Reverted commits that remove boost::polygon dependency (need more testing).

This commit is contained in:
Maciej Suminski 2015-07-14 22:23:13 +02:00
parent 9f18e5a98f
commit d2ebf688f9
57 changed files with 5030 additions and 1209 deletions

View File

@ -49,7 +49,7 @@
class BOARD_DESIGN_SETTINGS; class BOARD_DESIGN_SETTINGS;
class EDA_3D_FRAME; class EDA_3D_FRAME;
class SHAPE_POLY_SET; class CPOLYGONS_LIST;
class REPORTER; class REPORTER;
class VIA; class VIA;
@ -306,7 +306,7 @@ private:
* Used only to draw pads outlines on silkscreen layers. * Used only to draw pads outlines on silkscreen layers.
*/ */
void buildPadShapeThickOutlineAsPolygon( const D_PAD* aPad, void buildPadShapeThickOutlineAsPolygon( const D_PAD* aPad,
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aWidth, int aWidth,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ); double aCorrectionFactor );

View File

@ -637,7 +637,9 @@ void EDA_3D_CANVAS::buildBoard3DAuxLayers( REPORTER* aErrorMessages, REPORTER* a
double correctionFactor = 1.0 / cos( M_PI / (segcountforcircle * 2) ); double correctionFactor = 1.0 / cos( M_PI / (segcountforcircle * 2) );
BOARD* pcb = GetBoard(); BOARD* pcb = GetBoard();
SHAPE_POLY_SET bufferPolys; CPOLYGONS_LIST bufferPolys;
bufferPolys.reserve( 5000 ); // Reserve for items not on board
static const LAYER_ID sequence[] = { static const LAYER_ID sequence[] = {
Dwgs_User, Dwgs_User,
@ -699,10 +701,12 @@ void EDA_3D_CANVAS::buildBoard3DAuxLayers( REPORTER* aErrorMessages, REPORTER* a
// bufferPolys contains polygons to merge. Many overlaps . // bufferPolys contains polygons to merge. Many overlaps .
// Calculate merged polygons and remove pads and vias holes // Calculate merged polygons and remove pads and vias holes
if( bufferPolys.IsEmpty() ) if( bufferPolys.GetCornersCount() == 0 )
continue; continue;
KI_POLYGON_SET currLayerPolyset;
bufferPolys.Fracture(); KI_POLYGON_SET polyset;
bufferPolys.ExportTo( polyset );
currLayerPolyset += polyset;
int thickness = GetPrm3DVisu().GetLayerObjectThicknessBIU( layer ); int thickness = GetPrm3DVisu().GetLayerObjectThicknessBIU( layer );
int zpos = GetPrm3DVisu().GetLayerZcoordBIU( layer ); int zpos = GetPrm3DVisu().GetLayerZcoordBIU( layer );
@ -715,6 +719,9 @@ void EDA_3D_CANVAS::buildBoard3DAuxLayers( REPORTER* aErrorMessages, REPORTER* a
else else
zpos -= thickness/2 ; zpos -= thickness/2 ;
bufferPolys.RemoveAllContours();
bufferPolys.ImportFrom( currLayerPolyset );
float zNormal = 1.0f; // When using thickness it will draw first the top and then botton (with z inverted) float zNormal = 1.0f; // When using thickness it will draw first the top and then botton (with z inverted)
// If we are not using thickness, then the znormal must face the layer direction // If we are not using thickness, then the znormal must face the layer direction

View File

@ -62,7 +62,7 @@ void TransfertToGLlist( std::vector< S3D_VERTEX >& aVertices, double aBiuTo3DUni
* from Z position = aZpos to aZpos + aHeight * from Z position = aZpos to aZpos + aHeight
* Used to create the vertical sides of 3D horizontal shapes with thickness. * Used to create the vertical sides of 3D horizontal shapes with thickness.
*/ */
static void Draw3D_VerticalPolygonalCylinder( const SHAPE_POLY_SET& aPolysList, static void Draw3D_VerticalPolygonalCylinder( const CPOLYGONS_LIST& aPolysList,
int aHeight, int aZpos, int aHeight, int aZpos,
bool aInside, double aBiuTo3DUnits ) bool aInside, double aBiuTo3DUnits )
{ {
@ -87,28 +87,29 @@ static void Draw3D_VerticalPolygonalCylinder( const SHAPE_POLY_SET& aPolysList,
coords[3].z = coords[0].z; coords[3].z = coords[0].z;
// Draw the vertical polygonal side // Draw the vertical polygonal side
for( int ii = 0; ii < aPolysList.OutlineCount(); ii++ ) int startContour = 0;
for( unsigned ii = 0; ii < aPolysList.GetCornersCount(); ii++ )
{ {
const SHAPE_LINE_CHAIN& path = aPolysList.COutline( ii ); unsigned jj = ii + 1;
for( int jj = 0; jj < path.PointCount(); jj++ ) if( aPolysList.IsEndContour( ii ) || jj >= aPolysList.GetCornersCount() )
{ {
const VECTOR2I& a = path.CPoint( jj ); jj = startContour;
const VECTOR2I& b = path.CPoint( jj + 1 ); startContour = ii + 1;
// Build the 4 vertices of each GL_QUAD
coords[0].x = a.x;
coords[0].y = -a.y;
coords[1].x = coords[0].x;
coords[1].y = coords[0].y; // only z change
coords[2].x = b.x;
coords[2].y = -b.y;
coords[3].x = coords[2].x;
coords[3].y = coords[2].y; // only z change
// Creates the GL_QUAD
TransfertToGLlist( coords, aBiuTo3DUnits );
} }
// Build the 4 vertices of each GL_QUAD
coords[0].x = aPolysList.GetX( ii );
coords[0].y = -aPolysList.GetY( ii );
coords[1].x = coords[0].x;
coords[1].y = coords[0].y; // only z change
coords[2].x = aPolysList.GetX( jj );
coords[2].y = -aPolysList.GetY( jj );
coords[3].x = coords[2].x;
coords[3].y = coords[2].y; // only z change
// Creates the GL_QUAD
TransfertToGLlist( coords, aBiuTo3DUnits );
} }
} }
@ -146,7 +147,7 @@ void SetGLTexture( GLuint text_id, float scale )
* The top side is located at aZpos + aThickness / 2 * The top side is located at aZpos + aThickness / 2
* The bottom side is located at aZpos - aThickness / 2 * The bottom side is located at aZpos - aThickness / 2
*/ */
void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList, void Draw3D_SolidHorizontalPolyPolygons( const CPOLYGONS_LIST& aPolysList,
int aZpos, int aThickness, double aBiuTo3DUnits, int aZpos, int aThickness, double aBiuTo3DUnits,
bool aUseTextures, bool aUseTextures,
float aNormal_Z_Orientation ) float aNormal_Z_Orientation )
@ -175,7 +176,7 @@ void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList,
glNormal3f( 0.0, 0.0, aNormal_Z_Orientation ); glNormal3f( 0.0, 0.0, aNormal_Z_Orientation );
// Draw solid areas contained in this list // Draw solid areas contained in this list
SHAPE_POLY_SET polylist = aPolysList; // temporary copy for gluTessVertex CPOLYGONS_LIST polylist = aPolysList; // temporary copy for gluTessVertex
int startContour; int startContour;
@ -183,7 +184,7 @@ void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList,
{ {
startContour = 1; startContour = 1;
for ( SHAPE_POLY_SET::ITERATOR ii = polylist.Iterate(); ii; ++ii ) for( unsigned ii = 0; ii < polylist.GetCornersCount(); ii++ )
{ {
if( startContour == 1 ) if( startContour == 1 )
{ {
@ -192,16 +193,16 @@ void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList,
startContour = 0; startContour = 0;
} }
v_data[0] = ii->x * aBiuTo3DUnits; v_data[0] = polylist.GetX( ii ) * aBiuTo3DUnits;
v_data[1] = -ii->y * aBiuTo3DUnits; v_data[1] = -polylist.GetY( ii ) * aBiuTo3DUnits;
// gluTessVertex store pointers on data, not data, so do not store // gluTessVertex store pointers on data, not data, so do not store
// different corners values in a temporary variable // different corners values in a temporary variable
// but send pointer on each CPolyPt value in polylist // but send pointer on each CPolyPt value in polylist
// before calling gluDeleteTess // before calling gluDeleteTess
gluTessVertex( tess, v_data, &ii.Get() ); gluTessVertex( tess, v_data, &polylist[ii] );
if( ii.IsEndContour() ) if( polylist.IsEndContour( ii ) )
{ {
gluTessEndContour( tess ); gluTessEndContour( tess );
gluTessEndPolygon( tess ); gluTessEndPolygon( tess );
@ -241,15 +242,14 @@ void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList,
* The first polygon is the main polygon, others are holes * The first polygon is the main polygon, others are holes
* See Draw3D_SolidHorizontalPolyPolygons for more info * See Draw3D_SolidHorizontalPolyPolygons for more info
*/ */
void Draw3D_SolidHorizontalPolygonWithHoles( const SHAPE_POLY_SET& aPolysList, void Draw3D_SolidHorizontalPolygonWithHoles( const CPOLYGONS_LIST& aPolysList,
int aZpos, int aThickness, int aZpos, int aThickness,
double aBiuTo3DUnits, bool aUseTextures, double aBiuTo3DUnits, bool aUseTextures,
float aNormal_Z_Orientation ) float aNormal_Z_Orientation )
{ {
SHAPE_POLY_SET polygon( aPolysList ); CPOLYGONS_LIST polygon;
polygon.Fracture();
ConvertPolysListWithHolesToOnePolygon( aPolysList, polygon );
Draw3D_SolidHorizontalPolyPolygons( polygon, aZpos, aThickness, aBiuTo3DUnits, aUseTextures, Draw3D_SolidHorizontalPolyPolygons( polygon, aZpos, aThickness, aBiuTo3DUnits, aUseTextures,
aNormal_Z_Orientation ); aNormal_Z_Orientation );
} }
@ -265,7 +265,7 @@ void Draw3D_ZaxisCylinder( wxPoint aCenterPos, int aRadius,
int aZpos, double aBiuTo3DUnits ) int aZpos, double aBiuTo3DUnits )
{ {
const int slice = SEGM_PER_CIRCLE; const int slice = SEGM_PER_CIRCLE;
SHAPE_POLY_SET outer_cornerBuffer; CPOLYGONS_LIST outer_cornerBuffer;
TransformCircleToPolygon( outer_cornerBuffer, aCenterPos, TransformCircleToPolygon( outer_cornerBuffer, aCenterPos,
aRadius + (aThickness / 2), slice ); aRadius + (aThickness / 2), slice );
@ -273,7 +273,7 @@ void Draw3D_ZaxisCylinder( wxPoint aCenterPos, int aRadius,
std::vector<S3D_VERTEX> coords; std::vector<S3D_VERTEX> coords;
coords.resize( 4 ); coords.resize( 4 );
SHAPE_POLY_SET inner_cornerBuffer; CPOLYGONS_LIST inner_cornerBuffer;
if( aThickness ) // build the the vertical inner polygon (hole) if( aThickness ) // build the the vertical inner polygon (hole)
TransformCircleToPolygon( inner_cornerBuffer, aCenterPos, TransformCircleToPolygon( inner_cornerBuffer, aCenterPos,
aRadius - (aThickness / 2), slice ); aRadius - (aThickness / 2), slice );
@ -294,11 +294,10 @@ void Draw3D_ZaxisCylinder( wxPoint aCenterPos, int aRadius,
if( aThickness ) if( aThickness )
{ {
// draw top (front) and bottom (back) horizontal sides (rings) // draw top (front) and bottom (back) horizontal sides (rings)
outer_cornerBuffer.AddHole( inner_cornerBuffer.COutline( 0 ) ); outer_cornerBuffer.Append( inner_cornerBuffer );
SHAPE_POLY_SET polygon = outer_cornerBuffer; CPOLYGONS_LIST polygon;
polygon.Fracture();
ConvertPolysListWithHolesToOnePolygon( outer_cornerBuffer, polygon );
// draw top (front) horizontal ring // draw top (front) horizontal ring
Draw3D_SolidHorizontalPolyPolygons( polygon, aZpos + aHeight, 0, aBiuTo3DUnits, false, Draw3D_SolidHorizontalPolyPolygons( polygon, aZpos + aHeight, 0, aBiuTo3DUnits, false,
1.0f ); 1.0f );
@ -327,7 +326,7 @@ void Draw3D_ZaxisOblongCylinder( wxPoint aAxis1Pos, wxPoint aAxis2Pos,
const int slice = SEGM_PER_CIRCLE; const int slice = SEGM_PER_CIRCLE;
// Build the points to approximate oblong cylinder by segments // Build the points to approximate oblong cylinder by segments
SHAPE_POLY_SET outer_cornerBuffer; CPOLYGONS_LIST outer_cornerBuffer;
int segm_width = (aRadius * 2) + aThickness; int segm_width = (aRadius * 2) + aThickness;
TransformRoundedEndsSegmentToPolygon( outer_cornerBuffer, aAxis1Pos, TransformRoundedEndsSegmentToPolygon( outer_cornerBuffer, aAxis1Pos,
@ -340,7 +339,7 @@ void Draw3D_ZaxisOblongCylinder( wxPoint aAxis1Pos, wxPoint aAxis2Pos,
if( aThickness ) if( aThickness )
{ {
SHAPE_POLY_SET inner_cornerBuffer; CPOLYGONS_LIST inner_cornerBuffer;
segm_width = aRadius * 2; segm_width = aRadius * 2;
TransformRoundedEndsSegmentToPolygon( inner_cornerBuffer, aAxis1Pos, TransformRoundedEndsSegmentToPolygon( inner_cornerBuffer, aAxis1Pos,
aAxis2Pos, slice, segm_width ); aAxis2Pos, slice, segm_width );
@ -352,10 +351,10 @@ void Draw3D_ZaxisOblongCylinder( wxPoint aAxis1Pos, wxPoint aAxis2Pos,
// Build the horizontal full polygon shape // Build the horizontal full polygon shape
// (outer polygon shape - inner polygon shape) // (outer polygon shape - inner polygon shape)
outer_cornerBuffer.AddHole( inner_cornerBuffer.COutline( 0 ) ); outer_cornerBuffer.Append( inner_cornerBuffer );
SHAPE_POLY_SET polygon( outer_cornerBuffer ); CPOLYGONS_LIST polygon;
polygon.Fracture(); ConvertPolysListWithHolesToOnePolygon( outer_cornerBuffer, polygon );
// draw top (front) horizontal side (ring) // draw top (front) horizontal side (ring)
Draw3D_SolidHorizontalPolyPolygons( polygon, aZpos + aHeight, 0, aBiuTo3DUnits, false, Draw3D_SolidHorizontalPolyPolygons( polygon, aZpos + aHeight, 0, aBiuTo3DUnits, false,
@ -380,8 +379,8 @@ void Draw3D_ZaxisOblongCylinder( wxPoint aAxis1Pos, wxPoint aAxis2Pos,
void Draw3D_SolidSegment( const wxPoint& aStart, const wxPoint& aEnd, void Draw3D_SolidSegment( const wxPoint& aStart, const wxPoint& aEnd,
int aWidth, int aThickness, int aZpos, double aBiuTo3DUnits ) int aWidth, int aThickness, int aZpos, double aBiuTo3DUnits )
{ {
SHAPE_POLY_SET cornerBuffer; CPOLYGONS_LIST cornerBuffer;
const int slice = SEGM_PER_CIRCLE; const int slice = SEGM_PER_CIRCLE;
TransformRoundedEndsSegmentToPolygon( cornerBuffer, aStart, aEnd, slice, aWidth ); TransformRoundedEndsSegmentToPolygon( cornerBuffer, aStart, aEnd, slice, aWidth );
@ -395,7 +394,7 @@ void Draw3D_ArcSegment( const wxPoint& aCenterPos, const wxPoint& aStartPoint,
{ {
const int slice = SEGM_PER_CIRCLE; const int slice = SEGM_PER_CIRCLE;
SHAPE_POLY_SET cornerBuffer; CPOLYGONS_LIST cornerBuffer;
TransformArcToPolygon( cornerBuffer, aCenterPos, aStartPoint, aArcAngle, TransformArcToPolygon( cornerBuffer, aCenterPos, aStartPoint, aArcAngle,
slice, aWidth ); slice, aWidth );
@ -422,7 +421,7 @@ void CALLBACK tessEndCB()
void CALLBACK tessCPolyPt2Vertex( const GLvoid* data ) void CALLBACK tessCPolyPt2Vertex( const GLvoid* data )
{ {
// cast back to double type // cast back to double type
const VECTOR2I* ptr = (const VECTOR2I*) data; const CPolyPt* ptr = (const CPolyPt*) data;
if( s_useTextures ) if( s_useTextures )
{ {

