Remove old rect placement algorithm.

This commit is contained in:
Alex 2022-09-27 16:14:07 +03:00 committed by Jon Evans
parent ba6afafc86
commit b6eb5f721a
3 changed files with 0 additions and 400 deletions

View File

@ -1,38 +0,0 @@
A class that fits subrectangles into a power-of-2 rectangle
(C) Copyright 2000-2002 by Javier Arevalo
This code is free to use and modify for all purposes
You have a bunch of rectangular pieces. You need to arrange them in a
rectangular surface so that they don't overlap, keeping the total area of the
rectangle as small as possible. This is fairly common when arranging characters
in a bitmapped font, lightmaps for a 3D engine, and I guess other situations as
well.
The idea of this algorithm is that, as we add rectangles, we can pre-select
"interesting" places where we can try to add the next rectangles. For optimal
results, the rectangles should be added in order. I initially tried using area
as a sorting criteria, but it didn't work well with very tall or very flat
rectangles. I then tried using the longest dimension as a selector, and it
worked much better. So much for intuition...
These "interesting" places are just to the right and just below the currently
added rectangle. The first rectangle, obviously, goes at the top left, the next
one would go either to the right or below this one, and so on. It is a weird way
to do it, but it seems to work very nicely.
The way we search here is fairly brute-force, the fact being that for most off-
line purposes the performance seems more than adequate. I have generated a
japanese font with around 8500 characters and all the time was spent generating
the bitmaps.
Also, for all we care, we could grow the parent rectangle in a different way
than power of two. It just happens that power of 2 is very convenient for
graphics hardware textures.
I'd be interested in hearing of other approaches to this problem. Make sure
to post them on http://www.flipcode.com
See also
http://www.flipcode.com/archives/Rectangle_Placement.shtml
http://kossovsky.net/index.php/2009/07/cshar-rectangle-packing

