / m_parameters[SIGMA_PRM] / 17.2 );
if( m_parameters[PHYS_WIDTH_PRM] / hmt >= 0.35 )
{
ZL = w +
( 2.0 * height *
log( (2.0 * height - t) / hmt ) - t * log( height * height / hmt / hmt - 1.0 ) ) / M_PI;
ZL = ZF0 * hmt / sqrt( er ) / 4.0 / ZL;
ZL = m_parameters[PHYS_WIDTH_PRM]
+ ( 2.0 * height * log( ( 2.0 * height - m_parameters[T_PRM] ) / hmt )
- m_parameters[T_PRM] * log( height * height / hmt / hmt - 1.0 ) )
/ M_PI;
ZL = ZF0 * hmt / sqrt( m_parameters[EPSILONR_PRM] ) / 4.0 / ZL;
ac *= 2.02e-6 * er * ZL / hmt;
ac *= 1.0 + 2.0 * w / hmt + (height + t) / hmt / M_PI* log( 2.0 * height / t - 1.0 );
ac *= 2.02e-6 * m_parameters[EPSILONR_PRM] * ZL / hmt;
ac *= 1.0 + 2.0 * m_parameters[PHYS_WIDTH_PRM] / hmt
+ ( height + m_parameters[T_PRM] ) / hmt / M_PI
* log( 2.0 * height / m_parameters[T_PRM] - 1.0 );
}
else
{
double tdw = t / w;
if( t / w > 1.0 )
tdw = w / t;
double tdw = m_parameters[T_PRM] / m_parameters[PHYS_WIDTH_PRM];
if( m_parameters[T_PRM] / m_parameters[PHYS_WIDTH_PRM] > 1.0 )
tdw = m_parameters[PHYS_WIDTH_PRM] / m_parameters[T_PRM];
double de = 1.0 + tdw / M_PI * ( 1.0 + log( 4.0 * M_PI / tdw ) ) + 0.236 * pow( tdw, 1.65 );
if( t / w > 1.0 )
de *= t / 2.0;
if( m_parameters[T_PRM] / m_parameters[PHYS_WIDTH_PRM] > 1.0 )
de *= m_parameters[T_PRM] / 2.0;
else
de *= w / 2.0;
ZL = ZF0 / 2.0 / M_PI / sqrt( er ) * log( 4.0 * height / M_PI / de );
de *= m_parameters[PHYS_WIDTH_PRM] / 2.0;
ZL = ZF0 / 2.0 / M_PI / sqrt( m_parameters[EPSILONR_PRM] )
* log( 4.0 * height / M_PI / de );
ac *= 0.01141 / ZL / de;
ac *= de / height + 0.5 + tdw / 2.0 / M_PI + 0.5 / M_PI * log( 4.0 * M_PI / tdw )
@ -108,103 +81,110 @@ double STRIPLINE::lineImpedance( double height, double& ac )
// -------------------------------------------------------------------
void STRIPLINE::calc()
void STRIPLINE::calcAnalyze()
{
m_skindepth = skin_depth();
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
er_eff = er; // no dispersion
m_parameters[EPSILON_EFF_PRM] = m_parameters[EPSILONR_PRM]; // no dispersion
double ac1, ac2;
Z0 = 2.0 /
( 1.0 / lineImpedance( 2.0 * a + t, ac1 ) + 1.0 / lineImpedance( 2.0 * (h - a) - t, ac2 ) );
double t = m_parameters[T_PRM];
double a = m_parameters[STRIPLINE_A_PRM];
double h = m_parameters[H_PRM];
m_parameters[Z0_PRM] = 2.0
/ ( 1.0 / lineImpedance( 2.0 * a + t, ac1 )
+ 1.0 / lineImpedance( 2.0 * ( h - a ) - t, ac2 ) );
m_parameters[LOSS_CONDUCTOR_PRM] = m_parameters[PHYS_LEN_PRM] * 0.5 * ( ac1 + ac2 );
m_parameters[LOSS_DIELECTRIC_PRM] = 20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM]
* ( M_PI / C0 ) * m_parameters[FREQUENCY_PRM]
* sqrt( m_parameters[EPSILONR_PRM] )
* m_parameters[TAND_PRM];
atten_cond = len * 0.5 * (ac1 + ac2);
atten_dielectric = 20.0 / log( 10.0 ) * len * (M_PI / C0) * m_freq * sqrt( er ) * m_tand;
ang_l = 2.0* M_PI* len* sqrt( er ) * m_freq / C0; // in radians
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM]
* sqrt( m_parameters[EPSILONR_PRM] ) * m_parameters[FREQUENCY_PRM]
/ C0; // in radians
}
void STRIPLINE::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
{
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
{
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
{
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] < 0 )
{
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
}
if( m_parameters[STRIPLINE_A_PRM] + m_parameters[T_PRM] >= m_parameters[H_PRM] )
{
setErrorLevel( STRIPLINE_A_PRM, TRANSLINE_WARNING );
setErrorLevel( T_PRM, TRANSLINE_WARNING );
setErrorLevel( H_PRM, TRANSLINE_WARNING );
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
}
}
void STRIPLINE::showSynthesize()
{
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
{
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] < 0 )
{
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
{
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
{
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
if( m_parameters[STRIPLINE_A_PRM] + m_parameters[T_PRM] >= m_parameters[H_PRM] )
{
setErrorLevel( STRIPLINE_A_PRM, TRANSLINE_WARNING );
setErrorLevel( T_PRM, TRANSLINE_WARNING );
setErrorLevel( H_PRM, TRANSLINE_WARNING );
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
}
}
// -------------------------------------------------------------------
void STRIPLINE::show_results()
{
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
setResult( 0, er_eff, "" );
setResult( 1, atten_cond, "dB" );
setResult( 2, atten_dielectric, "dB" );
setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
setResult( 3, m_skindepth / UNIT_MICRON, "µm" );
}
// -------------------------------------------------------------------