View File

@ -43,7 +43,7 @@
* The top side is located at aZpos + aThickness / 2 * The top side is located at aZpos + aThickness / 2
* The bottom side is located at aZpos - aThickness / 2 * The bottom side is located at aZpos - aThickness / 2
*/ */
void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList, void Draw3D_SolidHorizontalPolyPolygons( const CPOLYGONS_LIST& aPolysList,
int aZpos, int aThickness, double aBiuTo3DUnits, int aZpos, int aThickness, double aBiuTo3DUnits,
bool aUseTextures, bool aUseTextures,
float aNormal_Z_Orientation ); float aNormal_Z_Orientation );
@ -61,7 +61,7 @@ void Draw3D_SolidHorizontalPolyPolygons( const SHAPE_POLY_SET& aPolysList,
* The top side is located at aZpos + aThickness / 2 * The top side is located at aZpos + aThickness / 2
* The bottom side is located at aZpos - aThickness / 2 * The bottom side is located at aZpos - aThickness / 2
*/ */
void Draw3D_SolidHorizontalPolygonWithHoles( const SHAPE_POLY_SET& aPolysList, void Draw3D_SolidHorizontalPolygonWithHoles( const CPOLYGONS_LIST& aPolysList,
int aZpos, int aThickness, double aBiuTo3DUnits, int aZpos, int aThickness, double aBiuTo3DUnits,
bool aUseTextures, bool aUseTextures,
float aNormal_Z_Orientation ); float aNormal_Z_Orientation );

View File

@ -57,8 +57,6 @@
#include <trackball.h> #include <trackball.h>
#include <3d_draw_basic_functions.h> #include <3d_draw_basic_functions.h>
#include <geometry/shape_poly_set.h> #include <geometry/shape_poly_set.h>
#include <geometry/shape_file_io.h>
#include <CImage.h> #include <CImage.h>
#include <reporter.h> #include <reporter.h>
@ -70,7 +68,6 @@
*/ */
GLfloat Get3DLayer_Z_Orientation( LAYER_NUM aLayer ); GLfloat Get3DLayer_Z_Orientation( LAYER_NUM aLayer );
#if 0
// FIX ME: these 2 functions are fully duplicate of the same 2 functions in // FIX ME: these 2 functions are fully duplicate of the same 2 functions in
// pcbnew/zones_convert_brd_items_to_polygons_with_Boost.cpp // pcbnew/zones_convert_brd_items_to_polygons_with_Boost.cpp
@ -91,7 +88,7 @@ static const SHAPE_POLY_SET convertPolyListToPolySet(const CPOLYGONS_LIST& aList
while( ic < corners_count ) while( ic < corners_count )
{ {
rv.Append( aList.GetX(ic), aList.GetY(ic) ); rv.AppendVertex( aList.GetX(ic), aList.GetY(ic) );
if( aList.IsEndContour( ic ) ) if( aList.IsEndContour( ic ) )
break; break;
@ -131,7 +128,6 @@ static const CPOLYGONS_LIST convertPolySetToPolyList(const SHAPE_POLY_SET& aPoly
return list; return list;
} }
#endif
void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList, void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
REPORTER* aErrorMessages, REPORTER* aActivity ) REPORTER* aErrorMessages, REPORTER* aActivity )
@ -160,11 +156,13 @@ void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
// a fine representation // a fine representation
double correctionFactorLQ = 1.0 / cos( M_PI / (segcountLowQuality * 2.0) ); double correctionFactorLQ = 1.0 / cos( M_PI / (segcountLowQuality * 2.0) );
SHAPE_POLY_SET bufferPolys; CPOLYGONS_LIST bufferPolys;
SHAPE_POLY_SET bufferPcbOutlines; // stores the board main outlines bufferPolys.reserve( 500000 ); // Reserve for large board: tracks mainly
SHAPE_POLY_SET bufferZonesPolys; // + zones when holes are removed from zones
SHAPE_POLY_SET currLayerHoles, allLayerHoles; // Contains holes for the current layer
// + zones when holes are removed from zones CPOLYGONS_LIST bufferPcbOutlines; // stores the board main outlines
CPOLYGONS_LIST allLayerHoles; // Contains through holes, calculated only once
allLayerHoles.reserve( 20000 );
// Build a polygon from edge cut items // Build a polygon from edge cut items
wxString msg; wxString msg;
@ -181,7 +179,12 @@ void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
} }
} }
bool throughHolesListBuilt = false; // flag to build the through hole polygon list only once CPOLYGONS_LIST bufferZonesPolys;
bufferZonesPolys.reserve( 300000 ); // Reserve for large board ( copper zones mainly )
// when holes are not removed from zones
CPOLYGONS_LIST currLayerHoles; // Contains holes for the current layer
bool throughHolesListBuilt = false; // flag to build the through hole polygon list only once
LSET cu_set = LSET::AllCuMask( GetPrm3DVisu().m_CopperLayersCount ); LSET cu_set = LSET::AllCuMask( GetPrm3DVisu().m_CopperLayersCount );
@ -348,18 +351,47 @@ void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
// bufferPolys contains polygons to merge. Many overlaps . // bufferPolys contains polygons to merge. Many overlaps .
// Calculate merged polygons // Calculate merged polygons
if( bufferPolys.IsEmpty() ) if( bufferPolys.GetCornersCount() == 0 )
continue; continue;
#if 0
// Set to 1 to use boost::polygon to subtract holes to copper areas
// (due to bugs in boost::polygon, this is deprecated and Clipper is used instead
KI_POLYGON_SET currLayerPolyset;
KI_POLYGON_SET polysetHoles;
// Add polygons, without holes
bufferPolys.ExportTo( currLayerPolyset );
// Add through holes (created only once) in current polygon holes list
currLayerHoles.Append( allLayerHoles );
if( currLayerHoles.GetCornersCount() > 0 )
currLayerHoles.ExportTo( polysetHoles );
// Merge polygons, and remove holes
currLayerPolyset -= polysetHoles;
bufferPolys.RemoveAllContours();
bufferPolys.ImportFrom( currLayerPolyset );
#else
// Use Clipper lib to subtract holes to copper areas // Use Clipper lib to subtract holes to copper areas
SHAPE_POLY_SET solidAreas = convertPolyListToPolySet( bufferPolys );
solidAreas.Simplify();
bufferPolys.Simplify(); // Add through holes (created only once) in current polygon holes list
currLayerHoles.Simplify(); currLayerHoles.Append( allLayerHoles );
allLayerHoles.Simplify(); if( currLayerHoles.GetCornersCount() > 0 )
{
bufferPolys.BooleanSubtract( allLayerHoles ); SHAPE_POLY_SET holes = convertPolyListToPolySet( currLayerHoles );
bufferPolys.Fracture(); holes.Simplify();
solidAreas.Subtract ( holes );
}
SHAPE_POLY_SET fractured = solidAreas;
fractured.Fracture();
bufferPolys.RemoveAllContours();
bufferPolys = convertPolySetToPolyList( fractured );
#endif
int thickness = GetPrm3DVisu().GetLayerObjectThicknessBIU( layer ); int thickness = GetPrm3DVisu().GetLayerObjectThicknessBIU( layer );
int zpos = GetPrm3DVisu().GetLayerZcoordBIU( layer ); int zpos = GetPrm3DVisu().GetLayerZcoordBIU( layer );
@ -389,7 +421,7 @@ void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
// If holes are not removed from copper zones (for calculation time reasons, // If holes are not removed from copper zones (for calculation time reasons,
// the zone polygons are stored in bufferZonesPolys and have to be drawn now: // the zone polygons are stored in bufferZonesPolys and have to be drawn now:
if( !bufferZonesPolys.IsEmpty() ) if( bufferZonesPolys.GetCornersCount() )
{ {
Draw3D_SolidHorizontalPolyPolygons( bufferZonesPolys, zpos, thickness, Draw3D_SolidHorizontalPolyPolygons( bufferZonesPolys, zpos, thickness,
GetPrm3DVisu().m_BiuTo3Dunits, useTextures, GetPrm3DVisu().m_BiuTo3Dunits, useTextures,
@ -458,10 +490,22 @@ void EDA_3D_CANVAS::buildBoard3DView( GLuint aBoardList, GLuint aBodyOnlyList,
zpos += (copper_thickness + epsilon) / 2.0f; zpos += (copper_thickness + epsilon) / 2.0f;
board_thickness -= copper_thickness + epsilon; board_thickness -= copper_thickness + epsilon;
bufferPcbOutlines.BooleanSubtract( allLayerHoles ); KI_POLYGON_SET currLayerPolyset;
bufferPcbOutlines.Fracture(); KI_POLYGON_SET polysetHoles;
if( !bufferPcbOutlines.IsEmpty() ) // Add polygons, without holes
bufferPcbOutlines.ExportTo( currLayerPolyset );
// Build holes list
allLayerHoles.ExportTo( polysetHoles );
// remove holes
currLayerPolyset -= polysetHoles;
bufferPcbOutlines.RemoveAllContours();
bufferPcbOutlines.ImportFrom( currLayerPolyset );
if( bufferPcbOutlines.GetCornersCount() )
{ {
Draw3D_SolidHorizontalPolyPolygons( bufferPcbOutlines, zpos + board_thickness / 2.0, Draw3D_SolidHorizontalPolyPolygons( bufferPcbOutlines, zpos + board_thickness / 2.0,
board_thickness, GetPrm3DVisu().m_BiuTo3Dunits, useTextures, board_thickness, GetPrm3DVisu().m_BiuTo3Dunits, useTextures,
@ -487,9 +531,12 @@ void EDA_3D_CANVAS::buildTechLayers3DView( REPORTER* aErrorMessages, REPORTER* a
double correctionFactorLQ = 1.0 / cos( M_PI / (segcountLowQuality * 2) ); double correctionFactorLQ = 1.0 / cos( M_PI / (segcountLowQuality * 2) );
SHAPE_POLY_SET bufferPolys; CPOLYGONS_LIST bufferPolys;
SHAPE_POLY_SET allLayerHoles; // Contains through holes, calculated only once bufferPolys.reserve( 100000 ); // Reserve for large board
SHAPE_POLY_SET bufferPcbOutlines; // stores the board main outlines CPOLYGONS_LIST allLayerHoles; // Contains through holes, calculated only once
allLayerHoles.reserve( 20000 );
CPOLYGONS_LIST bufferPcbOutlines; // stores the board main outlines
// Build a polygon from edge cut items // Build a polygon from edge cut items
wxString msg; wxString msg;
@ -534,6 +581,9 @@ void EDA_3D_CANVAS::buildTechLayers3DView( REPORTER* aErrorMessages, REPORTER* a
// draw graphic items, on technical layers // draw graphic items, on technical layers
KI_POLYGON_SET brdpolysetHoles;
allLayerHoles.ExportTo( brdpolysetHoles );
static const LAYER_ID teckLayerList[] = { static const LAYER_ID teckLayerList[] = {
B_Adhes, B_Adhes,
F_Adhes, F_Adhes,
@ -625,33 +675,32 @@ void EDA_3D_CANVAS::buildTechLayers3DView( REPORTER* aErrorMessages, REPORTER* a
// bufferPolys contains polygons to merge. Many overlaps . // bufferPolys contains polygons to merge. Many overlaps .
// Calculate merged polygons and remove pads and vias holes // Calculate merged polygons and remove pads and vias holes
if( bufferPolys.IsEmpty() ) if( bufferPolys.GetCornersCount() == 0 )
continue; continue;
KI_POLYGON_SET currLayerPolyset;
allLayerHoles.Simplify(); KI_POLYGON_SET polyset;
// Solder mask layers are "negative" layers. // Solder mask layers are "negative" layers.
// Shapes should be removed from the full board area. // Shapes should be removed from the full board area.
if( layer == B_Mask || layer == F_Mask ) if( layer == B_Mask || layer == F_Mask )
{ {
SHAPE_POLY_SET cuts = bufferPolys; bufferPcbOutlines.ExportTo( currLayerPolyset );
bufferPolys = bufferPcbOutlines; bufferPolys.Append( allLayerHoles );
bufferPolys.ExportTo( polyset );
cuts.Append(allLayerHoles); currLayerPolyset -= polyset;
cuts.Simplify();
bufferPolys.BooleanSubtract( cuts );
} }
// Remove holes from Solder paste layers and siklscreen // Remove holes from Solder paste layers and siklscreen
else if( layer == B_Paste || layer == F_Paste else if( layer == B_Paste || layer == F_Paste
|| layer == B_SilkS || layer == F_SilkS ) || layer == B_SilkS || layer == F_SilkS )
{ {
bufferPolys.ExportTo( currLayerPolyset );
bufferPolys.BooleanSubtract( allLayerHoles ); currLayerPolyset -= brdpolysetHoles;
}
else // usuall layers, merge polys built from each item shape:
{
bufferPolys.ExportTo( polyset );
currLayerPolyset += polyset;
} }
bufferPolys.Fracture();
int thickness = 0; int thickness = 0;
@ -679,6 +728,8 @@ void EDA_3D_CANVAS::buildTechLayers3DView( REPORTER* aErrorMessages, REPORTER* a
zpos -= thickness/2 ; zpos -= thickness/2 ;
} }
bufferPolys.RemoveAllContours();
bufferPolys.ImportFrom( currLayerPolyset );
float zNormal = 1.0f; // When using thickness it will draw first the top and then botton (with z inverted) float zNormal = 1.0f; // When using thickness it will draw first the top and then botton (with z inverted)

View File

@ -358,7 +358,7 @@ void EDA_3D_CANVAS::draw3DPadHole( const D_PAD* aPad )
return; return;
// Store here the points to approximate hole by segments // Store here the points to approximate hole by segments
SHAPE_POLY_SET holecornersBuffer; CPOLYGONS_LIST holecornersBuffer;
int thickness = GetPrm3DVisu().GetCopperThicknessBIU(); int thickness = GetPrm3DVisu().GetCopperThicknessBIU();
int height = GetPrm3DVisu().GetLayerZcoordBIU( F_Cu ) - int height = GetPrm3DVisu().GetLayerZcoordBIU( F_Cu ) -
GetPrm3DVisu().GetLayerZcoordBIU( B_Cu ); GetPrm3DVisu().GetLayerZcoordBIU( B_Cu );
@ -436,7 +436,7 @@ void EDA_3D_CANVAS::draw3DViaHole( const VIA* aVia )
* Used only to draw pads outlines on silkscreen layers. * Used only to draw pads outlines on silkscreen layers.
*/ */
void EDA_3D_CANVAS::buildPadShapeThickOutlineAsPolygon( const D_PAD* aPad, void EDA_3D_CANVAS::buildPadShapeThickOutlineAsPolygon( const D_PAD* aPad,
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aWidth, int aWidth,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) double aCorrectionFactor )
@ -449,22 +449,17 @@ void EDA_3D_CANVAS::buildPadShapeThickOutlineAsPolygon( const D_PAD* aPad,
} }
// For other shapes, draw polygon outlines // For other shapes, draw polygon outlines
SHAPE_POLY_SET corners; CPOLYGONS_LIST corners;
aPad->BuildPadShapePolygon( corners, wxSize( 0, 0 ), aPad->BuildPadShapePolygon( corners, wxSize( 0, 0 ),
aCircleToSegmentsCount, aCorrectionFactor ); aCircleToSegmentsCount, aCorrectionFactor );
// Add outlines as thick segments in polygon buffer // Add outlines as thick segments in polygon buffer
for( unsigned ii = 0, jj = corners.GetCornersCount() - 1;
const SHAPE_LINE_CHAIN& path = corners.COutline( 0 ); ii < corners.GetCornersCount(); jj = ii, ii++ )
for( int ii = 0; ii < path.PointCount(); ii++ )
{ {
const VECTOR2I& a = path.CPoint( ii );
const VECTOR2I& b = path.CPoint( ii + 1 );
TransformRoundedEndsSegmentToPolygon( aCornerBuffer, TransformRoundedEndsSegmentToPolygon( aCornerBuffer,
wxPoint( a.x, a.y ), corners.GetPos( jj ),
wxPoint( b.x, b.y ), corners.GetPos( ii ),
aCircleToSegmentsCount, aWidth ); aCircleToSegmentsCount, aWidth );
} }
} }

