code cleaning

This commit is contained in:
charras 2008-11-23 16:31:35 +00:00
parent 237a8539fc
commit b3b9c12173
4 changed files with 42 additions and 547 deletions

View File

@ -153,7 +153,6 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode )
if( (old_subnet > 0) && (old_subnet != subnet) ) // Merge previous subnet with the current if( (old_subnet > 0) && (old_subnet != subnet) ) // Merge previous subnet with the current
{ {
//printf(" merge subnets: %d et %d (%d)\n", old_subnet, subnet,item->Type());
for( unsigned jj = 0; jj < Candidates.size(); jj++ ) for( unsigned jj = 0; jj < Candidates.size(); jj++ )
{ {
BOARD_CONNECTED_ITEM* item_to_merge = Candidates[jj]; BOARD_CONNECTED_ITEM* item_to_merge = Candidates[jj];
@ -233,7 +232,6 @@ void Merge_SubNets_Connected_By_CopperAreas( BOARD* aPcb, int aNetcode )
if( !found ) // No zone with this netcode, therefore no connection by zone if( !found ) // No zone with this netcode, therefore no connection by zone
return; return;
printf(" Merge_SubNets net = %d\n", aNetcode);
std::vector <BOARD_CONNECTED_ITEM*> Candidates; // list of pads and tracks candidates to test. std::vector <BOARD_CONNECTED_ITEM*> Candidates; // list of pads and tracks candidates to test.
// Build a list of candidates connected to the net: // Build a list of candidates connected to the net:

View File

@ -13,143 +13,6 @@ using namespace std;
#include "PolyLine.h" #include "PolyLine.h"
// function to find inflection-pont to create a "dogleg" of two straight-line segments
// where one segment is vertical or horizontal and the other is at 45 degrees or 90 degrees
// enter with:
// pi = start point
// pf = end point
// mode = IM_90_45 or IM_45_90 or IM_90
//
CPoint GetInflectionPoint( CPoint pi, CPoint pf, int mode )
{
CPoint p = pi;
if( mode == IM_NONE )
return p;
int dx = pf.x - pi.x;
int dy = pf.y - pi.y;
if( dx == 0 || dy == 0 || abs(dx) == abs(dy) )
{
// only one segment needed
}
else
{
if( abs(dy) > abs(dx) )
{
// vertical > horizontal
if( mode == IM_90 )
{
p.x = pi.x;
p.y = pf.y;
}
else if( mode == IM_45_90 || mode == IM_90_45 )
{
int vert; // length of vertical line needed
if( dy > 0 )
vert = dy - abs(dx); // positive
else
vert = dy + abs(dx); // negative
if( mode == IM_90_45 )
p.y = pi.y + vert;
else if( mode == IM_45_90 )
{
p.y = pf.y - vert;
p.x = pf.x;
}
}
else
wxASSERT(0);
}
else
{
// horizontal > vertical
if( mode == IM_90 )
{
p.x = pf.x;
p.y = pi.y;
}
else if( mode == IM_45_90 || mode == IM_90_45 )
{
int hor; // length of horizontal line needed
if( dx > 0 )
hor = dx - abs(dy); // positive
else
hor = dx + abs(dy); // negative
if( mode == IM_90_45 )
p.x = pi.x + hor;
else if( mode == IM_45_90 )
{
p.x = pf.x - hor;
p.y = pf.y;
}
}
else
wxASSERT(0);
}
}
return p;
}
//
// function to rotate a point clockwise about another point
// currently, angle must be 0, 90, 180 or 270
//
void RotatePoint( CPoint *p, int angle, CPoint org )
{
if( angle == 90 )
{
int tempy = org.y + (org.x - p->x);
p->x = org.x + (p->y - org.y);
p->y = tempy;
}
else if( angle > 90 )
{
for( int i=0; i<(angle/90); i++ )
RotatePoint( p, 90, org );
}
}
// function to rotate a rectangle clockwise about a point
// angle must be 0, 90, 180 or 270
// on exit, r->top > r.bottom, r.right > r.left
//
void RotateRect( CRect *r, int angle, CPoint org )
{
CRect tr;
if( angle == 90 )
{
tr.left = org.x + (r->bottom - org.y);
tr.right = org.x + (r->top - org.y);