void STRIPLINE::analyze()
{
getProperties();
calc();
show_results();
setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
#define MAX_ERROR 0.000001
// -------------------------------------------------------------------
void STRIPLINE::synthesize()
void STRIPLINE::calcSynthesize()
{
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
int iteration;
getProperties();
/* required value of Z0 */
Z0_dest = Z0;
/* Newton's method */
iteration = 0;
/* compute parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
while( error > MAX_ERROR )
{
iteration++;
increment = w / 100.0;
w += increment;
/* compute parameters */
calc();
Z0_result = Z0;
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = (Z0_result - Z0_current) / increment;
slope = (Z0_dest - Z0_current) / slope - increment;
w += slope;
if( w <= 0.0 )
w = increment;
/* find new error */
/* compute parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
if( iteration > 100 )
break;
}
setProperty( PHYS_WIDTH_PRM, w );
/* calculate physical length */
ang_l = getProperty( ANG_L_PRM );
len = C0 / m_freq / sqrt( er_eff ) * ang_l / 2.0 / M_PI; /* in m */
setProperty( PHYS_LEN_PRM, len );
/* compute parameters */
calc();
/* print results in the subwindow */
show_results();
minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );
}

View File

@ -24,31 +24,21 @@
#ifndef __STRIPLINE_H
#define __STRIPLINE_H
#include <transline.h>
class STRIPLINE : public TRANSLINE
{
public: STRIPLINE();
private:
double h; // height of substrate
double a; // distance of strip to top metal
double t; // thickness of top metal
double w; // width of line
double len; // length of line
double Z0; // characteristic impedance
double ang_l; // electrical length in angle
double er_eff; // effective dielectric constant
double atten_dielectric; // loss in dielectric (dB)
double atten_cond; // loss in conductors (dB)
public:
void analyze() override;
void synthesize() override;
STRIPLINE();
private:
void calcAnalyze() override;
void calcSynthesize() override;
void showSynthesize() override;
void showAnalyze() override;
double lineImpedance( double, double& );
void calc();
void show_results();
void getProperties();
void show_results() override;
};
#endif

View File

@ -1,3 +1,4 @@
/*
* TRANSLINE.cpp - base for a transmission line implementation
*
@ -57,19 +58,20 @@ double GetPropertyInDialog( enum PRMS_ID aPrmId );
// Has meaning only for params that have a radio button
bool IsSelectedInDialog( enum PRMS_ID aPrmId );
/** Function SetPropertyBgColorInDialog
* Set the background color of a parameter
* @param aPrmId = param id to set
* @param aCol = new color
*/
void SetPropertyBgColorInDialog( enum PRMS_ID aPrmId, const KIGFX::COLOR4D* aCol );
/* Constructor creates a transmission line instance. */
TRANSLINE::TRANSLINE()
{
m_murC = 1.0;
m_parameters[MURC_PRM] = 1.0;
m_Name = nullptr;
// Initialize these variables mainly to avoid warnings from a static analyzer
m_freq = 0.0; // Frequency of operation
er = 0.0; // dielectric constant
m_tand = 0.0; // Dielectric Loss Tangent
m_sigma = 0.0; // Conductivity of the metal
m_skindepth = 0.0; // Skin depth
Init();
}
@ -79,6 +81,22 @@ TRANSLINE::~TRANSLINE()
}
void TRANSLINE::Init( void )
{
wxColour wxcol = wxSystemSettings::GetColour( wxSYS_COLOUR_WINDOW );
okCol = KIGFX::COLOR4D( wxcol );
okCol.r = wxcol.Red() / 255.0;
okCol.g = wxcol.Green() / 255.0;
okCol.b = wxcol.Blue() / 255.0;
int i;
// Initialize these variables mainly to avoid warnings from a static analyzer
for( i = 0; i < EXTRA_PRMS_COUNT; ++i )
{
m_parameters[i] = 0;
}
}
/* Sets a named property to the given value, access through the
* application.
*/
@ -87,6 +105,7 @@ void TRANSLINE::setProperty( enum PRMS_ID aPrmId, double value )
SetPropertyInDialog( aPrmId, value );
}
/*
*Returns true if the param aPrmId is selected
* Has meaning only for params that have a radio button
@ -115,14 +134,101 @@ double TRANSLINE::getProperty( enum PRMS_ID aPrmId )
return GetPropertyInDialog( aPrmId );
}
/*
* skin_depth - calculate skin depth
/** @function getProperties
*
* Get all properties from the UI. Computes some extra ones.
**/
void TRANSLINE::getProperties( void )
{
int i;
for( i = 0; i < DUMMY_PRM; ++i )
{
m_parameters[i] = getProperty( (PRMS_ID) i );
setErrorLevel( (PRMS_ID) i, TRANSLINE_OK );
}
m_parameters[SIGMA_PRM] = 1.0 / getProperty( RHO_PRM );
m_parameters[EPSILON_EFF_PRM] = 1.0;
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
}
/** @function checkProperties
*
* Checks the input parameters (ie: negative length).
* Does not check for incompatibility between values as this depends on the line shape.