View File

@ -346,7 +346,8 @@ void DXF_PLOTTER::Circle( const wxPoint& centre, int diameter, FILL_T fill, int
* It does not know thhick segments, therefore filled polygons with thick outline * It does not know thhick segments, therefore filled polygons with thick outline
* are converted to inflated polygon by aWidth/2 * are converted to inflated polygon by aWidth/2
*/ */
void DXF_PLOTTER::PlotPoly( const std::vector<wxPoint>& aCornerList, #include "clipper.hpp"
void DXF_PLOTTER::PlotPoly( const std::vector< wxPoint >& aCornerList,
FILL_T aFill, int aWidth) FILL_T aFill, int aWidth)
{ {
if( aCornerList.size() <= 1 ) if( aCornerList.size() <= 1 )
@ -391,12 +392,10 @@ void DXF_PLOTTER::PlotPoly( const std::vector<wxPoint>& aCornerList,
// The polygon outline has thickness, and is filled // The polygon outline has thickness, and is filled
// Build and plot the polygon which contains the initial // Build and plot the polygon which contains the initial
// polygon and its thick outline // polygon and its thick outline
SHAPE_POLY_SET bufferOutline; CPOLYGONS_LIST bufferOutline;
SHAPE_POLY_SET bufferPolybase; CPOLYGONS_LIST bufferPolybase;
const int circleToSegmentsCount = 16; const int circleToSegmentsCount = 16;
bufferPolybase.NewOutline();
// enter outline as polygon: // enter outline as polygon:
for( unsigned ii = 1; ii < aCornerList.size(); ii++ ) for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
{ {
@ -407,40 +406,47 @@ void DXF_PLOTTER::PlotPoly( const std::vector<wxPoint>& aCornerList,
// enter the initial polygon: // enter the initial polygon:
for( unsigned ii = 0; ii < aCornerList.size(); ii++ ) for( unsigned ii = 0; ii < aCornerList.size(); ii++ )
{ {
bufferPolybase.Append( aCornerList[ii] ); CPolyPt polypoint( aCornerList[ii].x, aCornerList[ii].y );
bufferPolybase.Append( polypoint );
} }
bufferPolybase.CloseLastContour();
// Merge polygons to build the polygon which contains the initial // Merge polygons to build the polygon which contains the initial
// polygon and its thick outline // polygon and its thick outline
KI_POLYGON_SET polysBase; // Store the main outline and the final outline
KI_POLYGON_SET polysOutline; // Store the thick segments to draw the outline
bufferPolybase.ExportTo( polysBase );
bufferOutline.ExportTo( polysOutline );
bufferPolybase.BooleanAdd( bufferOutline ); // create the outline which contains thick outline polysBase += polysOutline; // create the outline which contains thick outline
bufferPolybase.Fracture();
// We should have only one polygon in list, now.
wxASSERT( polysBase.size() == 1 );
if( bufferPolybase.OutlineCount() < 1 ) // should not happen if( polysBase.size() < 1 ) // should not happen
return; return;
const SHAPE_LINE_CHAIN& path = bufferPolybase.COutline( 0 ); KI_POLYGON poly = polysBase[0]; // Expected only one polygon here
if( path.PointCount() < 2 ) // should not happen if( poly.size() < 2 ) // should not happen
return; return;
// Now, output the final polygon to DXF file: // Now, output the final polygon to DXF file:
last = path.PointCount() - 1; last = poly.size() - 1;
VECTOR2I point = path.CPoint( 0 ); KI_POLY_POINT point = *(poly.begin());
wxPoint startPoint( point.x(), point.y() );
wxPoint startPoint( point.x, point.y );
MoveTo( startPoint ); MoveTo( startPoint );
for( int ii = 1; ii < path.PointCount(); ii++ ) for( unsigned ii = 1; ii < poly.size(); ii++ )
{ {
point = path.CPoint( ii ); point = *( poly.begin() + ii );
LineTo( wxPoint( point.x, point.y ) ); LineTo( wxPoint( point.x(), point.y() ) );
} }
// Close polygon, if needed // Close polygon, if needed
point = path.CPoint( last ); point = *(poly.begin() + last);
wxPoint endPoint( point.x, point.y ); wxPoint endPoint( point.x(), point.y() );
if( endPoint != startPoint ) if( endPoint != startPoint )
LineTo( startPoint ); LineTo( startPoint );

View File

@ -43,7 +43,7 @@
* Note: the polygon is inside the circle, so if you want to have the polygon * Note: the polygon is inside the circle, so if you want to have the polygon
* outside the circle, you should give aRadius calculated with a corrrection factor * outside the circle, you should give aRadius calculated with a corrrection factor
*/ */
void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformCircleToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aCenter, int aRadius, wxPoint aCenter, int aRadius,
int aCircleToSegmentsCount ) int aCircleToSegmentsCount )
{ {
@ -51,8 +51,6 @@ void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer,
int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree
int halfstep = 1800 / aCircleToSegmentsCount; // the starting value for rot angles int halfstep = 1800 / aCircleToSegmentsCount; // the starting value for rot angles
aCornerBuffer.NewOutline();
for( int ii = 0; ii < aCircleToSegmentsCount; ii++ ) for( int ii = 0; ii < aCircleToSegmentsCount; ii++ )
{ {
corner_position.x = aRadius; corner_position.x = aRadius;
@ -60,8 +58,11 @@ void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer,
int angle = (ii * delta) + halfstep; int angle = (ii * delta) + halfstep;
RotatePoint( &corner_position.x, &corner_position.y, angle ); RotatePoint( &corner_position.x, &corner_position.y, angle );
corner_position += aCenter; corner_position += aCenter;
aCornerBuffer.Append( corner_position.x, corner_position.y ); CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.Append( polypoint );
} }
aCornerBuffer.CloseLastContour();
} }
@ -77,7 +78,7 @@ void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* Note: the polygon is inside the arc ends, so if you want to have the polygon * Note: the polygon is inside the arc ends, so if you want to have the polygon
* outside the circle, you should give aStart and aEnd calculated with a correction factor * outside the circle, you should give aStart and aEnd calculated with a correction factor
*/ */
void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformRoundedEndsSegmentToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aStart, wxPoint aEnd, wxPoint aStart, wxPoint aEnd,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
int aWidth ) int aWidth )
@ -86,9 +87,7 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
wxPoint endp = aEnd - aStart; // end point coordinate for the same segment starting at (0,0) wxPoint endp = aEnd - aStart; // end point coordinate for the same segment starting at (0,0)
wxPoint startp = aStart; wxPoint startp = aStart;
wxPoint corner; wxPoint corner;
VECTOR2I polypoint; CPolyPt polypoint;
aCornerBuffer.NewOutline();
// normalize the position in order to have endp.x >= 0; // normalize the position in order to have endp.x >= 0;
if( endp.x < 0 ) if( endp.x < 0 )
@ -113,7 +112,7 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
corner += startp; corner += startp;
polypoint.x = corner.x; polypoint.x = corner.x;
polypoint.y = corner.y; polypoint.y = corner.y;
aCornerBuffer.Append( polypoint.x, polypoint.y ); aCornerBuffer.Append( polypoint );
} }
// Finish arc: // Finish arc:
@ -122,7 +121,7 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
corner += startp; corner += startp;
polypoint.x = corner.x; polypoint.x = corner.x;
polypoint.y = corner.y; polypoint.y = corner.y;
aCornerBuffer.Append( polypoint.x, polypoint.y ); aCornerBuffer.Append( polypoint );
// add left rounded end: // add left rounded end:
for( int ii = 0; ii < 1800; ii += delta ) for( int ii = 0; ii < 1800; ii += delta )
@ -133,7 +132,7 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
corner += startp; corner += startp;
polypoint.x = corner.x; polypoint.x = corner.x;
polypoint.y = corner.y; polypoint.y = corner.y;
aCornerBuffer.Append( polypoint.x, polypoint.y ); aCornerBuffer.Append( polypoint );
} }
// Finish arc: // Finish arc:
@ -142,7 +141,9 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
corner += startp; corner += startp;
polypoint.x = corner.x; polypoint.x = corner.x;
polypoint.y = corner.y; polypoint.y = corner.y;
aCornerBuffer.Append( polypoint.x, polypoint.y ); aCornerBuffer.Append( polypoint );
aCornerBuffer.CloseLastContour();
} }
@ -157,7 +158,7 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aWidth = width (thickness) of the line * @param aWidth = width (thickness) of the line
*/ */
void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformArcToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aCentre, wxPoint aStart, double aArcAngle, wxPoint aCentre, wxPoint aStart, double aArcAngle,
int aCircleToSegmentsCount, int aWidth ) int aCircleToSegmentsCount, int aWidth )
{ {
@ -207,7 +208,7 @@ void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aWidth = width (thickness) of the ring * @param aWidth = width (thickness) of the ring
*/ */
void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformRingToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aCentre, int aRadius, wxPoint aCentre, int aRadius,
int aCircleToSegmentsCount, int aWidth ) int aCircleToSegmentsCount, int aWidth )
{ {
@ -217,8 +218,7 @@ void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer,
wxPoint curr_point; wxPoint curr_point;
int inner_radius = aRadius - ( aWidth / 2 ); int inner_radius = aRadius - ( aWidth / 2 );
int outer_radius = inner_radius + aWidth; int outer_radius = inner_radius + aWidth;
CPolyPt polycorner;
aCornerBuffer.NewOutline();
// Draw the inner circle of the ring // Draw the inner circle of the ring
for( int ii = 0; ii < 3600; ii += delta ) for( int ii = 0; ii < 3600; ii += delta )
@ -227,11 +227,15 @@ void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer,
curr_point.y = 0; curr_point.y = 0;
RotatePoint( &curr_point, ii ); RotatePoint( &curr_point, ii );
curr_point += aCentre; curr_point += aCentre;
aCornerBuffer.Append( curr_point.x, curr_point.y ); polycorner.x = curr_point.x;
polycorner.y = curr_point.y;
aCornerBuffer.Append( polycorner );
} }
// Draw the last point of inner circle // Draw the last point of inner circle
aCornerBuffer.Append( aCentre.x + inner_radius, aCentre.y ); polycorner.x = aCentre.x + inner_radius;
polycorner.y = aCentre.y;
aCornerBuffer.Append( polycorner );
// Draw the outer circle of the ring // Draw the outer circle of the ring
for( int ii = 0; ii < 3600; ii += delta ) for( int ii = 0; ii < 3600; ii += delta )
@ -240,10 +244,18 @@ void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer,
curr_point.y = 0; curr_point.y = 0;
RotatePoint( &curr_point, -ii ); RotatePoint( &curr_point, -ii );
curr_point += aCentre; curr_point += aCentre;
aCornerBuffer.Append( curr_point.x, curr_point.y ); polycorner.x = curr_point.x;
polycorner.y = curr_point.y;
aCornerBuffer.Append( polycorner );
} }
// Draw the last point of outer circle // Draw the last point of outer circle
aCornerBuffer.Append( aCentre.x + outer_radius, aCentre.y ); polycorner.x = aCentre.x + outer_radius;
aCornerBuffer.Append( aCentre.x + inner_radius, aCentre.y ); polycorner.y = aCentre.y;
aCornerBuffer.Append( polycorner );
// Close the polygon
polycorner.x = aCentre.x + inner_radius;
polycorner.end_contour = true;
aCornerBuffer.Append( polycorner );
} }