tr.top = org.y + (org.x - r->right);
tr.bottom = org.y + (org.x - r->left);
if( tr.left > tr.right )
{
int temp = tr.right;
tr.left = tr.right;
tr.left = temp;
}
if( tr.left > tr.right )
{
int temp = tr.right;
tr.left = tr.right;
tr.left = temp;
}
if( tr.bottom > tr.top )
{
int temp = tr.bottom;
tr.bottom = tr.top;
tr.top = temp;
}
}
else if( angle > 90 )
{
tr = *r;
for( int i=0; i<(angle/90); i++ )
RotateRect( &tr, 90, org );
}
*r = tr;
}
// test for hit on line segment // test for hit on line segment
// i.e. cursor within a given distance from segment // i.e. cursor within a given distance from segment
// enter with: x,y = cursor coords // enter with: x,y = cursor coords
@ -206,15 +69,6 @@ int TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist )
} }
// find intersection between y = a + bx and y = c + dx;
//
int FindLineIntersection( double a, double b, double c, double d, double * x, double * y )
{
*x = (c-a)/(b-d);
*y = a + b*(*x);
return 0;
}
// set EllipseKH struct to describe the ellipse for an arc // set EllipseKH struct to describe the ellipse for an arc
// //
int MakeEllipseFromArc( int xi, int yi, int xf, int yf, int style, EllipseKH * el ) int MakeEllipseFromArc( int xi, int yi, int xf, int yf, int style, EllipseKH * el )
@ -875,250 +729,6 @@ bool FindLineEllipseIntersections( double a, double b, double c, double d, doubl
} }
#if 0
// draw a straight line or an arc between xi,yi and xf,yf
//
void DrawArc( CDC * pDC, int shape, int xxi, int yyi, int xxf, int yyf, bool bMeta )
{
int xi, yi, xf, yf;
if( shape == DL_LINE || xxi == xxf || yyi == yyf )
{
// draw straight line
pDC->MoveTo( xxi, yyi );
pDC->LineTo( xxf, yyf );
}
else if( shape == DL_ARC_CCW || shape == DL_ARC_CW )
{
// set endpoints so we can always draw counter-clockwise arc
if( shape == DL_ARC_CW )
{
xi = xxf;
yi = yyf;
xf = xxi;
yf = yyi;
}
else
{
xi = xxi;
yi = yyi;
xf = xxf;
yf = yyf;
}
pDC->MoveTo( xi, yi );
if( xf > xi && yf > yi )
{
// quadrant 1
int w = (xf-xi)*2;
int h = (yf-yi)*2;
if( !bMeta )
pDC->Arc( xf-w, yi+h, xf, yi,
xi, yi, xf, yf );
else
pDC->Arc( xf-w, yi, xf, yi+h,
xf, yf, xi, yi );
}
else if( xf < xi && yf > yi )
{
// quadrant 2
int w = -(xf-xi)*2;
int h = (yf-yi)*2;
if( !bMeta )
pDC->Arc( xi-w, yf, xi, yf-h,
xi, yi, xf, yf );
else
pDC->Arc( xi-w, yf-h, xi, yf,
xf, yf, xi, yi );
}
else if( xf < xi && yf < yi )
{
// quadrant 3
int w = -(xf-xi)*2;
int h = -(yf-yi)*2;
if( !bMeta )
pDC->Arc( xf, yi, xf+w, yi-h,
xi, yi, xf, yf );
else
pDC->Arc( xf, yi-h, xf+w, yi,
xf, yf, xi, yi );
}
else if( xf > xi && yf < yi )
{
// quadrant 4
int w = (xf-xi)*2;
int h = -(yf-yi)*2;
if( !bMeta )
pDC->Arc( xi, yf+h, xi+w, yf,
xi, yi, xf, yf );
else
pDC->Arc( xi, yf, xi+w, yf+h,
xf, yf, xi, yi );
}
pDC->MoveTo( xxf, yyf );
}
else
wxASSERT(0); // oops
}
#endif
// Get arrays of circles, rects and line segments to represent pad
// for purposes of drawing pad or calculating clearances
// margins of circles and line segments represent pad outline
// circles and rects are used to find points inside pad
//
void GetPadElements( int type, int x, int y, int wid, int len, int radius, int angle,
int * nr, my_rect r[], int * nc, my_circle c[], int * ns, my_seg s[] )
{
*nc = 0;
*nr = 0;
*ns = 0;
if( type == PAD_ROUND )
{
*nc = 1;
c[0] = my_circle(x,y,wid/2);
return;
}
if( type == PAD_SQUARE )
{
*nr = 1;
r[0] = my_rect(x-wid/2, y-wid/2,x+wid/2, y+wid/2);
*ns = 4;
s[0] = my_seg(x-wid/2, y+wid/2,x+wid/2, y+wid/2); // top