**/
void TRANSLINE::checkProperties( void )
{
// Do not check for values that are results of anylzing / synthesizing
// Do not check for transline specific incompatibilities ( like " conductor height sould be lesser than dielectric height")
if( !std::isfinite( m_parameters[EPSILONR_PRM] ) || m_parameters[EPSILONR_PRM] <= 0 )
setErrorLevel( EPSILONR_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[TAND_PRM] ) || m_parameters[TAND_PRM] < 0 )
setErrorLevel( TAND_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[RHO_PRM] ) || m_parameters[RHO_PRM] < 0 )
setErrorLevel( RHO_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[H_PRM] ) || m_parameters[H_PRM] < 0 )
setErrorLevel( H_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[TWISTEDPAIR_TWIST_PRM] )
|| m_parameters[TWISTEDPAIR_TWIST_PRM] < 0 )
setErrorLevel( TWISTEDPAIR_TWIST_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[STRIPLINE_A_PRM] ) || m_parameters[STRIPLINE_A_PRM] <= 0 )
setErrorLevel( STRIPLINE_A_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[H_T_PRM] ) || m_parameters[H_T_PRM] <= 0 )
setErrorLevel( H_T_PRM, TRANSLINE_WARNING );
// How can we check ROUGH_PRM ?
if( !std::isfinite( m_parameters[MUR_PRM] ) || m_parameters[MUR_PRM] < 0 )
setErrorLevel( MUR_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[TWISTEDPAIR_EPSILONR_ENV_PRM] )
|| m_parameters[TWISTEDPAIR_EPSILONR_ENV_PRM] <= 0 )
setErrorLevel( TWISTEDPAIR_EPSILONR_ENV_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[MURC_PRM] ) || m_parameters[MURC_PRM] < 0 )
setErrorLevel( MURC_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[FREQUENCY_PRM] ) || m_parameters[FREQUENCY_PRM] <= 0 )
setErrorLevel( FREQUENCY_PRM, TRANSLINE_WARNING );
}
void TRANSLINE::analyze()
{
getProperties();
checkProperties();
calcAnalyze();
showAnalyze();
show_results();
}
void TRANSLINE::synthesize()
{
getProperties();
checkProperties();
calcSynthesize();
showSynthesize();
show_results();
}
/**
* @function skin_depth
* calculate skin depth
*
* \f$ \frac{1}{\sqrt{ \pi \cdot f \cdot \mu \cdot \sigma }} \f$
*/
#include <cstdio>
double TRANSLINE::skin_depth()
{
double depth;
depth = 1.0 / sqrt( M_PI * m_freq * m_murC * MU0 * m_sigma );
depth = 1.0
/ sqrt( M_PI * m_parameters[FREQUENCY_PRM] * m_parameters[MURC_PRM] * MU0
* m_parameters[SIGMA_PRM] );
return depth;
}
@ -182,7 +288,8 @@ void TRANSLINE::ellipke( double arg, double& k, double& e )
if( i >= iMax )
{
k = 0; e = 0;
k = 0;
e = 0;
}
else
{
@ -206,3 +313,122 @@ double TRANSLINE::ellipk( double k )
ellipke( k, r, lost );
return r;
}
#define MAX_ERROR 0.000001
/**
* @function minimizeZ0Error1D
*
* Tries to find a parameter that minimizes the error ( on Z0 ).
* This function only works with a single parameter.
* Calls @ref calcAnalyze several times until the error is acceptable.
* While the error is unnacceptable, changes slightly the parameter.
*
* This function does not change Z0 / Angl_L.
*
* @param avar Parameter to synthesize
* @return 'true' if error < MAX_ERROR, else 'false'
*/
bool TRANSLINE::minimizeZ0Error1D( double* aVar )
{
double Z0_dest, Z0_current, Z0_result, angl_l_dest, increment, slope, error;
int iteration;
if( !std::isfinite( m_parameters[Z0_PRM] ) )
{
*aVar = NAN;
return false;
}
if( ( !std::isfinite( *aVar ) ) || ( *aVar == 0 ) )
{
*aVar = 0.001;
}
/* required value of Z0 */
Z0_dest = m_parameters[Z0_PRM];
/* required value of angl_l */
angl_l_dest = m_parameters[ANG_L_PRM];
/* Newton's method */
iteration = 0;
/* compute parameters */
calcAnalyze();
Z0_current = m_parameters[Z0_PRM];
error = fabs( Z0_dest - Z0_current );
while( error > MAX_ERROR )
{
iteration++;
increment = *aVar / 100.0;
*aVar += increment;
/* compute parameters */
calcAnalyze();
Z0_result = m_parameters[Z0_PRM];
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = ( Z0_result - Z0_current ) / increment;
slope = ( Z0_dest - Z0_current ) / slope - increment;
*aVar += slope;
if( *aVar <= 0.0 )
*aVar = increment;
/* find new error */
/* compute parameters */
calcAnalyze();
Z0_current = m_parameters[Z0_PRM];
error = fabs( Z0_dest - Z0_current );
if( iteration > 100 )
break;
}
/* Compute one last time, but with correct length */
m_parameters[Z0_PRM] = Z0_dest;
m_parameters[ANG_L_PRM] = angl_l_dest;
m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM]
/ sqrt( m_parameters[EPSILON_EFF_PRM] ) * m_parameters[ANG_L_PRM]
/ 2.0 / M_PI; /* in m */
calcAnalyze();
/* Restore parameters */
m_parameters[Z0_PRM] = Z0_dest;
m_parameters[ANG_L_PRM] = angl_l_dest;
m_parameters[PHYS_LEN_PRM] = C0 / m_parameters[FREQUENCY_PRM]
/ sqrt( m_parameters[EPSILON_EFF_PRM] ) * m_parameters[ANG_L_PRM]
/ 2.0 / M_PI; /* in m */
return error <= MAX_ERROR;
}
/**
* @function setErrorLevel
*
* set an error / warning level for a given parameter.