View File

@ -4,9 +4,6 @@
* Copyright (C) 2015 CERN * Copyright (C) 2015 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch> * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* *
* Point in polygon algorithm adapted from Clipper Library (C) Angus Johnson,
* subject to Clipper library license.
*
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License * modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2 * as published by the Free Software Foundation; either version 2
@ -28,34 +25,22 @@
#include <vector> #include <vector>
#include <cstdio> #include <cstdio>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <set> #include <set>
#include <list> #include <list>
#include <algorithm> #include <algorithm>
#include <boost/foreach.hpp> #include <boost/foreach.hpp>
#include <geometry/shape.h> #include "geometry/shape_poly_set.h"
#include <geometry/shape_line_chain.h>
#include <geometry/shape_poly_set.h>
using namespace ClipperLib; using namespace ClipperLib;
SHAPE_POLY_SET::SHAPE_POLY_SET() :
SHAPE( SH_POLY_SET )
{
}
SHAPE_POLY_SET::~SHAPE_POLY_SET()
{
}
int SHAPE_POLY_SET::NewOutline() int SHAPE_POLY_SET::NewOutline()
{ {
SHAPE_LINE_CHAIN empty_path; Path empty_path;
POLYGON poly; Paths poly;
poly.push_back( empty_path ); poly.push_back( empty_path );
m_polys.push_back( poly ); m_polys.push_back( poly );
return m_polys.size() - 1; return m_polys.size() - 1;
@ -64,13 +49,12 @@ int SHAPE_POLY_SET::NewOutline()
int SHAPE_POLY_SET::NewHole( int aOutline ) int SHAPE_POLY_SET::NewHole( int aOutline )
{ {
m_polys.back().push_back( SHAPE_LINE_CHAIN() ); assert( false );
return -1;
return m_polys.back().size() - 2;
} }
int SHAPE_POLY_SET::Append( int x, int y, int aOutline, int aHole ) int SHAPE_POLY_SET::AppendVertex( int x, int y, int aOutline, int aHole )
{ {
if( aOutline < 0 ) if( aOutline < 0 )
aOutline += m_polys.size(); aOutline += m_polys.size();
@ -85,13 +69,13 @@ int SHAPE_POLY_SET::Append( int x, int y, int aOutline, int aHole )
assert( aOutline < (int)m_polys.size() ); assert( aOutline < (int)m_polys.size() );
assert( idx < (int)m_polys[aOutline].size() ); assert( idx < (int)m_polys[aOutline].size() );
m_polys[aOutline][idx].Append( x, y ); m_polys[aOutline][idx].push_back( IntPoint( x, y ) );
return m_polys[aOutline][idx].PointCount(); return m_polys[aOutline][idx].size();
} }
int SHAPE_POLY_SET::VertexCount( int aOutline , int aHole ) const int SHAPE_POLY_SET::VertexCount( int aOutline, int aHole ) const
{ {
if( aOutline < 0 ) if( aOutline < 0 )
aOutline += m_polys.size(); aOutline += m_polys.size();
@ -106,11 +90,11 @@ int SHAPE_POLY_SET::VertexCount( int aOutline , int aHole ) const
assert ( aOutline < (int)m_polys.size() ); assert ( aOutline < (int)m_polys.size() );
assert ( idx < (int)m_polys[aOutline].size() ); assert ( idx < (int)m_polys[aOutline].size() );
return m_polys[aOutline][idx].PointCount(); return m_polys[aOutline][idx].size();
} }
const VECTOR2I& SHAPE_POLY_SET::CVertex( int index, int aOutline , int aHole ) const const VECTOR2I SHAPE_POLY_SET::GetVertex( int index, int aOutline, int aHole ) const
{ {
if( aOutline < 0 ) if( aOutline < 0 )
aOutline += m_polys.size(); aOutline += m_polys.size();
@ -125,26 +109,8 @@ const VECTOR2I& SHAPE_POLY_SET::CVertex( int index, int aOutline , int aHole ) c
assert( aOutline < (int)m_polys.size() ); assert( aOutline < (int)m_polys.size() );
assert( idx < (int)m_polys[aOutline].size() ); assert( idx < (int)m_polys[aOutline].size() );
return m_polys[aOutline][idx].CPoint( index ); IntPoint p = m_polys[aOutline][idx][index];
} return VECTOR2I (p.X, p.Y);
VECTOR2I& SHAPE_POLY_SET::Vertex( int index, int aOutline , int aHole )
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int)m_polys.size() );
assert( idx < (int)m_polys[aOutline].size() );
return m_polys[aOutline][idx].Point( index );
} }
@ -152,9 +118,13 @@ int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
{ {
assert( aOutline.IsClosed() ); assert( aOutline.IsClosed() );
POLYGON poly; Path p = convert( aOutline );
Paths poly;
poly.push_back( aOutline ); if( !Orientation( p ) )
ReversePath( p ); // outlines are always CW
poly.push_back( p );
m_polys.push_back( poly ); m_polys.push_back( poly );
@ -169,60 +139,49 @@ int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
if( aOutline < 0 ) if( aOutline < 0 )
aOutline += m_polys.size(); aOutline += m_polys.size();
POLYGON& poly = m_polys[aOutline]; Paths& poly = m_polys[aOutline];
assert( poly.size() ); assert( poly.size() );
poly.push_back( aHole ); Path p = convert( aHole );
if( Orientation( p ) )
ReversePath( p ); // holes are always CCW
poly.push_back( p );
return poly.size() - 1; return poly.size() - 1;
} }
const Path SHAPE_POLY_SET::convertToClipper( const SHAPE_LINE_CHAIN& aPath, bool aRequiredOrientation ) const ClipperLib::Path SHAPE_POLY_SET::convert( const SHAPE_LINE_CHAIN& aPath )
{ {
Path c_path; Path c_path;
for( int i = 0; i < aPath.PointCount(); i++ ) for( int i = 0; i < aPath.PointCount(); i++ )
{ {
const VECTOR2I& vertex = aPath.CPoint( i ); const VECTOR2I& vertex = aPath.CPoint( i );
c_path.push_back( IntPoint( vertex.x, vertex.y ) ); c_path.push_back( ClipperLib::IntPoint( vertex.x, vertex.y ) );
} }
if( Orientation( c_path ) != aRequiredOrientation )
ReversePath( c_path );
return c_path; return c_path;
} }
const SHAPE_LINE_CHAIN SHAPE_POLY_SET::convertFromClipper( const Path& aPath ) void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType type, const SHAPE_POLY_SET& b )
{
SHAPE_LINE_CHAIN lc;
for( unsigned int i = 0; i < aPath.size(); i++ )
lc.Append( aPath[i].X, aPath[i].Y );
return lc;
}
void SHAPE_POLY_SET::booleanOp( ClipType type, const SHAPE_POLY_SET& b )
{ {
Clipper c; Clipper c;
c.StrictlySimple( true ); c.StrictlySimple( true );
BOOST_FOREACH( const POLYGON& poly, m_polys ) BOOST_FOREACH( Paths& subject, m_polys )
{ {
for( unsigned int i = 0; i < poly.size(); i++ ) c.AddPaths( subject, ptSubject, true );
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), ptSubject, true );
} }
BOOST_FOREACH( const POLYGON& poly, b.m_polys ) BOOST_FOREACH( const Paths& clip, b.m_polys )
{ {
for( unsigned int i = 0; i < poly.size(); i++ ) c.AddPaths( clip, ptClip, true );
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), ptClip, true );
} }
PolyTree solution; PolyTree solution;
@ -233,39 +192,41 @@ void SHAPE_POLY_SET::booleanOp( ClipType type, const SHAPE_POLY_SET& b )
} }
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& b ) void SHAPE_POLY_SET::Add( const SHAPE_POLY_SET& b )
{ {
booleanOp( ctUnion, b ); booleanOp( ctUnion, b );
} }
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& b ) void SHAPE_POLY_SET::Subtract( const SHAPE_POLY_SET& b )
{ {
booleanOp( ctDifference, b ); booleanOp( ctDifference, b );
} }
void SHAPE_POLY_SET::Inflate( int aFactor, int aCircleSegmentsCount ) void SHAPE_POLY_SET::Erode( int aFactor )
{ {
ClipperOffset c; ClipperOffset c;
BOOST_FOREACH( const POLYGON& poly, m_polys ) BOOST_FOREACH( Paths& p, m_polys )
{ c.AddPaths(p, jtRound, etClosedPolygon );
for( unsigned int i = 0; i < poly.size(); i++ )
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), jtRound, etClosedPolygon );
}
PolyTree solution; PolyTree solution;
c.ArcTolerance = (double)fabs( aFactor ) / M_PI / aCircleSegmentsCount;
c.Execute( solution, aFactor ); c.Execute( solution, aFactor );
importTree( &solution ); m_polys.clear();
for( PolyNode* n = solution.GetFirst(); n; n = n->GetNext() )
{
Paths ps;
ps.push_back( n->Contour );
m_polys.push_back( ps );
}
} }
void SHAPE_POLY_SET::importTree( PolyTree* tree) void SHAPE_POLY_SET::importTree( ClipperLib::PolyTree* tree )
{ {
m_polys.clear(); m_polys.clear();
@ -273,37 +234,37 @@ void SHAPE_POLY_SET::importTree( PolyTree* tree)
{ {
if( !n->IsHole() ) if( !n->IsHole() )
{ {
POLYGON paths; Paths paths;
paths.push_back( convertFromClipper( n->Contour ) ); paths.push_back( n->Contour );
for( unsigned int i = 0; i < n->Childs.size(); i++ ) for( unsigned i = 0; i < n->Childs.size(); i++ )
paths.push_back( convertFromClipper( n->Childs[i]->Contour ) ); paths.push_back( n->Childs[i]->Contour );
m_polys.push_back(paths); m_polys.push_back( paths );
} }
} }
} }
// Polygon fracturing code. Work in progress.
// Polygon fracturing code. Work in progress.
struct FractureEdge struct FractureEdge
{ {
FractureEdge( bool connected, SHAPE_LINE_CHAIN* owner, int index ) : FractureEdge( bool connected, Path* owner, int index ) :
m_connected( connected ), m_connected( connected ),
m_next( NULL ) m_next( NULL )
{ {
m_p1 = owner->CPoint( index ); m_p1 = (*owner)[index];
m_p2 = owner->CPoint( index + 1 ); m_p2 = (*owner)[(index + 1) % owner->size()];
} }
FractureEdge( int y = 0 ) : FractureEdge( int64_t y = 0 ) :
m_connected( false ), m_connected( false ),
m_next( NULL ) m_next( NULL )
{ {
m_p1.x = m_p2.y = y; m_p1.Y = m_p2.Y = y;
} }
FractureEdge( bool connected, const VECTOR2I& p1, const VECTOR2I& p2 ) : FractureEdge( bool connected, const IntPoint& p1, const IntPoint& p2 ) :
m_connected( connected ), m_connected( connected ),
m_p1( p1 ), m_p1( p1 ),
m_p2( p2 ), m_p2( p2 ),
@ -313,14 +274,14 @@ struct FractureEdge
bool matches( int y ) const bool matches( int y ) const
{ {
int y_min = std::min( m_p1.y, m_p2.y ); int y_min = std::min( m_p1.Y, m_p2.Y );
int y_max = std::max( m_p1.y, m_p2.y ); int y_max = std::max( m_p1.Y, m_p2.Y );
return ( y >= y_min ) && ( y <= y_max ); return ( y >= y_min ) && ( y <= y_max );
} }
bool m_connected; bool m_connected;
VECTOR2I m_p1, m_p2; IntPoint m_p1, m_p2;
FractureEdge* m_next; FractureEdge* m_next;
}; };
@ -329,10 +290,10 @@ typedef std::vector<FractureEdge*> FractureEdgeSet;
static int processEdge( FractureEdgeSet& edges, FractureEdge* edge ) static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
{ {
int x = edge->m_p1.x; int64_t x = edge->m_p1.X;
int y = edge->m_p1.y; int64_t y = edge->m_p1.Y;
int min_dist = std::numeric_limits<int>::max(); int64_t min_dist = std::numeric_limits<int64_t>::max();
int x_nearest = 0; int64_t x_nearest = 0;
FractureEdge* e_nearest = NULL; FractureEdge* e_nearest = NULL;
@ -341,14 +302,15 @@ static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
if( !(*i)->matches( y ) ) if( !(*i)->matches( y ) )
continue; continue;
int x_intersect; int64_t x_intersect;
if( (*i)->m_p1.y == (*i)->m_p2.y ) // horizontal edge if( (*i)->m_p1.Y == (*i)->m_p2.Y ) // horizontal edge
x_intersect = std::max ( (*i)->m_p1.x, (*i)->m_p2.x ); x_intersect = std::max( (*i)->m_p1.X, (*i)->m_p2.X );
else else
x_intersect = (*i)->m_p1.x + rescale((*i)->m_p2.x - (*i)->m_p1.x, y - (*i)->m_p1.y, (*i)->m_p2.y - (*i)->m_p1.y ); x_intersect = (*i)->m_p1.X + rescale((*i)->m_p2.X - (*i)->m_p1.X,
y - (*i)->m_p1.Y, (*i)->m_p2.Y - (*i)->m_p1.Y );
int dist = ( x - x_intersect ); int64_t dist = ( x - x_intersect );
if( dist > 0 && dist < min_dist ) if( dist > 0 && dist < min_dist )
{ {
@ -362,9 +324,9 @@ static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
{ {
int count = 0; int count = 0;
FractureEdge* lead1 = new FractureEdge( true, VECTOR2I( x_nearest, y ), VECTOR2I( x, y ) ); FractureEdge* lead1 = new FractureEdge( true, IntPoint( x_nearest, y), IntPoint( x, y ) );
FractureEdge* lead2 = new FractureEdge( true, VECTOR2I( x, y ), VECTOR2I( x_nearest, y ) ); FractureEdge* lead2 = new FractureEdge( true, IntPoint( x, y), IntPoint( x_nearest, y ) );
FractureEdge* split_2 = new FractureEdge( true, VECTOR2I( x_nearest, y ), e_nearest->m_p2 ); FractureEdge* split_2 = new FractureEdge( true, IntPoint( x_nearest, y ), e_nearest->m_p2 );
edges.push_back( split_2 ); edges.push_back( split_2 );
edges.push_back( lead1 ); edges.push_back( lead1 );
@ -372,11 +334,11 @@ static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
FractureEdge* link = e_nearest->m_next; FractureEdge* link = e_nearest->m_next;
e_nearest->m_p2 = VECTOR2I( x_nearest, y ); e_nearest->m_p2 = IntPoint( x_nearest, y );
e_nearest->m_next = lead1; e_nearest->m_next = lead1;
lead1->m_next = edge; lead1->m_next = edge;
FractureEdge* last;
FractureEdge*last;
for( last = edge; last->m_next != edge; last = last->m_next ) for( last = edge; last->m_next != edge; last = last->m_next )
{ {
last->m_connected = true; last->m_connected = true;
@ -394,7 +356,8 @@ static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
return 0; return 0;
} }
void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
void SHAPE_POLY_SET::fractureSingle( ClipperLib::Paths& paths )
{ {
FractureEdgeSet edges; FractureEdgeSet edges;
FractureEdgeSet border_edges; FractureEdgeSet border_edges;
@ -407,23 +370,21 @@ void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
int num_unconnected = 0; int num_unconnected = 0;
BOOST_FOREACH( SHAPE_LINE_CHAIN& path, paths ) BOOST_FOREACH( Path& path, paths )
{ {
int index = 0; int index = 0;
FractureEdge *prev = NULL, *first_edge = NULL; FractureEdge *prev = NULL, *first_edge = NULL;
int x_min = std::numeric_limits<int>::max(); int64_t x_min = std::numeric_limits<int64_t>::max();
for( int i = 0; i < path.PointCount(); i++ ) for( unsigned i = 0; i < path.size(); i++ )
{ {
const VECTOR2I& p = path.CPoint( i ); if( path[i].X < x_min )
x_min = path[i].X;
if( p.x < x_min )
x_min = p.x;
} }
for( int i = 0; i < path.PointCount(); i++ ) for( unsigned i = 0; i < path.size(); i++ )
{ {
FractureEdge* fe = new FractureEdge( first, &path, index++ ); FractureEdge* fe = new FractureEdge( first, &path, index++ );
@ -436,7 +397,7 @@ void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
if( prev ) if( prev )
prev->m_next = fe; prev->m_next = fe;
if( i == path.PointCount() - 1 ) if( i == path.size() - 1 )
fe->m_next = first_edge; fe->m_next = first_edge;
prev = fe; prev = fe;
@ -444,27 +405,27 @@ void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
if( !first ) if( !first )
{ {
if( fe->m_p1.x == x_min ) if( fe->m_p1.X == x_min )
border_edges.push_back( fe ); border_edges.push_back( fe );
} }
if( !fe->m_connected ) if( !fe->m_connected )
num_unconnected++; num_unconnected++;
} }
first = false; // first path is always the outline first = false; // first path is always the outline
} }
// keep connecting holes to the main outline, until there's no holes left... // keep connecting holes to the main outline, until there's no holes left...
while( num_unconnected > 0 ) while( num_unconnected > 0 )
{ {
int x_min = std::numeric_limits<int>::max(); int64_t x_min = std::numeric_limits<int64_t>::max();
FractureEdge* smallestX = NULL; FractureEdge* smallestX = NULL;
// find the left-most hole edge and merge with the outline // find the left-most hole edge and merge with the outline
for( FractureEdgeSet::iterator i = border_edges.begin(); i != border_edges.end(); ++i ) for( FractureEdgeSet::iterator i = border_edges.begin(); i != border_edges.end(); ++i )
{ {
int xt = (*i)->m_p1.x; int64_t xt = (*i)->m_p1.X;
if( ( xt < x_min ) && ! (*i)->m_connected ) if( ( xt < x_min ) && ! (*i)->m_connected )
{ {
@ -477,16 +438,13 @@ void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
} }
paths.clear(); paths.clear();
SHAPE_LINE_CHAIN newPath; Path newPath;
newPath.SetClosed( true );
FractureEdge* e; FractureEdge* e;
for( e = root; e->m_next != root; e = e->m_next ) for( e = root; e->m_next != root; e = e->m_next )
newPath.Append( e->m_p1 ); newPath.push_back( e->m_p1 );
newPath.Append( e->m_p1 ); newPath.push_back( e->m_p1 );
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i ) for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
delete *i; delete *i;
@ -497,9 +455,7 @@ void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
void SHAPE_POLY_SET::Fracture() void SHAPE_POLY_SET::Fracture()
{ {
Simplify(); // remove overlallping holes/degeneracy BOOST_FOREACH( Paths& paths, m_polys )
BOOST_FOREACH( POLYGON& paths, m_polys )
{ {
fractureSingle( paths ); fractureSingle( paths );
} }
@ -508,9 +464,12 @@ void SHAPE_POLY_SET::Fracture()
void SHAPE_POLY_SET::Simplify() void SHAPE_POLY_SET::Simplify()
{ {
SHAPE_POLY_SET empty; for( unsigned i = 0; i < m_polys.size(); i++ )
{
booleanOp( ctUnion, empty ); Paths out;
SimplifyPolygons( m_polys[i], out, pftNonZero );
m_polys[i] = out;
}
} }
@ -523,11 +482,13 @@ const std::string SHAPE_POLY_SET::Format() const
for( unsigned i = 0; i < m_polys.size(); i++ ) for( unsigned i = 0; i < m_polys.size(); i++ )
{ {
ss << "poly " << m_polys[i].size() << "\n"; ss << "poly " << m_polys[i].size() << "\n";
for( unsigned j = 0; j < m_polys[i].size(); j++) for( unsigned j = 0; j < m_polys[i].size(); j++)
{ {
ss << m_polys[i][j].PointCount() << "\n"; ss << m_polys[i][j].size() << "\n";
for( int v = 0; v < m_polys[i][j].PointCount(); v++)
ss << m_polys[i][j].CPoint( v ).x << " " << m_polys[i][j].CPoint( v ).y << "\n"; for( unsigned v = 0; v < m_polys[i][j].size(); v++)
ss << m_polys[i][j][v].X << " " << m_polys[i][j][v].Y << "\n";
} }
ss << "\n"; ss << "\n";
} }
@ -554,8 +515,7 @@ bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
for( int i = 0; i < n_polys; i++ ) for( int i = 0; i < n_polys; i++ )
{ {
POLYGON paths; ClipperLib::Paths paths;
aStream >> tmp; aStream >> tmp;
if( tmp != "poly" ) if( tmp != "poly" )
@ -569,26 +529,23 @@ bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
for( int j = 0; j < n_outlines; j++ ) for( int j = 0; j < n_outlines; j++ )
{ {
SHAPE_LINE_CHAIN outline; ClipperLib::Path outline;
outline.SetClosed( true );
aStream >> tmp; aStream >> tmp;
int n_vertices = atoi( tmp.c_str() ); int n_vertices = atoi( tmp.c_str() );
for( int v = 0; v < n_vertices; v++ ) for( int v = 0; v < n_vertices; v++ )
{ {
VECTOR2I p; ClipperLib::IntPoint p;
aStream >> tmp; p.x = atoi( tmp.c_str() ); aStream >> tmp; p.X = atoi( tmp.c_str() );
aStream >> tmp; p.y = atoi( tmp.c_str() ); aStream >> tmp; p.Y = atoi( tmp.c_str() );
outline.Append( p ); outline.push_back( p );
} }
paths.push_back( outline ); paths.push_back( outline );
} }
m_polys.push_back( paths ); m_polys.push_back( paths );
} }
return true; return true;
} }
@ -600,146 +557,22 @@ const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
for( unsigned i = 0; i < m_polys.size(); i++ ) for( unsigned i = 0; i < m_polys.size(); i++ )
{ {
if( first ) for( unsigned j = 0; j < m_polys[i].size(); j++)
bb = m_polys[i][0].BBox(); {
else for( unsigned v = 0; v < m_polys[i][j].size(); v++)
bb.Merge( m_polys[i][0].BBox() ); {
VECTOR2I p( m_polys[i][j][v].X, m_polys[i][j][v].Y );
if( first )
bb = BOX2I( p, VECTOR2I( 0, 0 ) );
else
bb.Merge( p );
first = false;
}
}
} }
bb.Inflate( aClearance ); bb.Inflate( aClearance );
return bb; return bb;
} }
void SHAPE_POLY_SET::RemoveAllContours()
{
m_polys.clear();
}
void SHAPE_POLY_SET::DeletePolygon( int aIdx )
{
m_polys.erase( m_polys.begin() + aIdx );
}
void SHAPE_POLY_SET::Append( const SHAPE_POLY_SET& aSet )
{
m_polys.insert( m_polys.end(), aSet.m_polys.begin(), aSet.m_polys.end() );
}
void SHAPE_POLY_SET::Append( const VECTOR2I& aP, int aOutline, int aHole )
{
Append( aP.x, aP.y, aOutline, aHole );
}
bool SHAPE_POLY_SET::Contains( const VECTOR2I& aP, int aSubpolyIndex ) const
{
// fixme: support holes!
if( aSubpolyIndex >= 0 )
return pointInPolygon( aP, m_polys[aSubpolyIndex][0] );
BOOST_FOREACH ( const POLYGON& polys, m_polys )
{
if( pointInPolygon( aP, polys[0] ) )
return true;
}
return false;
}
bool SHAPE_POLY_SET::pointInPolygon( const VECTOR2I& aP, const SHAPE_LINE_CHAIN& aPath ) const
{
int result = 0;
int cnt = aPath.PointCount();
if ( !aPath.BBox().Contains( aP ) ) // test with bounding box first
return false;
if( cnt < 3 )
return false;
VECTOR2I ip = aPath.CPoint( 0 );
for( int i = 1; i <= cnt; ++i )
{
VECTOR2I ipNext = ( i == cnt ? aPath.CPoint( 0 ) : aPath.CPoint( i ) );
if( ipNext.y == aP.y )
{
if( ( ipNext.x == aP.x ) || ( ip.y == aP.y &&
( ( ipNext.x > aP.x ) == ( ip.x < aP.x ) ) ) )
return true;
}
if( ( ip.y < aP.y ) != ( ipNext.y < aP.y ) )
{
if( ip.x >= aP.x )
{
if( ipNext.x > aP.x )
result = 1 - result;
else
{
int64_t d = (int64_t)( ip.x - aP.x ) * (int64_t)( ipNext.y - aP.y ) -
(int64_t)( ipNext.x - aP.x ) * (int64_t)( ip.y - aP.y );
if( !d )
return true;
if( ( d > 0 ) == ( ipNext.y > ip.y ) )
result = 1 - result;
}
}
else
{
if( ipNext.x > aP.x )
{
int64_t d = (int64_t)( ip.x - aP.x ) * (int64_t)( ipNext.y - aP.y ) -
(int64_t)( ipNext.x - aP.x ) * (int64_t)( ip.y - aP.y );
if( !d )
return -1;
if( ( d > 0 ) == ( ipNext.y > ip.y ) )
result = 1 - result;
}
}
}
ip = ipNext;
}
return result ? true : false;
}
void SHAPE_POLY_SET::Move( const VECTOR2I& aVector )
{
BOOST_FOREACH( POLYGON &poly, m_polys )
{
BOOST_FOREACH( SHAPE_LINE_CHAIN &path, poly )
{
path.Move( aVector );
}
}
}
int SHAPE_POLY_SET::TotalVertices() const
{
int c = 0;
BOOST_FOREACH( const POLYGON& poly, m_polys )
{
BOOST_FOREACH ( const SHAPE_LINE_CHAIN& path, poly )
{
c += path.PointCount();
}
}
return c;
}