s[1] = my_seg(x-wid/2, y-wid/2,x+wid/2, y-wid/2); // bottom
s[2] = my_seg(x-wid/2, y-wid/2,x-wid/2, y+wid/2); // left
s[3] = my_seg(x+wid/2, y-wid/2,x+wid/2, y+wid/2); // right
return;
}
if( type == PAD_OCTAGON )
{
const double pi = 3.14159265359;
*nc = 1; // circle represents inside of polygon
c[0] = my_circle(x, y, wid/2);
*ns = 8; // now create sides of polygon
double theta = pi/8.0;
double radius = 0.5*(double)wid/cos(theta);
double last_x = x + radius*cos(theta);
double last_y = y + radius*sin(theta);
for( int is=0; is<8; is++ )
{
theta += pi/4.0;
double dx = x + radius*cos(theta);
double dy = y + radius*sin(theta);
s[is] = my_seg((int) last_x, (int) last_y, x, y);
last_x = dx;
last_y = dy;
}
return;
}
//
int h;
int v;
if( angle == 90 || angle == 270 )
{
h = wid;
v = len;
}
else
{
v = wid;
h = len;
}
if( type == PAD_RECT )
{
*nr = 1;
r[0] = my_rect(x-h/2, y-v/2, x+h/2, y+v/2);
*ns = 4;
s[0] = my_seg(x-h/2, y+v/2,x+h/2, y+v/2); // top
s[1] = my_seg(x-h/2, y-v/2,x+h/2, y-v/2); // bottom
s[2] = my_seg(x-h/2, y-v/2,x-h/2, y+v/2); // left
s[3] = my_seg(x+h/2, y-v/2,x+h/2, y+v/2); // right
return;
}
if( type == PAD_RRECT )
{
*nc = 4;
c[0] = my_circle(x-h/2+radius, y-v/2+radius, radius); // bottom left circle
c[1] = my_circle(x+h/2-radius, y-v/2+radius, radius); // bottom right circle
c[2] = my_circle(x-h/2+radius, y+v/2-radius, radius); // top left circle
c[3] = my_circle(x+h/2-radius, y+v/2-radius, radius); // top right circle
*ns = 4;
s[0] = my_seg(x-h/2+radius, y+v/2, x+h/2-radius, y+v/2); // top
s[1] = my_seg(x-h/2+radius, y-v/2, x+h/2-radius, y+v/2); // bottom
s[2] = my_seg(x-h/2, y-v/2+radius, x-h/2, y+v/2-radius); // left
s[3] = my_seg(x+h/2, y-v/2+radius, x+h/2, y+v/2-radius); // right
return;
}
if( type == PAD_OVAL )
{
if( h > v )
{
// horizontal
*nc = 2;
c[0] = my_circle(x-h/2+v/2, y, v/2); // left circle
c[1] = my_circle(x+h/2-v/2, y, v/2); // right circle
*nr = 1;
r[0] = my_rect(x-h/2+v/2, y-v/2, x+h/2-v/2, y+v/2);
*ns = 2;
s[0] = my_seg(x-h/2+v/2, y+v/2, x+h/2-v/2, y+v/2); // top
s[1] = my_seg(x-h/2+v/2, y-v/2, x+h/2-v/2, y-v/2); // bottom
}
else
{
// vertical
*nc = 2;
c[0] = my_circle(x, y+v/2-h/2, h/2); // top circle
c[1] = my_circle(x, y-v/2+h/2, h/2); // bottom circle
*nr = 1;
r[0] = my_rect(x-h/2, y-v/2+h/2, x+h/2, y+v/2-h/2);
*ns = 2;
s[0] = my_seg(x-h/2, y-v/2+h/2, x-h/2, y+v/2-h/2); // left
s[1] = my_seg(x+h/2, y-v/2+h/2, x+h/2, y+v/2-h/2); // left
}
return;
}
wxASSERT(0);
}
// Find distance from a staright line segment to a pad
//
int GetClearanceBetweenSegmentAndPad( int x1, int y1, int x2, int y2, int w,
int type, int x, int y, int wid, int len, int radius, int angle )
{
if( type == PAD_NONE )
return INT_MAX;
else
{
int nc, nr, ns;
my_circle c[4];
my_rect r[2];
my_seg s[8];
GetPadElements( type, x, y, wid, len, radius, angle,
&nr, r, &nc, c, &ns, s );
// first test for endpoints of line segment in rectangle
for( int ir=0; ir<nr; ir++ )
{
if( x1 >= r[ir].xlo && x1 <= r[ir].xhi && y1 >= r[ir].ylo && y1 <= r[ir].yhi )
return 0;
if( x2 >= r[ir].xlo && x2 <= r[ir].xhi && y2 >= r[ir].ylo && y2 <= r[ir].yhi )
return 0;
}
// now get distance from elements of pad outline
int dist = INT_MAX;
for( int ic=0; ic<nc; ic++ )
{
int d = (int)GetPointToLineSegmentDistance( c[ic].x, c[ic].y, x1, y1, x2, y2 ) - c[ic].r - w/2;
dist = min(dist,d);
}
for( int is=0; is<ns; is++ )
{
double d;