*
* @see TRANSLINE_OK
* @see TRANSLINE_WARNING
* @see TRANSLINE_ERROR
*
* @param aP parameter
* @param aErrorLevel Error level
*/
void TRANSLINE::setErrorLevel( PRMS_ID aP, char aErrorLevel )
{
switch( aErrorLevel )
{
case( TRANSLINE_WARNING ):
SetPropertyBgColorInDialog( aP, &warnCol );
break;
case( TRANSLINE_ERROR ):
SetPropertyBgColorInDialog( aP, &errCol );
break;
default:
SetPropertyBgColorInDialog( aP, &okCol );
break;
}
}

View File

@ -24,63 +24,109 @@
#ifndef __TRANSLINE_H
#define __TRANSLINE_H
#include <gal/color4d.h>
#include <wx/wx.h>
#define TRANSLINE_OK 0
#define TRANSLINE_WARNING 1
#define TRANSLINE_ERROR 2
// IDs for lines parameters used in calculation:
// (Used to retrieve these parameters from UI.
// DUMMY_PRM is used to skip a param line in dialogs. It is not really a parameter
enum PRMS_ID
{
UNKNOWN_ID = 0,
EPSILONR_PRM,
TAND_PRM,
RHO_PRM,
H_PRM,
TWISTEDPAIR_TWIST_PRM,
UNKNOWN_ID = -1,
EPSILONR_PRM, // dielectric constant
TAND_PRM, // Dielectric Loss Tangent
RHO_PRM, // Conductivity of conductor
H_PRM, // height of substrate
TWISTEDPAIR_TWIST_PRM, // Twists per length
H_T_PRM,
STRIPLINE_A_PRM,
T_PRM,
STRIPLINE_A_PRM, // Stripline : distance from line to top metal
T_PRM, // thickness of top metal
ROUGH_PRM,
MUR_PRM,
MUR_PRM, // magnetic permeability of substrate
TWISTEDPAIR_EPSILONR_ENV_PRM,
MURC_PRM,
FREQUENCY_PRM,
Z0_PRM,
MURC_PRM, // magnetic permeability of conductor
FREQUENCY_PRM, // Frequency of operation
Z0_PRM, // characteristic impedance
Z0_E_PRM,
Z0_O_PRM,
ANG_L_PRM,
ANG_L_PRM, // Electrical length in angle
PHYS_WIDTH_PRM,
PHYS_DIAM_IN_PRM,
PHYS_S_PRM,
PHYS_DIAM_OUT_PRM,
PHYS_LEN_PRM,
PHYS_DIAM_IN_PRM, // Inner diameter of cable
PHYS_S_PRM, // width of gap between line and ground
PHYS_DIAM_OUT_PRM, // Outer diameter of cable
PHYS_LEN_PRM, // Length of cable
DUMMY_PRM
};
// IDs for lines parameters used in calculation that are not given by the UI
enum EXTRA_PRMS_ID
{
EXTRA_PRMS_START = DUMMY_PRM - 1,
SIGMA_PRM, // Conductivity of the metal
SKIN_DEPTH_PRM, // Skin depth
LOSS_DIELECTRIC_PRM, // Loss in dielectric (dB)
LOSS_CONDUCTOR_PRM, // Loss in conductors (dB)
CUTOFF_FREQUENCY_PRM, // Cutoff frequency for higher order modes
EPSILON_EFF_PRM, // Effective dielectric constant
EXTRA_PRMS_COUNT,
};
class TRANSLINE
{
public: TRANSLINE();
public:
TRANSLINE();
virtual ~TRANSLINE();
const char* m_Name;
void setProperty( enum PRMS_ID aPrmId, double aValue );
double getProperty( enum PRMS_ID aPrmId );
void getProperties( void );
void checkProperties( void );
void setResult( int, double, const char* );
void setResult( int, const char* );
bool isSelected( enum PRMS_ID aPrmId );
virtual void synthesize() { };
virtual void analyze() { };
void Init();
virtual void synthesize();
virtual void calc(){};
/** @brief Computation for analysis
*/
virtual void calcAnalyze(){};
/** @brief Computation for synthesis
**/
virtual void calcSynthesize(){};
/** @brief Shows synthesis results and checks for errors / warnings.
**/
virtual void showAnalyze(){};
/** @brief Shows analysis results and checks for errors / warnings.
**/
virtual void showSynthesize(){};
/** @brief Shows results
**/
virtual void show_results(){};
void analyze();
KIGFX::COLOR4D errCol = KIGFX::COLOR4D( 1, 0.63, 0.63, 1 );
KIGFX::COLOR4D warnCol = KIGFX::COLOR4D( 1, 1, 0.57, 1 );
KIGFX::COLOR4D okCol = KIGFX::COLOR4D( 1, 1, 1, 1 );
protected:
double m_freq; // Frequency of operation
double er; /* dielectric constant */
double m_tand; // Dielectric Loss Tangent
double m_sigma; // Conductivity of the metal
double m_murC; // magnetic permeability of conductor
double m_skindepth; // Skin depth
double m_parameters[EXTRA_PRMS_COUNT];
double len; // length of line
double er_eff; // effective dielectric constant
double ang_l; // Electrical length in angle
bool minimizeZ0Error1D( double* );
double skin_depth();
void ellipke( double, double&, double& );
double ellipk( double );
void setErrorLevel( PRMS_ID, char );
};
#endif /* __TRANSLINE_H */

View File

@ -27,159 +27,181 @@
#include <cstdlib>
#include <cstring>
#include <units.h>
#include <transline.h>
#include <twistedpair.h>
#include <units.h>
TWISTEDPAIR::TWISTEDPAIR() : TRANSLINE()
{
m_Name = "TwistedPair";
// Initialize these variables mainly to avoid warnings from a static analyzer
din = 0.0; // Inner diameter of conductor
dout = 0.0; // Outer diameter of insulator
twists = 0.0; // Twists per length
er_env = 0.0; // dielectric constant of environment*/
len = 0.0; // Length of cable
Z0 = 0.0; // characteristic impedance
ang_l = 0.0; // Electrical length in angle
atten_dielectric = 0.0; // Loss in dielectric (dB)
atten_cond = 0.0; // Loss in conductors (dB)
er_eff = 1.0; // Effective dielectric constant
Init();
}
// -------------------------------------------------------------------
void TWISTEDPAIR::getProperties()
/**
* \f$ \theta = \arctan\left( T \cdot \pi \cdot D_{out} \right) \f$
*
* Where :
* - \f$ \theta \f$ : pitch angle
* - \f$ T \f$ : Number of twists per unit length
* - \f$ D_{out} \f$ : Wire diameter with insulation
*
* \f$ e_{eff} = e_{env} \cdot \left( 0.25 + 0.0007 \cdot \theta^2 \right)\cdot\left(e_r-e_{env}\right) \f$
*
* Where :