View File

@ -27,6 +27,7 @@
*/ */
#include <fctsys.h> #include <fctsys.h>
#include <polygons_defs.h>
#include <gr_basic.h> #include <gr_basic.h>
#include <common.h> #include <common.h>
#include <trigo.h> #include <trigo.h>

View File

@ -33,8 +33,8 @@
#include <fctsys.h> #include <fctsys.h>
#include <trigo.h> #include <trigo.h>
#include <macros.h> #include <macros.h>
#include <PolyLine.h>
#include <geometry/shape_poly_set.h>
/** /**
* Function TransformCircleToPolygon * Function TransformCircleToPolygon
* convert a circle to a polygon, using multiple straight lines * convert a circle to a polygon, using multiple straight lines
@ -45,9 +45,9 @@
* Note: the polygon is inside the circle, so if you want to have the polygon * Note: the polygon is inside the circle, so if you want to have the polygon
* outside the circle, you should give aRadius calculated with a correction factor * outside the circle, you should give aRadius calculated with a correction factor
*/ */
void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformCircleToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aCenter, int aRadius, wxPoint aCenter, int aRadius,
int aCircleToSegmentsCount ); int aCircleToSegmentsCount );
/** /**
* Function TransformRoundedEndsSegmentToPolygon * Function TransformRoundedEndsSegmentToPolygon
@ -61,7 +61,7 @@ void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* Note: the polygon is inside the arc ends, so if you want to have the polygon * Note: the polygon is inside the arc ends, so if you want to have the polygon
* outside the circle, you should give aStart and aEnd calculated with a correction factor * outside the circle, you should give aStart and aEnd calculated with a correction factor
*/ */
void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformRoundedEndsSegmentToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aStart, wxPoint aEnd, wxPoint aStart, wxPoint aEnd,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
int aWidth ); int aWidth );
@ -78,7 +78,7 @@ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aWidth = width (thickness) of the line * @param aWidth = width (thickness) of the line
*/ */
void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformArcToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aCentre, wxPoint aStart, double aArcAngle, wxPoint aCentre, wxPoint aStart, double aArcAngle,
int aCircleToSegmentsCount, int aWidth ); int aCircleToSegmentsCount, int aWidth );
@ -92,7 +92,7 @@ void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aWidth = width (thickness) of the ring * @param aWidth = width (thickness) of the ring
*/ */
void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformRingToPolygon( CPOLYGONS_LIST& aCornerBuffer,
wxPoint aCentre, int aRadius, wxPoint aCentre, int aRadius,
int aCircleToSegmentsCount, int aWidth ); int aCircleToSegmentsCount, int aWidth );

View File

@ -255,9 +255,6 @@ public:
if( aIndex < 0 ) if( aIndex < 0 )
aIndex += PointCount(); aIndex += PointCount();
if( aIndex >= PointCount() )
aIndex -= PointCount();
return m_points[aIndex]; return m_points[aIndex];
} }
@ -581,7 +578,6 @@ public:
{ {
return false; return false;
} }
private: private:
/// array of vertices /// array of vertices
std::vector<VECTOR2I> m_points; std::vector<VECTOR2I> m_points;

View File

@ -32,103 +32,25 @@
#include "clipper.hpp" #include "clipper.hpp"
/** /**
* Class SHAPE_POLY_SET * Class SHAPE_POLY_SET
* *
* Represents a set of closed polygons. Polygons may be nonconvex, self-intersecting * Represents a set of closed polygons. Polygons may be nonconvex, self-intersecting
* and have holes. Provides boolean operations (using Clipper library as the backend). * and have holes. Provides boolean operations (using Clipper library as the backend).
* *
* TODO: add convex partitioning & spatial index * TODO: document, derive from class SHAPE, add convex partitioning & spatial index
*/ */
class SHAPE_POLY_SET : public SHAPE class SHAPE_POLY_SET : public SHAPE
{ {
public: public:
///> represents a single polygon outline with holes. The first entry is the outline, SHAPE_POLY_SET() : SHAPE( SH_POLY_SET ) {};
///> the remaining (if any), are the holes ~SHAPE_POLY_SET() {};
typedef std::vector<SHAPE_LINE_CHAIN> POLYGON;
/**
* Class ITERATOR_TEMPLATE
*
* Base class for iterating over all vertices in a given SHAPE_POLY_SET
*/
template <class T>
class ITERATOR_TEMPLATE {
public:
bool IsEndContour() const
{
return m_currentVertex + 1 == m_poly->CPolygon( m_currentOutline )[0].PointCount();
}
bool IsLastContour() const
{
return m_currentOutline == m_lastOutline;
}
operator bool() const
{
return m_currentOutline <= m_lastOutline;
}
void Advance()
{
m_currentVertex ++;
if( m_currentVertex >= m_poly->CPolygon( m_currentOutline )[0].PointCount() )
{
m_currentVertex = 0;
m_currentOutline++;
}
}
void operator++( int dummy )
{
Advance();
}
void operator++()
{
Advance();
}
T& Get()
{
return m_poly->Polygon( m_currentOutline )[0].Point( m_currentVertex );
}
T& operator*()
{
return Get();
}
T* operator->()
{
return &Get();
}
private:
friend class SHAPE_POLY_SET;
SHAPE_POLY_SET* m_poly;
int m_currentOutline;
int m_lastOutline;
int m_currentVertex;
};
typedef ITERATOR_TEMPLATE<VECTOR2I> ITERATOR;
typedef ITERATOR_TEMPLATE<const VECTOR2I> CONST_ITERATOR;
SHAPE_POLY_SET();
~SHAPE_POLY_SET();
///> Creates a new empty polygon in the set and returns its index ///> Creates a new empty polygon in the set and returns its index
int NewOutline(); int NewOutline();
///> Creates a new hole in a given outline ///> Cretes a new empty hole in the given outline (default: last one) and returns its index
int NewHole( int aOutline = -1 ); int NewHole( int aOutline = -1);
///> Adds a new outline to the set and returns its index ///> Adds a new outline to the set and returns its index
int AddOutline( const SHAPE_LINE_CHAIN& aOutline ); int AddOutline( const SHAPE_LINE_CHAIN& aOutline );
@ -136,20 +58,11 @@ class SHAPE_POLY_SET : public SHAPE
///> Adds a new hole to the given outline (default: last) and returns its index ///> Adds a new hole to the given outline (default: last) and returns its index
int AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline = -1 ); int AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline = -1 );
///> Appends a vertex at the end of the given outline/hole (default: the last outline) ///> Appends a vertex at the end of the given outline/hole (default: last hole in the last outline)
int Append( int x, int y, int aOutline = -1, int aHole = -1 ); int AppendVertex( int x, int y, int aOutline = -1, int aHole = -1 );
///> Merges polygons from two sets.
void Append( const SHAPE_POLY_SET& aSet );
///> Appends a vertex at the end of the given outline/hole (default: the last outline)
void Append( const VECTOR2I& aP, int aOutline = -1, int aHole = -1 );
///> Returns the index-th vertex in a given hole outline within a given outline ///> Returns the index-th vertex in a given hole outline within a given outline
VECTOR2I& Vertex( int index, int aOutline = -1, int aHole = -1 ); const VECTOR2I GetVertex( int index, int aOutline = -1, int aHole = -1) const;
///> Returns the index-th vertex in a given hole outline within a given outline
const VECTOR2I& CVertex( int index, int aOutline = -1, int aHole = -1 ) const;
///> Returns true if any of the outlines is self-intersecting ///> Returns true if any of the outlines is self-intersecting
bool IsSelfIntersecting(); bool IsSelfIntersecting();
@ -160,109 +73,28 @@ class SHAPE_POLY_SET : public SHAPE
///> Returns the number of vertices in a given outline/hole ///> Returns the number of vertices in a given outline/hole
int VertexCount( int aOutline = -1, int aHole = -1 ) const; int VertexCount( int aOutline = -1, int aHole = -1 ) const;
///> Returns the number of holes in a given outline ///> Returns the internal representation (ClipperLib) of a given polygon (outline + holes)
int HoleCount( int aOutline ) const; const ClipperLib::Paths& GetPoly( int aIndex ) const
///> Returns the reference to aIndex-th outline in the set
SHAPE_LINE_CHAIN& Outline( int aIndex )
{
return m_polys[aIndex][0];
}
///> Returns the reference to aHole-th hole in the aIndex-th outline
SHAPE_LINE_CHAIN& Hole( int aOutline, int aHole )
{
return m_polys[aOutline][aHole + 1];
}
///> Returns the aIndex-th subpolygon in the set
POLYGON& Polygon( int aIndex )
{ {
return m_polys[aIndex]; return m_polys[aIndex];
} }
const SHAPE_LINE_CHAIN& COutline( int aIndex ) const
{
return m_polys[aIndex][0];
}
const SHAPE_LINE_CHAIN& CHole( int aOutline, int aHole ) const
{
return m_polys[aOutline][aHole + 1];
}
const POLYGON& CPolygon( int aIndex ) const
{
return m_polys[aIndex];
}
///> Returns an iterator object, for iterating between aFirst and aLast outline.
ITERATOR Iterate( int aFirst, int aLast )
{
ITERATOR iter;
iter.m_poly = this;
iter.m_currentOutline = aFirst;
iter.m_lastOutline = aLast < 0 ? OutlineCount() - 1 : aLast;
iter.m_currentVertex = 0;
return iter;
}
///> Returns an iterator object, for iterating aOutline-th outline
ITERATOR Iterate( int aOutline )
{
return Iterate( aOutline, aOutline );
}
///> Returns an iterator object, for all outlines in the set (no holes)
ITERATOR Iterate()
{
return Iterate( 0, OutlineCount() - 1 );
}
CONST_ITERATOR CIterate( int aFirst, int aLast ) const
{
CONST_ITERATOR iter;
iter.m_poly = const_cast<SHAPE_POLY_SET*>( this );
iter.m_currentOutline = aFirst;
iter.m_lastOutline = aLast < 0 ? OutlineCount() - 1 : aLast;
iter.m_currentVertex = 0;
return iter;
}
CONST_ITERATOR CIterate( int aOutline ) const
{
return CIterate( aOutline, aOutline );
}
CONST_ITERATOR CIterate() const
{
return CIterate( 0, OutlineCount() - 1 );
}
///> Performs boolean polyset union
void BooleanAdd( const SHAPE_POLY_SET& b );
///> Performs boolean polyset difference ///> Performs boolean polyset difference
void BooleanSubtract( const SHAPE_POLY_SET& b ); void Subtract( const SHAPE_POLY_SET& b );
///> Performs outline inflation/deflation, using round corners. ///> Performs boolean polyset union
void Inflate( int aFactor, int aCircleSegmentsCount ); void Add( const SHAPE_POLY_SET& b );
///> Performs smooth outline inflation (Minkowski sum of the outline and a circle of a given radius)
void SmoothInflate( int aFactor );
///> Performs outline erosion/shrinking
void Erode( int aFactor );
///> Converts a set of polygons with holes to a singe outline with "slits"/"fractures" connecting the outer ring ///> Converts a set of polygons with holes to a singe outline with "slits"/"fractures" connecting the outer ring
///> to the inner holes ///> to the inner holes
void Fracture(); void Fracture();
///> Converts a set of slitted polygons to a set of polygons with holes
void Unfracture();
///> Returns true if the polygon set has any holes.
bool HasHoles() const;
///> Simplifies the polyset (merges overlapping polys, eliminates degeneracy/self-intersections) ///> Simplifies the polyset (merges overlapping polys, eliminates degeneracy/self-intersections)
void Simplify(); void Simplify();
@ -272,10 +104,8 @@ class SHAPE_POLY_SET : public SHAPE
/// @copydoc SHAPE::Parse() /// @copydoc SHAPE::Parse()
bool Parse( std::stringstream& aStream ); bool Parse( std::stringstream& aStream );
/// @copydoc SHAPE::Move() void Move( const VECTOR2I& aVector ) { assert(false ); };
void Move( const VECTOR2I& aVector );
/// @copydoc SHAPE::IsSolid()
bool IsSolid() const bool IsSolid() const
{ {
return true; return true;
@ -287,43 +117,15 @@ class SHAPE_POLY_SET : public SHAPE
bool Collide( const VECTOR2I& aP, int aClearance = 0 ) const { return false; } bool Collide( const VECTOR2I& aP, int aClearance = 0 ) const { return false; }
bool Collide( const SEG& aSeg, int aClearance = 0 ) const { return false; } bool Collide( const SEG& aSeg, int aClearance = 0 ) const { return false; }
///> Returns true is a given subpolygon contains the point aP. If aSubpolyIndex < 0 (default value),
///> checks all polygons in the set
bool Contains( const VECTOR2I& aP, int aSubpolyIndex = -1 ) const;
///> Returns true if the set is empty (no polygons at all)
bool IsEmpty() const
{
return m_polys.size() == 0;
}
///> Removes all outlines & holes (clears) the polygon set.
void RemoveAllContours();
///> Returns total number of vertices stored in the set.
int TotalVertices() const;
///> Deletes aIdx-th polygon from the set
void DeletePolygon( int aIdx );
private: private:
SHAPE_LINE_CHAIN& getContourForCorner( int aCornerId, int& aIndexWithinContour ); void fractureSingle( ClipperLib::Paths& paths );
VECTOR2I& vertex( int aCornerId ); void importTree( ClipperLib::PolyTree* tree);
const VECTOR2I& cvertex( int aCornerId ) const;
void fractureSingle( POLYGON& paths );
void importTree( ClipperLib::PolyTree* tree );
void booleanOp( ClipperLib::ClipType type, const SHAPE_POLY_SET& b ); void booleanOp( ClipperLib::ClipType type, const SHAPE_POLY_SET& b );
bool pointInPolygon( const VECTOR2I& aP, const SHAPE_LINE_CHAIN& aPath ) const; const ClipperLib::Path convert( const SHAPE_LINE_CHAIN& aPath );
const ClipperLib::Path convertToClipper( const SHAPE_LINE_CHAIN& aPath, bool aRequiredOrientation ); typedef std::vector<ClipperLib::Paths> Polyset;
const SHAPE_LINE_CHAIN convertFromClipper( const ClipperLib::Path& aPath );
typedef std::vector<POLYGON> Polyset;
Polyset m_polys; Polyset m_polys;
}; };