View File

@ -1,258 +0,0 @@
// ----------------------------------------------------------------------------------------
// Name : rect_placement.cpp
// Description : A class that fits subrectangles into a power-of-2 rectangle
// (C) Copyright 2000-2002 by Javier Arevalo
// This code is free to use and modify for all purposes
// ----------------------------------------------------------------------------------------
/*
* You have a bunch of rectangular pieces. You need to arrange them in a
* rectangular surface so that they don't overlap, keeping the total area of the
* rectangle as small as possible. This is fairly common when arranging characters
* in a bitmapped font, lightmaps for a 3D engine, and I guess other situations as
* well.
*
* The idea of this algorithm is that, as we add rectangles, we can pre-select
* "interesting" places where we can try to add the next rectangles. For optimal
* results, the rectangles should be added in order. I initially tried using area
* as a sorting criteria, but it didn't work well with very tall or very flat
* rectangles. I then tried using the longest dimension as a selector, and it
* worked much better. So much for intuition...
*
* These "interesting" places are just to the right and just below the currently
* added rectangle. The first rectangle, obviously, goes at the top left, the next
* one would go either to the right or below this one, and so on. It is a weird way
* to do it, but it seems to work very nicely.
*
* The way we search here is fairly brute-force, the fact being that for most off-
* line purposes the performance seems more than adequate. I have generated a
* japanese font with around 8500 characters and all the time was spent generating
* the bitmaps.
*
* Also, for all we care, we could grow the parent rectangle.
*
* I'd be interested in hearing of other approaches to this problem. Make sure
* to post them on http://www.flipcode.com
*/
#include "rect_placement.h"
// --------------------------------------------------------------------------------
// Name :
// Description :
// --------------------------------------------------------------------------------
void CRectPlacement::Init( int w, int h )
{
End();
m_size = TRect( 0, 0, w, h );
m_vPositions.push_back( TPos( 0, 0 ) );
m_area = 0;
}
// --------------------------------------------------------------------------------
// Name :
// Description :
// --------------------------------------------------------------------------------
void CRectPlacement::End()
{
m_vPositions.clear();
m_vRects.clear();
m_size.w = 0;
}
// --------------------------------------------------------------------------------
// Name : IsFree
// Description : Check if the given rectangle is partially or totally used
// --------------------------------------------------------------------------------
bool CRectPlacement::IsFree( const TRect& r ) const
{
if( !m_size.Contains( r ) )
return false;
for( CRectArray::const_iterator it = m_vRects.begin();
it != m_vRects.end(); ++it )
{
if( it->Intersects( r ) )
return false;
}
return true;
}
// --------------------------------------------------------------------------------
// Name : AddPosition
// Description : Add new anchor point
// --------------------------------------------------------------------------------
void CRectPlacement::AddPosition( const TPos& p )
{
// Try to insert anchor as close as possible to the top left corner
// So it will be tried first
bool bFound = false;
CPosArray::iterator it;
for( it = m_vPositions.begin();
!bFound && it != m_vPositions.end();
++it )
{
if( p.x + p.y < it->x + it->y )
bFound = true;
}
if( bFound )
m_vPositions.insert( it, p );
else
m_vPositions.push_back( p );
}
// --------------------------------------------------------------------------------
// Name : AddRect
// Description : Add the given rect and updates anchor points
// --------------------------------------------------------------------------------
void CRectPlacement::AddRect( const TRect& r )
{
m_vRects.push_back( r );
m_area += r.w * r.h;
// Add two new anchor points
AddPosition( TPos( r.x, r.y + r.h ) );
AddPosition( TPos( r.x + r.w, r.y ) );
}
// --------------------------------------------------------------------------------
// Name : AddAtEmptySpot
// Description : Add the given rectangle
// --------------------------------------------------------------------------------
bool CRectPlacement::AddAtEmptySpot( TRect& r )
{
// Find a valid spot among available anchors.
bool bFound = false;
CPosArray::iterator it;
for( it = m_vPositions.begin();
!bFound && it != m_vPositions.end();
++it )
{
TRect Rect( it->x, it->y, r.w, r.h );
if( IsFree( Rect ) )
{
r = Rect;
bFound = true;
break; // Don't let the loop increase the iterator.
}
}
if( bFound )
{
int x, y;
// Remove the used anchor point
m_vPositions.erase( it );
// Sometimes, anchors end up displaced from the optimal position
// due to irregular sizes of the subrects.
// So, try to adjut it up & left as much as possible.
for( x = 1; x <= r.x; x++ )
{
if( !IsFree( TRect( r.x - x, r.y, r.w, r.h ) ) )
break;
}
for( y = 1; y <= r.y; y++ )
{
if( !IsFree( TRect( r.x, r.y - y, r.w, r.h ) ) )
break;
}
if( y > x )
r.y -= y - 1;
else
r.x -= x - 1;
AddRect( r );
}
return bFound;
}
// --------------------------------------------------------------------------------
// Name : AddAtEmptySpotAutoGrow
// Description : Add a rectangle of the given size, growing our area if needed
// Area grows only until the max given.
// Returns the placement of the rect in the rect's x,y coords
// --------------------------------------------------------------------------------
bool CRectPlacement::AddAtEmptySpotAutoGrow( TRect* pRect, int maxW, int maxH )
{
double growing_factor = 1.2; // Must be > 1.0, and event > 1.1 for fast optimization
#define GROW(x) static_cast<int>( (x * growing_factor) + 1 )
if( pRect->w <= 0 )
return true;
int orgW = m_size.w;
int orgH = m_size.h;
// Try to add it in the existing space
while( !AddAtEmptySpot( *pRect ) )
{
int pw = m_size.w;
int ph = m_size.h;
// Sanity check - if area is complete.
if( pw >= maxW && ph >= maxH )
{
m_size.w = orgW;
m_size.h = orgH;
return false;
}
// Try growing the smallest dim
if( pw < maxW && ( pw < ph || ( (pw == ph) && (pRect->w >= pRect->h) ) ) )
m_size.w = GROW( pw );
else
m_size.h = GROW( ph );
if( AddAtEmptySpot( *pRect ) )
break;
// Try growing the other dim instead
if( pw != m_size.w )
{
m_size.w = pw;
if( ph < maxW )
m_size.h = GROW( ph );
}
else
{
m_size.h = ph;
if( pw < maxW )
m_size.w = GROW( pw );
}
if( pw != m_size.w || ph != m_size.h )
if( AddAtEmptySpot( *pRect ) )
break;
// Grow both if possible, and reloop.
m_size.w = pw;
m_size.h = ph;
if( pw < maxW )
m_size.w = GROW( pw );
if( ph < maxH )
m_size.h = GROW( ph );
}
return true;
}