* - \f$ e_{env} \f$ : relative dielectric constant of air ( or some other surronding material ),
* - \f$ e_r \f$ : relative dielectric constant of the film insulation,
* - \f$ e_{eff} \f$ : effective relative dielectric constant
*
* \f$ Z_0 = \frac{Z_\mathrm{VACCUM}}{\pi \cdot \sqrt{e_{eff}}}\cosh^{-1}\left(\frac{D_{out}}{D_{in}}\right) \f$
*
* - \f$ Z_0 \f$ : line impedance
* - \f$ Z_\mathrm{VACCUM} \f$ : vaccum impedance
* - \f$ D_{in} \f$ : Wire diameter without insulation
*
* Reference for above equations :
*
* [1] : P. Lefferson, ``Twisted Magnet Wire Transmission Line,''
* IEEE Transactions on Parts, Hybrids, and Packaging, vol. PHP-7, no. 4, pp. 148-154, Dec. 1971.
*
* The following URL can be used as reference : http://qucs.sourceforge.net/tech/node93.html
**/
void TWISTEDPAIR::calcAnalyze()
{
m_freq = getProperty( FREQUENCY_PRM );
din = getProperty( PHYS_DIAM_IN_PRM );
dout = getProperty( PHYS_DIAM_OUT_PRM );
len = getProperty( PHYS_LEN_PRM );
er = getProperty( EPSILONR_PRM );
m_murC = getProperty( MURC_PRM );
m_tand = getProperty( TAND_PRM );
m_sigma = 1.0 / getProperty( RHO_PRM );
twists = getProperty( TWISTEDPAIR_TWIST_PRM );
er_env = getProperty( TWISTEDPAIR_EPSILONR_ENV_PRM );
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
}
double tw = atan( m_parameters[TWISTEDPAIR_TWIST_PRM] * M_PI
* m_parameters[PHYS_DIAM_OUT_PRM] ); // pitch angle
m_parameters[EPSILON_EFF_PRM] =
m_parameters[TWISTEDPAIR_EPSILONR_ENV_PRM]
+ ( 0.25 + 0.0007 * tw * tw )
* ( m_parameters[EPSILONR_PRM] - m_parameters[TWISTEDPAIR_EPSILONR_ENV_PRM] );
m_parameters[Z0_PRM] =
ZF0 / M_PI / sqrt( m_parameters[EPSILON_EFF_PRM] )
* acosh( m_parameters[PHYS_DIAM_OUT_PRM] / m_parameters[PHYS_DIAM_IN_PRM] );
// -------------------------------------------------------------------
void TWISTEDPAIR::calc()
{
m_skindepth = skin_depth();
m_parameters[LOSS_CONDUCTOR_PRM] =
10.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] / m_parameters[SKIN_DEPTH_PRM]
/ m_parameters[SIGMA_PRM] / M_PI / m_parameters[Z0_PRM]
/ ( m_parameters[PHYS_DIAM_IN_PRM] - m_parameters[SKIN_DEPTH_PRM] );
double tw = atan( twists * M_PI * dout ); // pitch angle
er_eff = er_env + (0.25 + 0.0007 * tw * tw) * (er - er_env);
m_parameters[LOSS_DIELECTRIC_PRM] = 20.0 / log( 10.0 ) * m_parameters[PHYS_LEN_PRM] * M_PI / C0
* m_parameters[FREQUENCY_PRM]
* sqrt( m_parameters[EPSILON_EFF_PRM] )
* m_parameters[TAND_PRM];
Z0 = ZF0 / M_PI / sqrt( er_eff ) * acosh( dout / din );
atten_cond = 10.0 / log( 10.0 ) * len / m_skindepth / m_sigma / M_PI / Z0 / (din - m_skindepth);
atten_dielectric = 20.0 / log( 10.0 ) * len * M_PI / C0* m_freq * sqrt( er_eff ) * m_tand;
ang_l = 2.0* M_PI* len* sqrt( er_eff ) * m_freq / C0; // in radians
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM]
* sqrt( m_parameters[EPSILON_EFF_PRM] ) * m_parameters[FREQUENCY_PRM]
/ C0; // in radians
}
// -------------------------------------------------------------------
void TWISTEDPAIR::show_results()
{
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
setResult( 0, er_eff, "" );
setResult( 1, atten_cond, "dB" );
setResult( 2, atten_dielectric, "dB" );
setResult( 3, m_skindepth / UNIT_MICRON, "µm" );
setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
// -------------------------------------------------------------------
void TWISTEDPAIR::analyze()
void TWISTEDPAIR::showAnalyze()
{
getProperties();
calc();
show_results();
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
{
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
{
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
}
// Find warnings to display - physical parameters
if( !std::isfinite( m_parameters[PHYS_DIAM_IN_PRM] ) || m_parameters[PHYS_DIAM_IN_PRM] <= 0.0 )
{
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_DIAM_OUT_PRM] )
|| m_parameters[PHYS_DIAM_OUT_PRM] <= 0.0 )
{
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_WARNING );
}
if( m_parameters[PHYS_DIAM_IN_PRM] > m_parameters[PHYS_DIAM_OUT_PRM] )
{
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_WARNING );
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0.0 )
{
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
}
}
void TWISTEDPAIR::showSynthesize()
{
if( isSelected( PHYS_DIAM_IN_PRM ) )
setProperty( PHYS_DIAM_IN_PRM, m_parameters[PHYS_DIAM_IN_PRM] );
else if( isSelected( PHYS_DIAM_OUT_PRM ) )
setProperty( PHYS_DIAM_OUT_PRM, m_parameters[PHYS_DIAM_OUT_PRM] );
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
// Check for errors
if( !std::isfinite( m_parameters[PHYS_DIAM_IN_PRM] ) || m_parameters[PHYS_DIAM_IN_PRM] <= 0.0 )
{
if( isSelected( PHYS_DIAM_IN_PRM ) )
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_ERROR );
else
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[PHYS_DIAM_OUT_PRM] )
|| m_parameters[PHYS_DIAM_OUT_PRM] <= 0.0 )
{
if( isSelected( PHYS_DIAM_OUT_PRM ) )
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_ERROR );
else
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_WARNING );
}
if( m_parameters[PHYS_DIAM_IN_PRM] > m_parameters[PHYS_DIAM_OUT_PRM] )
{
if( isSelected( PHYS_DIAM_IN_PRM ) )
setErrorLevel( PHYS_DIAM_IN_PRM, TRANSLINE_ERROR );
else if( isSelected( PHYS_DIAM_OUT_PRM ) )
setErrorLevel( PHYS_DIAM_OUT_PRM, TRANSLINE_ERROR );