View File

@ -33,6 +33,7 @@
#include <vector> #include <vector>
#include <fctsys.h> #include <fctsys.h>
#include <polygons_defs.h>
#include <drawtxt.h> #include <drawtxt.h>
#include <pcbnew.h> #include <pcbnew.h>
#include <wxPcbStruct.h> #include <wxPcbStruct.h>
@ -50,9 +51,9 @@
// These variables are parameters used in addTextSegmToPoly. // These variables are parameters used in addTextSegmToPoly.
// But addTextSegmToPoly is a call-back function, // But addTextSegmToPoly is a call-back function,
// so we cannot send them as arguments. // so we cannot send them as arguments.
static int s_textWidth; int s_textWidth;
static int s_textCircle2SegmentCount; int s_textCircle2SegmentCount;
static SHAPE_POLY_SET* s_cornerBuffer; CPOLYGONS_LIST* s_cornerBuffer;
// This is a call back function, used by DrawGraphicText to draw the 3D text shape: // This is a call back function, used by DrawGraphicText to draw the 3D text shape:
static void addTextSegmToPoly( int x0, int y0, int xf, int yf ) static void addTextSegmToPoly( int x0, int y0, int xf, int yf )
@ -63,7 +64,7 @@ static void addTextSegmToPoly( int x0, int y0, int xf, int yf )
} }
void BOARD::ConvertBrdLayerToPolygonalContours( LAYER_ID aLayer, SHAPE_POLY_SET& aOutlines ) void BOARD::ConvertBrdLayerToPolygonalContours( LAYER_ID aLayer, CPOLYGONS_LIST& aOutlines )
{ {
// Number of segments to convert a circle to a polygon // Number of segments to convert a circle to a polygon
const int segcountforcircle = 18; const int segcountforcircle = 18;
@ -127,7 +128,7 @@ void BOARD::ConvertBrdLayerToPolygonalContours( LAYER_ID aLayer, SHAPE_POLY_SET&
void MODULE::TransformPadsShapesWithClearanceToPolygon( LAYER_ID aLayer, void MODULE::TransformPadsShapesWithClearanceToPolygon( LAYER_ID aLayer,
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aInflateValue, int aInflateValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor, double aCorrectionFactor,
@ -202,7 +203,7 @@ void MODULE::TransformPadsShapesWithClearanceToPolygon( LAYER_ID aLayer,
*/ */
void MODULE::TransformGraphicShapesWithClearanceToPolygonSet( void MODULE::TransformGraphicShapesWithClearanceToPolygonSet(
LAYER_ID aLayer, LAYER_ID aLayer,
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aInflateValue, int aInflateValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) double aCorrectionFactor )
@ -279,30 +280,43 @@ void MODULE::TransformGraphicShapesWithClearanceToPolygonSet(
* keep arc radius when approximated by segments * keep arc radius when approximated by segments
*/ */
void ZONE_CONTAINER::TransformSolidAreasShapesToPolygonSet( void ZONE_CONTAINER::TransformSolidAreasShapesToPolygonSet(
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) double aCorrectionFactor )
{ {
if( GetFilledPolysList().IsEmpty() ) unsigned cornerscount = GetFilledPolysList().GetCornersCount();
if( cornerscount == 0 )
return; return;
// add filled areas polygons // add filled areas polygons
aCornerBuffer.Append( m_FilledPolysList ); aCornerBuffer.Append( m_FilledPolysList );
// add filled areas outlines, which are drawn with thick lines // add filled areas outlines, which are drawn with thick lines
for( int i = 0; i < m_FilledPolysList.OutlineCount(); i++ ) wxPoint seg_start, seg_end;
int i_start_contour = 0;
for( unsigned ic = 0; ic < cornerscount; ic++ )
{ {
const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( i ); seg_start.x = m_FilledPolysList[ ic ].x;
seg_start.y = m_FilledPolysList[ ic ].y;
unsigned ic_next = ic+1;
for( int j = 0; j < path.PointCount(); j++ ) if( !m_FilledPolysList[ic].end_contour &&
ic_next < cornerscount )
{ {
const VECTOR2I& a = path.CPoint( j ); seg_end.x = m_FilledPolysList[ ic_next ].x;
const VECTOR2I& b = path.CPoint( j + 1 ); seg_end.y = m_FilledPolysList[ ic_next ].y;
TransformRoundedEndsSegmentToPolygon( aCornerBuffer, wxPoint( a.x, a.y ), wxPoint( b.x, b.y ),
aCircleToSegmentsCount,
GetMinThickness() );
} }
else
{
seg_end.x = m_FilledPolysList[ i_start_contour ].x;
seg_end.y = m_FilledPolysList[ i_start_contour ].y;
i_start_contour = ic_next;
}
TransformRoundedEndsSegmentToPolygon( aCornerBuffer, seg_start, seg_end,
aCircleToSegmentsCount,
GetMinThickness() );
} }
} }
@ -315,13 +329,13 @@ void ZONE_CONTAINER::TransformSolidAreasShapesToPolygonSet(
* @param aClearanceValue = the clearance around the text bounding box * @param aClearanceValue = the clearance around the text bounding box
*/ */
void TEXTE_PCB::TransformBoundingBoxWithClearanceToPolygon( void TEXTE_PCB::TransformBoundingBoxWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue ) const int aClearanceValue ) const
{ {
if( GetText().Length() == 0 ) if( GetText().Length() == 0 )
return; return;
wxPoint corners[4]; // Buffer of polygon corners CPolyPt corners[4]; // Buffer of polygon corners
EDA_RECT rect = GetTextBox( -1 ); EDA_RECT rect = GetTextBox( -1 );
rect.Inflate( aClearanceValue ); rect.Inflate( aClearanceValue );
@ -334,14 +348,14 @@ void TEXTE_PCB::TransformBoundingBoxWithClearanceToPolygon(
corners[3].y = corners[2].y; corners[3].y = corners[2].y;
corners[3].x = corners[0].x; corners[3].x = corners[0].x;
aCornerBuffer.NewOutline();
for( int ii = 0; ii < 4; ii++ ) for( int ii = 0; ii < 4; ii++ )
{ {
// Rotate polygon // Rotate polygon
RotatePoint( &corners[ii].x, &corners[ii].y, m_Pos.x, m_Pos.y, m_Orient ); RotatePoint( &corners[ii].x, &corners[ii].y, m_Pos.x, m_Pos.y, m_Orient );
aCornerBuffer.Append( corners[ii].x, corners[ii].y ); aCornerBuffer.Append( corners[ii] );
} }
aCornerBuffer.CloseLastContour();
} }
@ -349,7 +363,7 @@ void TEXTE_PCB::TransformBoundingBoxWithClearanceToPolygon(
* Convert the text shape to a set of polygons (one by segment) * Convert the text shape to a set of polygons (one by segment)
* Used in filling zones calculations and 3D view * Used in filling zones calculations and 3D view
* Circles and arcs are approximated by segments * Circles and arcs are approximated by segments
* aCornerBuffer = SHAPE_POLY_SET to store the polygon corners * aCornerBuffer = CPOLYGONS_LIST to store the polygon corners
* aClearanceValue = the clearance around the text * aClearanceValue = the clearance around the text
* aCircleToSegmentsCount = the number of segments to approximate a circle * aCircleToSegmentsCount = the number of segments to approximate a circle
* aCorrectionFactor = the correction to apply to circles radius to keep * aCorrectionFactor = the correction to apply to circles radius to keep
@ -358,7 +372,7 @@ void TEXTE_PCB::TransformBoundingBoxWithClearanceToPolygon(
*/ */
void TEXTE_PCB::TransformShapeWithClearanceToPolygonSet( void TEXTE_PCB::TransformShapeWithClearanceToPolygonSet(
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const double aCorrectionFactor ) const
@ -414,7 +428,7 @@ void TEXTE_PCB::TransformShapeWithClearanceToPolygonSet(
* clearance when the circle is approxiamted by segment bigger or equal * clearance when the circle is approxiamted by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const double aCorrectionFactor ) const
@ -449,8 +463,6 @@ void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerB
MODULE* module = GetParentModule(); // NULL for items not in footprints MODULE* module = GetParentModule(); // NULL for items not in footprints
double orientation = module ? module->GetOrientation() : 0.0; double orientation = module ? module->GetOrientation() : 0.0;
aCornerBuffer.NewOutline();
// Build the polygon with the actual position and orientation: // Build the polygon with the actual position and orientation:
std::vector< wxPoint> poly; std::vector< wxPoint> poly;
poly = GetPolyPoints(); poly = GetPolyPoints();
@ -486,8 +498,9 @@ void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerB
for( unsigned ii = 0; ii < poly.size(); ii++ ) for( unsigned ii = 0; ii < poly.size(); ii++ )
{ {
CPolyPt corner( poly[ii] ); CPolyPt corner( poly[ii] );
aCornerBuffer.Append( corner.x, corner.y ); aCornerBuffer.Append( corner );
} }
aCornerBuffer.CloseLastContour();
} }
break; break;
@ -512,7 +525,7 @@ void DRAWSEGMENT::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerB
* clearance when the circle is approximated by segment bigger or equal * clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void TRACK::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TRACK:: TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const double aCorrectionFactor ) const
@ -541,14 +554,15 @@ void TRACK::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
* Convert the pad shape to a closed polygon * Convert the pad shape to a closed polygon
* Used in filling zones calculations and 3D view generation * Used in filling zones calculations and 3D view generation
* Circles and arcs are approximated by segments * Circles and arcs are approximated by segments
* aCornerBuffer = a SHAPE_POLY_SET to store the polygon corners * aCornerBuffer = a CPOLYGONS_LIST to store the polygon corners
* aClearanceValue = the clearance around the pad * aClearanceValue = the clearance around the pad
* aCircleToSegmentsCount = the number of segments to approximate a circle * aCircleToSegmentsCount = the number of segments to approximate a circle
* aCorrectionFactor = the correction to apply to circles radius to keep * aCorrectionFactor = the correction to apply to circles radius to keep
* clearance when the circle is approximated by segment bigger or equal * clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void D_PAD:: TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, #include <clipper.hpp>
void D_PAD:: TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const double aCorrectionFactor ) const
@ -601,21 +615,36 @@ void D_PAD:: TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer
wxPoint corners[4]; wxPoint corners[4];
BuildPadPolygon( corners, wxSize( 0, 0 ), angle ); BuildPadPolygon( corners, wxSize( 0, 0 ), angle );
SHAPE_POLY_SET outline; // We are using ClipperLib to inflate the polygon shape, using
// arcs to connect moved segments.
outline.NewOutline(); ClipperLib::Path outline;
ClipperLib::Paths shapeWithClearance;
for( int ii = 0; ii < 4; ii++ ) for( int ii = 0; ii < 4; ii++ )
{ {
corners[ii] += PadShapePos; corners[ii] += PadShapePos;
outline.Append( corners[ii].x, corners[ii].y ); outline << ClipperLib::IntPoint( corners[ii].x, corners[ii].y );
} }
ClipperLib::ClipperOffset offset_engine;
// Prepare an offset (inflate) transform, with edges connected by arcs
offset_engine.AddPath( outline, ClipperLib::jtRound, ClipperLib::etClosedPolygon );
// Clipper approximates arcs by segments
// It uses a value called ArcTolerance which is the max error between the arc
// and segments created to approximate this arc
// the number of segm per circle is:
// n = PI / acos(1 - arc_tolerance / (arc radius))
// the arc radius is aClearanceValue
// because arc_tolerance is << aClearanceValue and aClearanceValue >= 0
// n = PI / (arc_tolerance / aClearanceValue )
offset_engine.ArcTolerance = (double)aClearanceValue / 3.14 / aCircleToSegmentsCount;
double rounding_radius = aClearanceValue * aCorrectionFactor; double rounding_radius = aClearanceValue * aCorrectionFactor;
offset_engine.Execute( shapeWithClearance, rounding_radius );
outline.Inflate( (int) rounding_radius, aCircleToSegmentsCount ); // get new outline (only one polygon is expected)
aCornerBuffer.ImportFrom( shapeWithClearance );
aCornerBuffer.Append( outline );
} }
break; break;
} }
@ -628,7 +657,7 @@ void D_PAD:: TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer
* Note: for Round and oval pads this function is equivalent to * Note: for Round and oval pads this function is equivalent to
* TransformShapeWithClearanceToPolygon, but not for other shapes * TransformShapeWithClearanceToPolygon, but not for other shapes
*/ */
void D_PAD::BuildPadShapePolygon( SHAPE_POLY_SET& aCornerBuffer, void D_PAD::BuildPadShapePolygon( CPOLYGONS_LIST& aCornerBuffer,
wxSize aInflateValue, int aSegmentsPerCircle, wxSize aInflateValue, int aSegmentsPerCircle,
double aCorrectionFactor ) const double aCorrectionFactor ) const
{ {
@ -645,15 +674,15 @@ void D_PAD::BuildPadShapePolygon( SHAPE_POLY_SET& aCornerBuffer,
case PAD_TRAPEZOID: case PAD_TRAPEZOID:
case PAD_RECT: case PAD_RECT:
aCornerBuffer.NewOutline();
BuildPadPolygon( corners, aInflateValue, m_Orient ); BuildPadPolygon( corners, aInflateValue, m_Orient );
for( int ii = 0; ii < 4; ii++ ) for( int ii = 0; ii < 4; ii++ )
{ {
corners[ii] += PadShapePos; // Shift origin to position corners[ii] += PadShapePos; // Shift origin to position
aCornerBuffer.Append( corners[ii].x, corners[ii].y ); CPolyPt polypoint( corners[ii].x, corners[ii].y );
aCornerBuffer.Append( polypoint );
} }
aCornerBuffer.CloseLastContour();
break; break;
} }
} }
@ -664,7 +693,7 @@ void D_PAD::BuildPadShapePolygon( SHAPE_POLY_SET& aCornerBuffer,
* depending on shape pad hole and orientation * depending on shape pad hole and orientation
* return false if the pad has no hole, true otherwise * return false if the pad has no hole, true otherwise
*/ */
bool D_PAD::BuildPadDrillShapePolygon( SHAPE_POLY_SET& aCornerBuffer, bool D_PAD::BuildPadDrillShapePolygon( CPOLYGONS_LIST& aCornerBuffer,
int aInflateValue, int aSegmentsPerCircle ) const int aInflateValue, int aSegmentsPerCircle ) const
{ {
wxSize drillsize = GetDrillSize(); wxSize drillsize = GetDrillSize();
@ -721,7 +750,7 @@ bool D_PAD::BuildPadDrillShapePolygon( SHAPE_POLY_SET& aCornerBuffer,
* and are used in microwave applications and they *DO NOT* have a thermal relief that * and are used in microwave applications and they *DO NOT* have a thermal relief that
* change the shape by creating stubs and destroy their properties. * change the shape by creating stubs and destroy their properties.
*/ */
void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, void CreateThermalReliefPadPolygon( CPOLYGONS_LIST& aCornerBuffer,
D_PAD& aPad, D_PAD& aPad,
int aThermalGap, int aThermalGap,
int aCopperThickness, int aCopperThickness,
@ -827,16 +856,15 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
for( unsigned ihole = 0; ihole < 4; ihole++ ) for( unsigned ihole = 0; ihole < 4; ihole++ )
{ {
aCornerBuffer.NewOutline();
for( unsigned ii = 0; ii < corners_buffer.size(); ii++ ) for( unsigned ii = 0; ii < corners_buffer.size(); ii++ )
{ {
corner = corners_buffer[ii]; corner = corners_buffer[ii];
RotatePoint( &corner, th_angle + angle_pad ); // Rotate by segment angle and pad orientation RotatePoint( &corner, th_angle + angle_pad ); // Rotate by segment angle and pad orientation
corner += PadShapePos; corner += PadShapePos;
aCornerBuffer.Append( corner.x, corner.y ); aCornerBuffer.Append( CPolyPt( corner.x, corner.y ) );
} }
aCornerBuffer.CloseLastContour();
th_angle += 900; // Note: th_angle in in 0.1 deg. th_angle += 900; // Note: th_angle in in 0.1 deg.
} }
} }
@ -932,15 +960,15 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
for( int irect = 0; irect < 2; irect++ ) for( int irect = 0; irect < 2; irect++ )
{ {
aCornerBuffer.NewOutline();
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{ {
wxPoint cpos = corners_buffer[ic]; wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle ); RotatePoint( &cpos, angle );
cpos += PadShapePos; cpos += PadShapePos;
aCornerBuffer.Append( cpos.x, cpos.y ); aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) );
} }
aCornerBuffer.CloseLastContour();
angle = AddAngles( angle, 1800 ); // this is calculate hole 3 angle = AddAngles( angle, 1800 ); // this is calculate hole 3
} }
@ -957,16 +985,15 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
for( int irect = 0; irect < 2; irect++ ) for( int irect = 0; irect < 2; irect++ )
{ {
aCornerBuffer.NewOutline();
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{ {
wxPoint cpos = corners_buffer[ic]; wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle ); RotatePoint( &cpos, angle );
cpos += PadShapePos; cpos += PadShapePos;
aCornerBuffer.Append( cpos.x, cpos.y ); aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) );
} }
aCornerBuffer.CloseLastContour();
angle = AddAngles( angle, 1800 ); angle = AddAngles( angle, 1800 );
} }
} }
@ -1030,16 +1057,15 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
for( int irect = 0; irect < 2; irect++ ) for( int irect = 0; irect < 2; irect++ )
{ {
aCornerBuffer.NewOutline();
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{ {
wxPoint cpos = corners_buffer[ic]; wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle ); // Rotate according to module orientation RotatePoint( &cpos, angle ); // Rotate according to module orientation
cpos += PadShapePos; // Shift origin to position cpos += PadShapePos; // Shift origin to position
aCornerBuffer.Append( cpos.x, cpos.y ); aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) );
} }
aCornerBuffer.CloseLastContour();
angle = AddAngles( angle, 1800 ); // this is calculate hole 3 angle = AddAngles( angle, 1800 ); // this is calculate hole 3
} }
@ -1054,16 +1080,15 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
// Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg // Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
for( int irect = 0; irect < 2; irect++ ) for( int irect = 0; irect < 2; irect++ )
{ {
aCornerBuffer.NewOutline();
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{ {
wxPoint cpos = corners_buffer[ic]; wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle ); RotatePoint( &cpos, angle );
cpos += PadShapePos; cpos += PadShapePos;
aCornerBuffer.Append( cpos.x, cpos.y ); aCornerBuffer.Append( CPolyPt( cpos.x, cpos.y ) );
} }
aCornerBuffer.CloseLastContour();
angle = AddAngles( angle, 1800 ); angle = AddAngles( angle, 1800 );
} }
} }
@ -1071,25 +1096,30 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
case PAD_TRAPEZOID: case PAD_TRAPEZOID:
{ {
SHAPE_POLY_SET antipad; // The full antipad area CPOLYGONS_LIST cbuffer;
// We need a length to build the stubs of the thermal reliefs // We need a length to build the stubs of the thermal reliefs
// the value is not very important. The pad bounding box gives a reasonable value // the value is not very important. The pad bounding box gives a reasonable value
EDA_RECT bbox = aPad.GetBoundingBox(); EDA_RECT bbox = aPad.GetBoundingBox();
int stub_len = std::max( bbox.GetWidth(), bbox.GetHeight() ); int stub_len = std::max( bbox.GetWidth(), bbox.GetHeight() );
aPad.TransformShapeWithClearanceToPolygon( antipad, aThermalGap, aPad.TransformShapeWithClearanceToPolygon( cbuffer, aThermalGap,
aCircleToSegmentsCount, aCorrectionFactor ); aCircleToSegmentsCount, aCorrectionFactor );
SHAPE_POLY_SET stub; // A basic stub ( a rectangle) // We are using ClipperLib to substract stubs to clearance area (antipad area).
SHAPE_POLY_SET stubs; // the full stubs shape ClipperLib::Path antipad; // The full antipad area
SHAPE_POLY_SET thermalShape; // the holes in copper zone ClipperLib::Path stub; // A basic stub ( a rectangle)
ClipperLib::Paths stubs; // the full stubs shape
ClipperLib::Paths thermalShape; // the holes in copper zone
// cbuffer is expected to contain only one polygon, which is
// area of the pad + the thermal gap (the antipad)
for( unsigned ii = 0; ii < cbuffer.GetCornersCount(); ii++ )
antipad << ClipperLib::IntPoint( cbuffer.GetPos(ii).x, cbuffer.GetPos(ii).y );
// We now substract the stubs (connections to the copper zone) // We now substract the stubs (connections to the copper zone)
//ClipperLib::Clipper clip_engine; ClipperLib::Clipper clip_engine;
// Prepare a clipping transform // Prepare a clipping transform
//clip_engine.AddPath( antipad, ClipperLib::ptSubject, true ); clip_engine.AddPath( antipad, ClipperLib::ptSubject, true );
// Create stubs and add them to clipper engine // Create stubs and add them to clipper engine
wxPoint stubBuffer[4]; wxPoint stubBuffer[4];
@ -1102,17 +1132,16 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
stubBuffer[3] = stubBuffer[2]; stubBuffer[3] = stubBuffer[2];
stubBuffer[3].y = copper_thickness.y/2; stubBuffer[3].y = copper_thickness.y/2;
stub.NewOutline();
for( unsigned ii = 0; ii < DIM( stubBuffer ); ii++ ) for( unsigned ii = 0; ii < DIM( stubBuffer ); ii++ )
{ {
wxPoint cpos = stubBuffer[ii]; wxPoint cpos = stubBuffer[ii];
RotatePoint( &cpos, aPad.GetOrientation() ); RotatePoint( &cpos, aPad.GetOrientation() );
cpos += PadShapePos; cpos += PadShapePos;
stub.Append( cpos.x, cpos.y ); stub << ClipperLib::IntPoint( cpos.x, cpos.y );
} }
stubs.Append( stub ); ClipperLib::Clipper stubs_engine;
stubs_engine.AddPath( stub, ClipperLib::ptSubject, true );
stubBuffer[0].y = stub_len; stubBuffer[0].y = stub_len;
stubBuffer[0].x = copper_thickness.x/2; stubBuffer[0].x = copper_thickness.x/2;
@ -1122,24 +1151,27 @@ void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
stubBuffer[2].y = -stub_len; stubBuffer[2].y = -stub_len;
stubBuffer[3] = stubBuffer[2]; stubBuffer[3] = stubBuffer[2];
stubBuffer[3].x = copper_thickness.x/2; stubBuffer[3].x = copper_thickness.x/2;
stub.clear();
stub.RemoveAllContours();
stub.NewOutline();
for( unsigned ii = 0; ii < DIM( stubBuffer ); ii++ ) for( unsigned ii = 0; ii < DIM( stubBuffer ); ii++ )
{ {
wxPoint cpos = stubBuffer[ii]; wxPoint cpos = stubBuffer[ii];
RotatePoint( &cpos, aPad.GetOrientation() ); RotatePoint( &cpos, aPad.GetOrientation() );
cpos += PadShapePos; cpos += PadShapePos;
stub.Append( cpos.x, cpos.y ); stub << ClipperLib::IntPoint( cpos.x, cpos.y );
} }
stubs.Append( stub ); stubs_engine.AddPath( stub, ClipperLib::ptClip, true );
stubs.Simplify();
antipad.BooleanSubtract( stubs ); // Build the full stubs shape:
aCornerBuffer.Append( antipad ); stubs_engine.Execute( ClipperLib::ctUnion, stubs );
// remove stubs to antipad area (i.e. add copper stubs)
clip_engine.AddPath( stubs[0], ClipperLib::ptClip, true );
clip_engine.Execute( ClipperLib::ctDifference, thermalShape );
// put thermal shapes (holes) to list:
aCornerBuffer.ImportFrom( thermalShape );
break; break;
} }