TestForIntersectionOfStraightLineSegments( s[is].xi, s[is].yi, s[is].xf, s[is].yf,
x1, y1, x2, y2, NULL, NULL, &d );
dist = min(dist, (int)d - w/2);
}
return max(0,dist);
}
}
// Get clearance between 2 segments // Get clearance between 2 segments
// Returns point in segment closest to other segment in x, y // Returns point in segment closest to other segment in x, y
@ -1300,67 +910,6 @@ int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int style1,
// Find clearance between pads
// For each pad:
// type = PAD_ROUND, PAD_SQUARE, etc.
// x, y = center position
// w, l = width and length
// r = corner radius
// angle = 0 or 90 (if 0, pad length is along x-axis)
//
int GetClearanceBetweenPads( int type1, int x1, int y1, int w1, int l1, int r1, int angle1,
int type2, int x2, int y2, int w2, int l2, int r2, int angle2 )
{
if( type1 == PAD_NONE )
return INT_MAX;
if( type2 == PAD_NONE )
return INT_MAX;
int dist = INT_MAX;
int nr, nc, ns, nrr, ncc, nss;
my_rect r[2], rr[2];
my_circle c[4], cc[4];
my_seg s[8], ss[8];
GetPadElements( type1, x1, y1, w1, l1, r1, angle1,
&nr, r, &nc, c, &ns, s );
GetPadElements( type2, x2, y2, w2, l2, r2, angle2,
&nrr, rr, &ncc, cc, &nss, ss );
// now find distance from every element of pad1 to every element of pad2
for( int ic=0; ic<nc; ic++ )
{
for( int icc=0; icc<ncc; icc++ )
{
int d = (int) Distance( c[ic].x, c[ic].y, cc[icc].x, cc[icc].y )
- c[ic].r - cc[icc].r;
dist = min(dist,d);
}
for( int iss=0; iss<nss; iss++ )
{
int d = (int) GetPointToLineSegmentDistance( c[ic].x, c[ic].y,
ss[iss].xi, ss[iss].yi, ss[iss].xf, ss[iss].yf ) - c[ic].r;
dist = min(dist,d);
}
}
for( int is=0; is<ns; is++ )
{
for( int icc=0; icc<ncc; icc++ )
{
int d = (int) GetPointToLineSegmentDistance( cc[icc].x, cc[icc].y,
s[is].xi, s[is].yi, s[is].xf, s[is].yf ) - cc[icc].r;
dist = min(dist,d);
}
for( int iss=0; iss<nss; iss++ )
{
double d;
TestForIntersectionOfStraightLineSegments( s[is].xi, s[is].yi, s[is].xf, s[is].yf,
ss[iss].xi, ss[iss].yi, ss[iss].xf, ss[iss].yf, NULL, NULL, &d );
dist = min(dist, (int)d);
}
}
return max(dist,0);
}
// Get min. distance from (x,y) to line y = a + bx // Get min. distance from (x,y) to line y = a + bx
// if b > DBL_MAX/10, assume vertical line at x = a // if b > DBL_MAX/10, assume vertical line at x = a
// returns closest point on line in xp, yp // returns closest point on line in xp, yp

View File

@ -19,56 +19,10 @@ typedef struct EllipseTag
double theta1, theta2; // start and end angle for arc double theta1, theta2; // start and end angle for arc
} EllipseKH; } EllipseKH;
const CPoint zero(0,0);
class my_circle {
public:
my_circle(){};
my_circle( int xx, int yy, int rr )
{
x = xx;
y = yy;
r = rr;
};
int x, y, r;
};
class my_rect {
public:
my_rect(){};
my_rect( int xi, int yi, int xf, int yf )
{
xlo = MIN(xi,xf);
xhi = MAX(xi,xf);
ylo = MIN(yi,yf);
yhi = MAX(yi,yf);
};
int xlo, ylo, xhi, yhi;
};
class my_seg {
public:
my_seg(){};
my_seg( int xxi, int yyi, int xxf, int yyf )
{
xi = xxi;
yi = yyi;
xf = xxf;
yf = yyf;
};
int xi, yi, xf, yf;
};
// math stuff for graphics // math stuff for graphics
#if 0
void DrawArc( CDC * pDC, int shape, int xxi, int yyi, int xxf, int yyf, bool bMeta=FALSE );
#endif
bool Quadratic( double a, double b, double c, double *x1, double *x2 ); bool Quadratic( double a, double b, double c, double *x1, double *x2 );
void RotatePoint( CPoint *p, int angle, CPoint org );
void RotateRect( CRect *r, int angle, CPoint org );
int TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist ); int TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist );
int FindLineIntersection( double a, double b, double c, double d, double * x, double * y );
int FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, int yf, int style, int FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, int yf, int style,
double * x1, double * y1, double * x2, double * y2, double * dist=NULL ); double * x1, double * y1, double * x2, double * y2, double * dist=NULL );
int FindSegmentIntersections( int xi, int yi, int xf, int yf, int style, int FindSegmentIntersections( int xi, int yi, int xf, int yf, int style,
@ -79,13 +33,6 @@ bool FindVerticalLineEllipseIntersections( double a, double b, double x, double
bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y1f, bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y1f,
int x2i, int y2i, int x2f, int y2f, int x2i, int y2i, int x2f, int y2f,
int * x=NULL, int * y=NULL, double * dist=NULL ); int * x=NULL, int * y=NULL, double * dist=NULL );
void GetPadElements( int type, int x, int y, int wid, int len, int radius, int angle,
int * nr, my_rect r[], int * nc, my_circle c[], int * ns, my_seg s[] );
int GetClearanceBetweenPads( int type1, int x1, int y1, int w1, int l1, int r1, int angle1,
int type2, int x2, int y2, int w2, int l2, int r2, int angle2 );
int GetClearanceBetweenSegmentAndPad( int x1, int y1, int x2, int y2, int w,
int type, int x, int y, int wid, int len,
int radius, int angle );
int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int style1, int w1, int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int style1, int w1,
int x2i, int y2i, int x2f, int y2f, int style2, int w2, int x2i, int y2i, int x2f, int y2f, int style2, int w2,
int max_cl, int * x, int * y ); int max_cl, int * x, int * y );
@ -104,5 +51,4 @@ double Distance( int x1, int y1, int x2, int y2 );
int GetArcIntersections( EllipseKH * el1, EllipseKH * el2, int GetArcIntersections( EllipseKH * el1, EllipseKH * el2,
double * x1=NULL, double * y1=NULL, double * x1=NULL, double * y1=NULL,
double * x2=NULL, double * y2=NULL ); double * x2=NULL, double * y2=NULL );
CPoint GetInflectionPoint( CPoint pi, CPoint pf, int mode );

View File

@ -15,6 +15,10 @@ using namespace std;
* At each crossing, the ray switches between inside and outside. * At each crossing, the ray switches between inside and outside.
* If odd count, the test point is inside the polygon * If odd count, the test point is inside the polygon
* This is called the Jordan curve theorem, or sometimes referred to as the "even-odd" test. * This is called the Jordan curve theorem, or sometimes referred to as the "even-odd" test.
* Take care to starting and ending points of segments outlines:
* Only one must be used because the startingpoint of a segemnt is also the ending point of the previous.
* And we do no use twice the same segment, so we do NOT use both starting and ending points of segments.
* So we must use starting point but not ending point of each segment when calculating intersections
*/ */
/* 2 versions are given. /* 2 versions are given.
@ -22,7 +26,7 @@ using namespace std;
* the first version is for explanations and tests (used to test the second version) * the first version is for explanations and tests (used to test the second version)
* both use the same algorithm. * both use the same algorithm.