}
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0.0 )
{
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
}
// Check for warnings
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
{
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
}
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
{
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
}
}
#define MAX_ERROR 0.000001
// -------------------------------------------------------------------
void TWISTEDPAIR::synthesize()
void TWISTEDPAIR::calcSynthesize()
{
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
int iteration;
getProperties();
/* required value of Z0 */
Z0_dest = Z0;
/* Newton's method */
iteration = 0;
/* compute parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
while( error > MAX_ERROR )
{
iteration++;
if( isSelected( PHYS_DIAM_IN_PRM ) )
{
increment = din / 100.0;
din += increment;
}
minimizeZ0Error1D( &( m_parameters[PHYS_DIAM_IN_PRM] ) );
else
{
increment = dout / 100.0;
dout += increment;
}
/* compute parameters */
calc();
Z0_result = Z0;
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = (Z0_result - Z0_current) / increment;
slope = (Z0_dest - Z0_current) / slope - increment;
if( isSelected( PHYS_DIAM_IN_PRM ) )
din += slope;
else
dout += slope;
if( din <= 0.0 )
din = increment;
if( dout <= 0.0 )
dout = increment;
/* find new error */
/* compute parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
if( iteration > 100 )
break;
}
setProperty( PHYS_DIAM_IN_PRM, din );
setProperty( PHYS_DIAM_OUT_PRM, dout );
/* calculate physical length */
ang_l = getProperty( ANG_L_PRM );
len = C0 / m_freq / sqrt( er_eff ) * ang_l / 2.0 / M_PI; /* in m */
setProperty( PHYS_LEN_PRM, len );
/* compute parameters */
calc();
/* print results in the subwindow */
show_results();
minimizeZ0Error1D( &( m_parameters[PHYS_DIAM_OUT_PRM] ) );
}

View File

@ -24,30 +24,19 @@
#ifndef __TWISTEDPAIR_H
#define __TWISTEDPAIR_H
#include <transline.h>
class TWISTEDPAIR : public TRANSLINE
{
public: TWISTEDPAIR();
private:
double din; // Inner diameter of conductor
double dout; // Outer diameter of insulator
double twists; // Twists per length
double er_env; // dielectric constant of environment*/
double len; // Length of cable
double Z0; // characteristic impedance
double ang_l; // Electrical length in angle
double er_eff; // Effective dielectric constant
double atten_dielectric; // Loss in dielectric (dB)
double atten_cond; // Loss in conductors (dB)
public:
void analyze() override;
void synthesize() override;
TWISTEDPAIR();
private:
void calc();
void show_results();
void getProperties();
void calcAnalyze() override;
void calcSynthesize() override;
void showAnalyze() override;
void showSynthesize() override;
void show_results() override;
};
#endif

View File

@ -17,8 +17,9 @@
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <wx/wx.h>
#include <wx/filename.h>
#include <wx/settings.h>
#include <wx/wx.h>
#include <pcb_calculator_frame_base.h>
@ -316,7 +317,7 @@ void PCB_CALCULATOR_FRAME::TranslineTypeSelection( enum TRANSLINE_TYPE_ID aType
}
wxASSERT ( data );
data->name->SetToolTip( prm->m_ToolTip );
data->name->SetLabel( prm->m_Label );
data->name->SetLabel( prm->m_Label != "" ? prm->m_Label + ':' : "" );
prm->m_ValueCtrl = data->value;
if( prm->m_Id != DUMMY_PRM )
{
@ -436,6 +437,25 @@ void PCB_CALCULATOR_FRAME::OnTranslineSelection( wxCommandEvent& event )
// The new size must be taken in account
m_panelTransline->GetSizer()->Layout();
m_panelTransline->Refresh();
// Delete previous warnings / errors
wxColour background = wxSystemSettings::GetColour( wxSYS_COLOUR_WINDOW );
m_Value_EpsilonR->SetBackgroundColour( background );
m_Value_TanD->SetBackgroundColour( background );
m_Value_Rho->SetBackgroundColour( background );
m_Substrate_prm4_Value->SetBackgroundColour( background );
m_Substrate_prm5_Value->SetBackgroundColour( background );
m_Substrate_prm6_Value->SetBackgroundColour( background );
m_Substrate_prm7_Value->SetBackgroundColour( background );
m_Substrate_prm8_Value->SetBackgroundColour( background );
m_Substrate_prm9_Value->SetBackgroundColour( background );
m_Value_Frequency_Ctrl->SetBackgroundColour( background );
m_Phys_prm1_Value->SetBackgroundColour( background );
m_Phys_prm2_Value->SetBackgroundColour( background );
m_Phys_prm3_Value->SetBackgroundColour( background );
m_elec_prm1_label->SetBackgroundColour( background );
m_elec_prm2_label->SetBackgroundColour( background );
m_elec_prm3_label->SetBackgroundColour( background );
}

View File

@ -107,21 +107,21 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
// Add common prms:
// Default values are for FR4
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, EPSILONR_PRM,
_( "Er:" ), _( "Epsilon R: substrate relative dielectric constant" ),
_( "Er" ), _( "Epsilon R: substrate relative dielectric constant" ),
4.6, false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, TAND_PRM,
_( "TanD:" ), _( "Tangent delta: dielectric loss factor." ), 2e-2,
_( "TanD" ), _( "Tangent delta: dielectric loss factor." ), 2e-2,
false ) );
// Default value is for copper
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, RHO_PRM,