View File

@ -2741,8 +2741,8 @@ wxString BOARD::GetNextModuleReferenceWithPrefix( const wxString& aPrefix,
* return true if success, false if a contour is not valid * return true if success, false if a contour is not valid
*/ */
#include <specctra.h> #include <specctra.h>
bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, bool BOARD::GetBoardPolygonOutlines( CPOLYGONS_LIST& aOutlines,
SHAPE_POLY_SET& aHoles, CPOLYGONS_LIST& aHoles,
wxString* aErrorText ) wxString* aErrorText )
{ {
// the SPECCTRA_DB function to extract board outlines: // the SPECCTRA_DB function to extract board outlines:

View File

@ -57,7 +57,7 @@ class MSG_PANEL_ITEM;
class NETLIST; class NETLIST;
class REPORTER; class REPORTER;
class RN_DATA; class RN_DATA;
class SHAPE_POLY_SET;
// non-owning container of item candidates when searching for items on the same track. // non-owning container of item candidates when searching for items on the same track.
typedef std::vector< TRACK* > TRACK_PTRS; typedef std::vector< TRACK* > TRACK_PTRS;
@ -600,14 +600,15 @@ public:
* from lines, arcs and circle items on edge cut layer * from lines, arcs and circle items on edge cut layer
* Any closed outline inside the main outline is a hole * Any closed outline inside the main outline is a hole
* All contours should be closed, i.e. have valid vertices to build a closed polygon * All contours should be closed, i.e. have valid vertices to build a closed polygon
* @param aPoly The SHAPE_POLY_SET to fill in with outlines/holes. * @param aOutlines The CPOLYGONS_LIST to fill in with main outlines.
* @param aHoles The empty CPOLYGONS_LIST to fill in with holes, if any.
* @param aErrorText = a wxString reference to display an error message * @param aErrorText = a wxString reference to display an error message
* with the coordinate of the point which creates the error * with the coordinate of the point which creates the error
* (default = NULL , no message returned on error) * (default = NULL , no message returned on error)
* @return true if success, false if a contour is not valid * @return true if success, false if a contour is not valid
*/ */
bool GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, bool GetBoardPolygonOutlines( CPOLYGONS_LIST& aOutlines,
SHAPE_POLY_SET& aHoles, CPOLYGONS_LIST& aHoles,
wxString* aErrorText = NULL ); wxString* aErrorText = NULL );
/** /**
@ -619,9 +620,9 @@ public:
* or 3D viewer * or 3D viewer
* the polygons are not merged. * the polygons are not merged.
* @param aLayer = A copper layer, like B_Cu, etc. * @param aLayer = A copper layer, like B_Cu, etc.
* @param aOutlines The SHAPE_POLY_SET to fill in with items outline. * @param aOutlines The CPOLYGONS_LIST to fill in with items outline.
*/ */
void ConvertBrdLayerToPolygonalContours( LAYER_ID aLayer, SHAPE_POLY_SET& aOutlines ); void ConvertBrdLayerToPolygonalContours( LAYER_ID aLayer, CPOLYGONS_LIST& aOutlines );
/** /**
* Function GetLayerID * Function GetLayerID

View File

@ -231,7 +231,7 @@ public:
* clearance when the circle is approximated by segment bigger or equal * clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const; double aCorrectionFactor ) const;

View File

@ -336,7 +336,7 @@ public:
* default = false * default = false
*/ */
void TransformPadsShapesWithClearanceToPolygon( LAYER_ID aLayer, void TransformPadsShapesWithClearanceToPolygon( LAYER_ID aLayer,
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aInflateValue, int aInflateValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor, double aCorrectionFactor,
@ -361,7 +361,7 @@ public:
*/ */
void TransformGraphicShapesWithClearanceToPolygonSet( void TransformGraphicShapesWithClearanceToPolygonSet(
LAYER_ID aLayer, LAYER_ID aLayer,
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aInflateValue, int aInflateValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ); double aCorrectionFactor );

View File

@ -227,7 +227,7 @@ public:
* clearance when the circle is approximated by segment bigger or equal * clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const; double aCorrectionFactor ) const;
@ -324,7 +324,7 @@ public:
* @param aCorrectionFactor = the correction to apply to circles radius to keep * @param aCorrectionFactor = the correction to apply to circles radius to keep
* the pad size when the circle is approximated by segments * the pad size when the circle is approximated by segments
*/ */
void BuildPadShapePolygon( SHAPE_POLY_SET& aCornerBuffer, void BuildPadShapePolygon( CPOLYGONS_LIST& aCornerBuffer,
wxSize aInflateValue, int aSegmentsPerCircle, wxSize aInflateValue, int aSegmentsPerCircle,
double aCorrectionFactor ) const; double aCorrectionFactor ) const;
@ -339,7 +339,7 @@ public:
* (used for round and oblong shapes only(16 to 32 is a good value) * (used for round and oblong shapes only(16 to 32 is a good value)
* @return false if the pad has no hole, true otherwise * @return false if the pad has no hole, true otherwise
*/ */
bool BuildPadDrillShapePolygon( SHAPE_POLY_SET& aCornerBuffer, bool BuildPadDrillShapePolygon( CPOLYGONS_LIST& aCornerBuffer,
int aInflateValue, int aSegmentsPerCircle ) const; int aInflateValue, int aSegmentsPerCircle ) const;
/** /**

View File

@ -111,7 +111,7 @@ public:
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void TransformBoundingBoxWithClearanceToPolygon( void TransformBoundingBoxWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue ) const; int aClearanceValue ) const;
/** /**
@ -126,7 +126,7 @@ public:
* clearance when the circle is approximated by segment bigger or equal * clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void TransformShapeWithClearanceToPolygonSet( SHAPE_POLY_SET& aCornerBuffer, void TransformShapeWithClearanceToPolygonSet( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const; double aCorrectionFactor ) const;