*/ */
#if 1 #if 0
/* This text and the algorithm come from http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html /* This text and the algorithm come from http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
* *
@ -291,7 +295,6 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
/** Function TestPointInsidePolygon /** Function TestPointInsidePolygon
* test if a point is inside or outside a polygon. * test if a point is inside or outside a polygon.
* if a point is on a outline segment, it is considered outside the polygon
* the polygon must have only lines (not arcs) for outlines. * the polygon must have only lines (not arcs) for outlines.
* Use TestPointInside or TestPointInsideContour for more complex polygons * Use TestPointInside or TestPointInsideContour for more complex polygons
* @param aPolysList: the list of polygons * @param aPolysList: the list of polygons
@ -301,55 +304,54 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
* @return true if the point is inside, false for outside * @return true if the point is inside, false for outside
*/ */
{ {
#define OUTSIDE_IF_ON_SIDE 0 // = 1 if we consider point on a side outside the polygon // count intersection points to right of (refx,refy), if odd (refx,refy) is inside polyline
// define line passing through (x,y), with slope = 0 (horizontal line)
// get intersection points
// count intersection points to right of (x,y), if odd (x,y) is inside polyline
int xx, yy;
double slope = 0; // Using an horizontal line.
double a = refy - slope * refx;
int ics, ice; int ics, ice;
bool inside = false; bool inside = false;
// find all intersection points of line with polyline sides // find all intersection points of line with polyline sides
for( ics = istart, ice = iend; ics <= iend; ice = ics++ ) for( ics = istart, ice = iend; ics <= iend; ice = ics++ )
{ {
double intersectx1, intersecty1, intersectx2, intersecty2; int seg_startX = aPolysList[ics].x;
int ok; int seg_startY = aPolysList[ics].y;
ok = FindLineSegmentIntersection( a, slope, int seg_endX = aPolysList[ice].x;
aPolysList[ics].x, aPolysList[ics].y, int seg_endY = aPolysList[ice].y;
aPolysList[ice].x, aPolysList[ice].y,
CPolyLine::STRAIGHT,
&intersectx1, &intersecty1,
&intersectx2, &intersecty2 );
/* FindLineSegmentIntersection() returns 0, 1 or 2 coordinates (ok = 0, 1, 2) /* Trivial cases: skip if ref above or below the segment to test
* for straight line segments, only 0 or 1 are possible * Note: end point segment is skipped, because we do not test twice the same point:
* (2 intersections points are possible only with arcs * If the start point of segments is tested, the end point must be skipped, because
*/ * this is also the starting point of the next segment
if( ok ) // Intersection found */
{ // segment above ref point: skip
xx = (int) intersectx1; if( ( seg_startY > refy ) && (seg_endY > refy ) )
yy = (int) intersecty1; continue;
/* if the intersection point is on the start point of the current segment, // segment below ref point, or its end on ref point: skip
* do not count it, // Note: also we skip vertical segments
* because it was already counted, as ending point of the previous segment // So points on vertical segments outlines are seen as outside the polygon
*/ if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
if( xx == aPolysList[ics].x && yy == aPolysList[ics].y ) continue;
continue;
#if OUTSIDE_IF_ON_SIDE /* refy is between seg_startY and seg_endY.
if( xx == refx && yy == refy ) * see if an horizontal line from refx is intersecting the segment
return false; // (x,y) is on a side, call it outside */
else
#endif // calculate the x position of the intersection of this segment and the semi infinite line
if( xx > refx ) // this is more easier if we move the X,Y axis origin to the segment start point:
inside = not inside; seg_endX -= seg_startX;
} seg_endY -= seg_startY;
double newrefx = (double)(refx - seg_startX);
double newrefy = (double) (refy - seg_startY);
// Now calculate the x intersection coordinate of the line from (0,0) to (seg_endX,seg_endY)
// with the horizontal line at the new refy position
// the line slope is slope = seg_endY/seg_endX;
// and the x pos relative to the new origin is intersec_x = refy/slope
// Note: because vertical segments are skipped, slope exists (seg_end_y not O)
double intersec_x = newrefy * seg_endX / seg_endY;
if( newrefx < intersec_x ) // Intersection found with the semi-infinite line from -infinite to refx
inside = not inside;
} }
return inside; return inside;
} }
#endif #endif