_( "Rho:" ),
_( "Rho" ),
_( "Electrical resistivity or specific electrical resistance of conductor (Ohm*meter)" ),
1.72e-8, false ) );
// Default value is in GHz
AddPrm( new TRANSLINE_PRM( PRM_TYPE_FREQUENCY, FREQUENCY_PRM,
_( "Frequency:" ), _( "Frequency of the input signal" ), 1.0, true ) );
_( "Frequency" ), _( "Frequency of the input signal" ), 1.0, true ) );
switch( m_Type )
@ -136,30 +136,30 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "Skin Depth:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_PRM,
_( "H:" ), _( "Height of Substrate" ), 0.2, true ) );
_( "H" ), _( "Height of Substrate" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_T_PRM,
_( "H_t:" ), _( "Height of Box Top" ), 1e20, true ) );
_( "H_t" ), _( "Height of Box Top" ), 1e20, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, T_PRM,
_( "T:" ), _( "Strip Thickness" ), 0.035, true ) );
_( "T" ), _( "Strip Thickness" ), 0.035, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, ROUGH_PRM,
_( "Rough:" ), _( "Conductor Roughness" ), 0.0, true ) );
_( "Rough" ), _( "Conductor Roughness" ), 0.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MUR_PRM,
_( "mu Rel S:" ),
_( "mu Rel S" ),
_( "Relative Permeability (mu) of Substrate" ), 1, false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_WIDTH_PRM,
_( "W:" ), _( "Line Width" ), 0.2, true ) );
_( "W" ), _( "Line Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Line Length" ), 50.0, true ) );
_( "L" ), _( "Line Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50.0, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0.0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0.0, true ) );
break;
case CPW_TYPE: // coplanar waveguide
@ -173,25 +173,25 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "Skin Depth:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_PRM,
_( "H:" ), _( "Height of Substrate" ), 0.2, true ) );
_( "H" ), _( "Height of Substrate" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, T_PRM,
_( "T:" ), _( "Strip Thickness" ), 0.035, true ) );
_( "T" ), _( "Strip Thickness" ), 0.035, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_WIDTH_PRM,
_( "W:" ), _( "Line Width" ), 0.2, true ) );
_( "W" ), _( "Line Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_S_PRM,
_( "S:" ), _( "Gap Width" ), 0.2, true ) );
_( "S" ), _( "Gap Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Line Length" ), 50.0, true ) );
_( "L" ), _( "Line Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50.0, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0.0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0.0, true ) );
break;
case GROUNDED_CPW_TYPE: // grounded coplanar waveguide
@ -205,25 +205,25 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "Skin Depth:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_PRM,
_( "H:" ), _( "Height of Substrate" ), 0.2, true ) );
_( "H" ), _( "Height of Substrate" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, T_PRM,
_( "T:" ), _( "Strip Thickness" ), 0.035, true ) );
_( "T" ), _( "Strip Thickness" ), 0.035, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_WIDTH_PRM,
_( "W:" ), _( "Line Width" ), 0.2, true ) );
_( "W" ), _( "Line Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_S_PRM,
_( "S:" ), _( "Gap Width" ), 0.2, true ) );
_( "S" ), _( "Gap Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Line Length" ), 50.0, true ) );
_( "L" ), _( "Line Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50.0, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0, true ) );
break;
@ -240,23 +240,23 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "TM-Modes:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MUR_PRM,
_( "mu Rel I:" ), _( "Relative Permeability (mu) of Insulator" ), 1, false ) );
_( "mu Rel I" ), _( "Relative Permeability (mu) of Insulator" ), 1, false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_WIDTH_PRM,
_( "a:" ), _( "Width of Waveguide" ), 10.0, true ) );
_( "a" ), _( "Width of Waveguide" ), 10.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_S_PRM,
_( "b:" ), _( "Height of Waveguide" ), 5.0, true ) );
_( "b" ), _( "Height of Waveguide" ), 5.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Waveguide Length" ), 50.0, true ) );
_( "L" ), _( "Waveguide Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50.0, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0, true ) );
break;
case COAX_TYPE: // coaxial cable
@ -271,23 +271,23 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "TM-Modes:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MUR_PRM,
_( "mu Rel I:" ), _( "Relative Permeability (mu) of Insulator" ), 1, false ) );
_( "mu Rel I" ), _( "Relative Permeability (mu) of Insulator" ), 1, false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_DIAM_IN_PRM,
_( "Din:" ), _( "Inner Diameter (conductor)" ), 1.0, true ) );
_( "Din" ), _( "Inner Diameter (conductor)" ), 1.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_DIAM_OUT_PRM,
_( "Dout:" ), _( "Outer Diameter (insulator)" ), 8.0, true ) );
_( "Dout" ), _( "Outer Diameter (insulator)" ), 8.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Line Length" ), 50.0, true ) );