View File

@ -1,104 +0,0 @@
// --------------------------------------------------------------------------------
// Name : rect_placement.h
// Description : A class that allocates subrectangles into power-of-2 rectangles
// (C) Copyright 2000-2002 by Javier Arevalo
// This code is free to use and modify for all purposes
// --------------------------------------------------------------------------------
/**
* @file rect_placement.h
*/
#ifndef _RECT_PLACEMENT_H_
#define _RECT_PLACEMENT_H_
#include <vector>
// --------------------------------------------------------------------------------
// --------------------------------------------------------------------------------
class CRectPlacement
{
public:
// Helper classes
struct TPos
{
int x, y;
TPos() : x( 0 ), y( 0 ) { }
TPos( int _x, int _y ) : x( _x ), y( _y ) { }
bool operator ==( const TPos& p ) const { return x == p.x && y == p.y; }
};
struct TRect : public TPos
{
int w, h;
TRect() : w( 0 ), h( 0 ) { }
TRect( int _x, int _y, int _w, int _h ) : TPos( _x, _y ), w( _w > 0 ? _w : 0 ), h(
_h > 0 ? _h : 0 ) { }
bool Contains( const TPos& p ) const
{
return p.x >= x && p.y >= y && p.x < (x + w) && p.y < (y + h);
}
bool Contains( const TRect& r ) const
{
return r.x >= x && r.y >= y &&
(r.x + r.w) <= (x + w) && (r.y + r.h) <= (y + h);
}
bool Intersects( const TRect& r ) const
{
return w > 0 && h > 0 && r.w > 0 && r.h > 0
&& ( (r.x + r.w) > x && r.x < (x + w) && (r.y + r.h) > y && r.y < (y + h) );
}
// static bool Greater(const TRect &a, const TRect &b)
// { return a.w*a.h > b.w*b.h; }
// Greater rect area. Not as good as the next heuristic:
// Greater size in at least one dim.
static bool Greater( const TRect& a, const TRect& b )
{
return (a.w > b.w && a.w > b.h) || (a.h > b.w && a.h > b.h);
}
};
// ---------------------
typedef std::vector<TPos> CPosArray;
typedef std::vector<TRect> CRectArray;
// ---------------------
CRectPlacement() { Init(); }
~CRectPlacement() { End(); }
void Init( int w = 1, int h = 1 );
void End();
bool IsOk() const { return m_size.w > 0; }
int GetW() const { return m_size.w; }
int GetH() const { return m_size.h; }
double GetArea() const { return m_area; }
double GetTotalArea() const { return (double)m_size.w * m_size.h; }
bool AddAtEmptySpotAutoGrow( TRect* pRect, int maxW, int maxH );
private:
TRect m_size;
CRectArray m_vRects;
CPosArray m_vPositions;
double m_area;
// ---------------------
bool IsFree( const TRect& r ) const;
void AddPosition( const TPos& p );
void AddRect( const TRect& r );
bool AddAtEmptySpot( TRect& r );
};
#endif // _RECT_PLACEMENT_H_