_( "L" ), _( "Line Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50.0, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0.0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0.0, true ) );
break;
case C_MICROSTRIP_TYPE: // coupled microstrip
@ -304,30 +304,30 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "Skin Depth:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_PRM,
_( "H:" ), _( "Height of Substrate" ), 0.2, true ) );
_( "H" ), _( "Height of Substrate" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_T_PRM,
_( "H_t:" ), _( "Height of Box Top" ), 1e20, true ) );
_( "H_t" ), _( "Height of Box Top" ), 1e20, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, T_PRM,
_( "T:" ), _( "Strip Thickness" ), 0.035, true ) );
_( "T" ), _( "Strip Thickness" ), 0.035, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, ROUGH_PRM,
_( "Rough:" ), _( "Conductor Roughness" ), 0.0, true ) );
_( "Rough" ), _( "Conductor Roughness" ), 0.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_WIDTH_PRM,
_( "W:" ), _( "Line Width" ), 0.2, true ) );
_( "W" ), _( "Line Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_S_PRM,
_( "S:" ), _( "Gap Width" ), 0.2, true ) );
_( "S" ), _( "Gap Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Line Length" ), 50.0, true ) );
_( "L" ), _( "Line Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_E_PRM,
_( "Zeven:" ), _( "Even mode impedance (lines driven by common voltages)" ), 50.0, true ) );
_( "Zeven" ), _( "Even mode impedance (lines driven by common voltages)" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_O_PRM,
_( "Zodd:" ), _( "Odd mode impedance (lines driven by opposite (differential) voltages)" ), 50.0, true ) );
_( "Zodd" ), _( "Odd mode impedance (lines driven by opposite (differential) voltages)" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0.0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0.0, true ) );
break;
case STRIPLINE_TYPE: // stripline
@ -340,26 +340,26 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "Skin Depth:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, H_PRM,
_( "H:" ), _( "Height of Substrate" ), 0.2, true ) );
_( "H" ), _( "Height of Substrate" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, STRIPLINE_A_PRM,
_( "a:" ), _( "distance between strip and top metal" ), 0.2,
_( "a" ), _( "distance between strip and top metal" ), 0.2,
true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, T_PRM,
_( "T:" ), _( "Strip Thickness" ), 0.035, true ) );
_( "T" ), _( "Strip Thickness" ), 0.035, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_WIDTH_PRM,
_( "W:" ), _( "Line Width" ), 0.2, true ) );
_( "W" ), _( "Line Width" ), 0.2, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Line Length" ), 50.0, true ) );
_( "L" ), _( "Line Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0, true ) );
break;
case TWISTEDPAIR_TYPE: // twisted pair
@ -373,25 +373,25 @@ TRANSLINE_IDENT::TRANSLINE_IDENT( enum TRANSLINE_TYPE_ID aType )
m_Messages.Add( _( "Skin Depth:" ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, TWISTEDPAIR_TWIST_PRM,
_( "Twists:" ), _( "Number of Twists per Length" ), 0.0, false ) );
_( "Twists" ), _( "Number of Twists per Length" ), 0.0, false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, MURC_PRM,
_( "mu Rel C:" ), _( "Relative Permeability (mu) of Conductor" ), 1,
_( "mu Rel C" ), _( "Relative Permeability (mu) of Conductor" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_SUBS, TWISTEDPAIR_EPSILONR_ENV_PRM,
_( "ErEnv:" ), _( "Relative Permittivity of Environment" ), 1,
_( "ErEnv" ), _( "Relative Permittivity of Environment" ), 1,
false ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_DIAM_IN_PRM,
_( "Din:" ), _( "Inner Diameter (conductor)" ), 1.0, true ) );
_( "Din" ), _( "Inner Diameter (conductor)" ), 1.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_DIAM_OUT_PRM,
_( "Dout:" ), _( "Outer Diameter (insulator)" ), 8.0, true ) );
_( "Dout" ), _( "Outer Diameter (insulator)" ), 8.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_PHYS, PHYS_LEN_PRM,
_( "L:" ), _( "Cable Length" ), 50.0, true ) );
_( "L" ), _( "Cable Length" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, Z0_PRM,
_( "Z0:" ), _( "Characteristic Impedance" ), 50.0, true ) );
_( "Z0" ), _( "Characteristic Impedance" ), 50.0, true ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, DUMMY_PRM ) );
AddPrm( new TRANSLINE_PRM( PRM_TYPE_ELEC, ANG_L_PRM,
_( "Ang_l:" ), _( "Electrical Length" ), 0.0, true ) );
_( "Ang_l" ), _( "Electrical Length" ), 0.0, true ) );
break;
case END_OF_LIST_TYPE: // Not really used
@ -422,7 +422,7 @@ void TRANSLINE_IDENT::ReadConfig()
for( auto& param : m_prms_List )
{
std::string id = std::to_string( param->m_Id );
std::string id = param->m_Label.ToStdString();
try
{
@ -443,7 +443,13 @@ void TRANSLINE_IDENT::WriteConfig()
for( auto& param : m_prms_List )
{
std::string id = std::to_string( param->m_Id );
std::string id = param->m_Label.ToStdString();
if( !std::isfinite( param->m_Value ) )
{
param->m_Value = 0;
}
cfg->m_TransLine.param_values[ name ][ id ] = param->m_Value;
cfg->m_TransLine.param_units[ name ][ id ] = param->m_UnitSelection;
}