View File

@ -178,7 +178,7 @@ public:
* clearance when the circle is approximated by segment bigger or equal * clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0) * to the real clearance value (usually near from 1.0)
*/ */
void TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const; double aCorrectionFactor ) const;

View File

@ -120,7 +120,7 @@ EDA_ITEM* ZONE_CONTAINER::Clone() const
bool ZONE_CONTAINER::UnFill() bool ZONE_CONTAINER::UnFill()
{ {
bool change = ( !m_FilledPolysList.IsEmpty() ) || bool change = ( m_FilledPolysList.GetCornersCount() > 0 ) ||
( m_FillSegmList.size() > 0 ); ( m_FillSegmList.size() > 0 );
m_FilledPolysList.RemoveAllContours(); m_FilledPolysList.RemoveAllContours();
@ -228,7 +228,7 @@ void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel,
if( displ_opts->m_DisplayZonesMode == 1 ) // Do not show filled areas if( displ_opts->m_DisplayZonesMode == 1 ) // Do not show filled areas
return; return;
if( m_FilledPolysList.IsEmpty() ) // Nothing to draw if( m_FilledPolysList.GetCornersCount() == 0 ) // Nothing to draw
return; return;
BOARD* brd = GetBoard(); BOARD* brd = GetBoard();
@ -253,57 +253,69 @@ void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel,
SetAlpha( &color, 150 ); SetAlpha( &color, 150 );
CornersTypeBuffer.clear();
CornersBuffer.clear();
for ( int ic = 0; ic < m_FilledPolysList.OutlineCount(); ic++ ) // Draw all filled areas
int imax = m_FilledPolysList.GetCornersCount() - 1;
for( int ic = 0; ic <= imax; ic++ )
{ {
const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( ic ); const CPolyPt& corner = m_FilledPolysList.GetCorner( ic );
wxPoint coord( corner.x + offset.x, corner.y + offset.y );
CornersBuffer.push_back( coord );
CornersTypeBuffer.push_back( (char) corner.m_flags );
CornersBuffer.clear(); // the last corner of a filled area is found: draw it
if( (corner.end_contour) || (ic == imax) )
wxPoint p0;
for( int j = 0; j < path.PointCount(); j++ )
{ {
const VECTOR2I& corner = path.CPoint( j ); /* Draw the current filled area: draw segments outline first
* Curiously, draw segments outline first and after draw filled polygons
wxPoint coord( corner.x + offset.x, corner.y + offset.y ); * with outlines thickness = 0 is a faster than
* just draw filled polygons but with outlines thickness = m_ZoneMinThickness
if( j == 0 ) * So DO NOT use draw filled polygons with outlines having a thickness > 0
p0 = coord; * Note: Extra segments ( added to joint holes with external outline) flagged by
* m_flags != 0 are not drawn
CornersBuffer.push_back( coord ); * Note not all polygon libraries provide a flag for these extra-segments, therefore
} * the m_flags member can be always 0
*/
CornersBuffer.push_back( p0 );
// Draw outlines:
if( ( m_ZoneMinThickness > 1 ) || outline_mode )
{
int ilim = CornersBuffer.size() - 1;
for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ )
{ {
int x0 = CornersBuffer[is].x; // Draw outlines:
int y0 = CornersBuffer[is].y; if( (m_ZoneMinThickness > 1) || outline_mode )
int x1 = CornersBuffer[ie].x; {
int y1 = CornersBuffer[ie].y; int ilim = CornersBuffer.size() - 1;
// Draw only basic outlines, not extra segments. for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ )
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) ) {
GRCSegm( panel->GetClipBox(), DC, int x0 = CornersBuffer[is].x;
x0, y0, x1, y1, int y0 = CornersBuffer[is].y;
m_ZoneMinThickness, color ); int x1 = CornersBuffer[ie].x;
else int y1 = CornersBuffer[ie].y;
GRFillCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1, // Draw only basic outlines, not extra segments.
m_ZoneMinThickness, color ); if( CornersTypeBuffer[ie] == 0 )
{
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
GRCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1,
m_ZoneMinThickness, color );
else
GRFillCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1,
m_ZoneMinThickness, color );
}
}
}
// Draw areas:
if( m_FillMode == 0 && !outline_mode )
GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0],
true, 0, color, color );
} }
}
// Draw areas: CornersTypeBuffer.clear();
if( m_FillMode == 0 && !outline_mode ) CornersBuffer.clear();
GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0], }
true, 0, color, color );
} }
if( m_FillMode == 1 && !outline_mode ) // filled with segments if( m_FillMode == 1 && !outline_mode ) // filled with segments
@ -564,7 +576,26 @@ int ZONE_CONTAINER::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const
{ {
return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) ); unsigned indexstart = 0, indexend;
bool inside = false;
for( indexend = 0; indexend < m_FilledPolysList.GetCornersCount(); indexend++ )
{
if( m_FilledPolysList.IsEndContour( indexend ) ) // end of a filled sub-area found
{
if( TestPointInsidePolygon( m_FilledPolysList, indexstart, indexend,
aRefPos.x, aRefPos.y ) )
{
inside = true;
break;
}
// Prepare test of next area which starts after the current index end (if exists)
indexstart = indexend + 1;
}
}
return inside;
} }
@ -643,9 +674,9 @@ void ZONE_CONTAINER::GetMsgPanelInfo( std::vector< MSG_PANEL_ITEM >& aList )
msg.Printf( wxT( "%d" ), (int) m_Poly->m_HatchLines.size() ); msg.Printf( wxT( "%d" ), (int) m_Poly->m_HatchLines.size() );
aList.push_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) ); aList.push_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) );
if( !m_FilledPolysList.IsEmpty() ) if( m_FilledPolysList.GetCornersCount() )
{ {
msg.Printf( wxT( "%d" ), (int) m_FilledPolysList.TotalVertices() ); msg.Printf( wxT( "%d" ), (int) m_FilledPolysList.GetCornersCount() );
aList.push_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) ); aList.push_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) );
} }
} }
@ -663,7 +694,12 @@ void ZONE_CONTAINER::Move( const wxPoint& offset )
m_Poly->Hatch(); m_Poly->Hatch();
m_FilledPolysList.Move( VECTOR2I( offset.x, offset.y ) ); /* move filled areas: */
for( unsigned ic = 0; ic < m_FilledPolysList.GetCornersCount(); ic++ )
{
m_FilledPolysList.SetX( ic, m_FilledPolysList.GetX( ic ) + offset.x );
m_FilledPolysList.SetY( ic, m_FilledPolysList.GetY( ic ) + offset.y );
}
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{ {
@ -710,8 +746,13 @@ void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle )
m_Poly->Hatch(); m_Poly->Hatch();
/* rotate filled areas: */ /* rotate filled areas: */
for( SHAPE_POLY_SET::ITERATOR ic = m_FilledPolysList.Iterate(); ic; ++ic ) for( unsigned ic = 0; ic < m_FilledPolysList.GetCornersCount(); ic++ )
RotatePoint( &ic->x, &ic->y, centre.x, centre.y, angle ); {
pos = m_FilledPolysList.GetPos( ic );
RotatePoint( &pos, centre, angle );
m_FilledPolysList.SetX( ic, pos.x );
m_FilledPolysList.SetY( ic, pos.y );
}
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{ {
@ -738,10 +779,11 @@ void ZONE_CONTAINER::Mirror( const wxPoint& mirror_ref )
m_Poly->Hatch(); m_Poly->Hatch();
for( SHAPE_POLY_SET::ITERATOR ic = m_FilledPolysList.Iterate(); ic; ++ic ) /* mirror filled areas: */
for( unsigned ic = 0; ic < m_FilledPolysList.GetCornersCount(); ic++ )
{ {
int py = mirror_ref.y - ic->y; int py = mirror_ref.y - m_FilledPolysList.GetY( ic );
ic->y = py + mirror_ref.y; m_FilledPolysList.SetY( ic, py + mirror_ref.y );
} }
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
@ -854,4 +896,15 @@ wxString ZONE_CONTAINER::GetSelectMenuText() const
GetChars( GetLayerName() ) ); GetChars( GetLayerName() ) );
return msg; return msg;
} }
/* Copy polygons stored in aKiPolyList to m_FilledPolysList
* The previous m_FilledPolysList contents is replaced.
*/
void ZONE_CONTAINER::CopyPolygonsFromClipperPathsToFilledPolysList(
ClipperLib::Paths& aClipperPolyList )
{
m_FilledPolysList.RemoveAllContours();
m_FilledPolysList.ImportFrom( aClipperPolyList );
}

View File

@ -165,6 +165,18 @@ public:
*/ */
void TestForCopperIslandAndRemoveInsulatedIslands( BOARD* aPcb ); void TestForCopperIslandAndRemoveInsulatedIslands( BOARD* aPcb );
/**
* Function CalculateSubAreaBoundaryBox
* Calculates the bounding box of a a filled area ( list of CPolyPt )
* use m_FilledPolysList as list of CPolyPt (that are the corners of one or more
* polygons or filled areas )
* @return an EDA_RECT as bounding box
* @param aIndexStart = index of the first corner of a polygon (filled area)
* in m_FilledPolysList
* @param aIndexEnd = index of the last corner of a polygon in m_FilledPolysList
*/
EDA_RECT CalculateSubAreaBoundaryBox( int aIndexStart, int aIndexEnd );
/** /**
* Function IsOnCopperLayer * Function IsOnCopperLayer
* @return true if this zone is on a copper layer, false if on a technical layer * @return true if this zone is on a copper layer, false if on a technical layer
@ -259,7 +271,7 @@ public:
* @param aCorrectionFactor = the correction to apply to arcs radius to roughly * @param aCorrectionFactor = the correction to apply to arcs radius to roughly
* keep arc radius when approximated by segments * keep arc radius when approximated by segments
*/ */
void TransformSolidAreasShapesToPolygonSet( SHAPE_POLY_SET& aCornerBuffer, void TransformSolidAreasShapesToPolygonSet( CPOLYGONS_LIST& aCornerBuffer,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ); double aCorrectionFactor );
/** /**
@ -283,7 +295,32 @@ public:
* AddClearanceAreasPolygonsToPolysList() to add holes for pads and tracks * AddClearanceAreasPolygonsToPolysList() to add holes for pads and tracks
* and other items not in net. * and other items not in net.
*/ */
bool BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* aOutlineBuffer = NULL ); bool BuildFilledSolidAreasPolygons( BOARD* aPcb, CPOLYGONS_LIST* aOutlineBuffer = NULL );
/**
* Function CopyPolygonsFromKiPolygonListToFilledPolysList
* Copy polygons stored in aKiPolyList to m_FilledPolysList
* The previous m_FilledPolysList contents is replaced.
* @param aKiPolyList = a KI_POLYGON_SET containing polygons.
*/
void CopyPolygonsFromKiPolygonListToFilledPolysList( KI_POLYGON_SET& aKiPolyList );
/**
* Function CopyPolygonsFromClipperPathsToFilledPolysList
* Copy polygons stored in aKiPolyList to m_FilledPolysList
* The previous m_FilledPolysList contents is replaced.
* @param aClipperPolyList = a ClipperLib::Paths containing polygons.
*/
void CopyPolygonsFromClipperPathsToFilledPolysList( ClipperLib::Paths& aClipperPolyList );
#if 0 //does not exist in rev 5741.
/**
* Function CopyPolygonsFromFilledPolysListToKiPolygonList
* Copy polygons from m_FilledPolysList to aKiPolyList
* @param aKiPolyList = a KI_POLYGON_SET to fill by polygons.
*/
void CopyPolygonsFromFilledPolysListToKiPolygonList( KI_POLYGON_SET& aKiPolyList );
#endif
/** /**
* Function AddClearanceAreasPolygonsToPolysList * Function AddClearanceAreasPolygonsToPolysList
@ -315,7 +352,7 @@ public:
* false to use aMinClearanceValue only * false to use aMinClearanceValue only
* if both aMinClearanceValue = 0 and aUseNetClearance = false: create the zone outline polygon. * if both aMinClearanceValue = 0 and aUseNetClearance = false: create the zone outline polygon.
*/ */
void TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformOutlinesShapeWithClearanceToPolygon( CPOLYGONS_LIST& aCornerBuffer,
int aMinClearanceValue, int aMinClearanceValue,
bool aUseNetClearance ); bool aUseNetClearance );
/** /**
@ -473,7 +510,7 @@ public:
* returns a reference to the list of filled polygons. * returns a reference to the list of filled polygons.
* @return Reference to the list of filled polygons. * @return Reference to the list of filled polygons.
*/ */
const SHAPE_POLY_SET& GetFilledPolysList() const const CPOLYGONS_LIST& GetFilledPolysList() const
{ {
return m_FilledPolysList; return m_FilledPolysList;
} }
@ -482,7 +519,7 @@ public:
* Function AddFilledPolysList * Function AddFilledPolysList
* sets the list of filled polygons. * sets the list of filled polygons.
*/ */
void AddFilledPolysList( SHAPE_POLY_SET& aPolysList ) void AddFilledPolysList( CPOLYGONS_LIST& aPolysList )
{ {
m_FilledPolysList = aPolysList; m_FilledPolysList = aPolysList;
} }
@ -511,7 +548,7 @@ public:
void AddPolygon( std::vector< wxPoint >& aPolygon ); void AddPolygon( std::vector< wxPoint >& aPolygon );
void AddFilledPolygon( SHAPE_POLY_SET& aPolygon ) void AddFilledPolygon( CPOLYGONS_LIST& aPolygon )
{ {
m_FilledPolysList.Append( aPolygon ); m_FilledPolysList.Append( aPolygon );
} }
@ -547,7 +584,7 @@ public:
private: private:
void buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeatures ); void buildFeatureHoleList( BOARD* aPcb, CPOLYGONS_LIST& aFeatures );
CPolyLine* m_Poly; ///< Outline of the zone. CPolyLine* m_Poly; ///< Outline of the zone.
CPolyLine* m_smoothedPoly; // Corner-smoothed version of m_Poly CPolyLine* m_smoothedPoly; // Corner-smoothed version of m_Poly
@ -615,7 +652,7 @@ private:
* connecting "holes" with external main outline. In complex cases an outline * connecting "holes" with external main outline. In complex cases an outline
* described by m_Poly can have many filled areas * described by m_Poly can have many filled areas
*/ */
SHAPE_POLY_SET m_FilledPolysList; CPOLYGONS_LIST m_FilledPolysList;
}; };

View File

@ -698,8 +698,11 @@ static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb )
// board edges and cutouts // board edges and cutouts
static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb ) static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb )
{ {
SHAPE_POLY_SET bufferPcbOutlines; // stores the board main outlines CPOLYGONS_LIST bufferPcbOutlines; // stores the board main outlines
SHAPE_POLY_SET allLayerHoles; // Contains through holes, calculated only once CPOLYGONS_LIST allLayerHoles; // Contains through holes, calculated only once
allLayerHoles.reserve( 20000 );
// Build a polygon from edge cut items // Build a polygon from edge cut items
wxString msg; wxString msg;
@ -712,28 +715,47 @@ static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb )
} }
double scale = aModel.scale; double scale = aModel.scale;
int i = 0;
int seg; int seg;
for( int i = 0; i < bufferPcbOutlines.OutlineCount(); i++ ) // deal with the solid outlines
{ int nvert = bufferPcbOutlines.GetCornersCount();
const SHAPE_LINE_CHAIN& outline = bufferPcbOutlines.COutline( i );
while( i < nvert )
{
seg = aModel.board.NewContour(); seg = aModel.board.NewContour();
for( int j = 0; j < outline.PointCount(); j++ ) if( seg < 0 )
{ {
aModel.board.AddVertex( seg, (double)outline.CPoint(j).x * scale, msg << wxT( "\n\n" ) <<
-((double)outline.CPoint(j).y * scale ) ); _( "VRML Export Failed:\nCould not add outline to contours." );
wxMessageBox( msg );
return;
}
while( i < nvert )
{
if( bufferPcbOutlines[i].end_contour )
break;
aModel.board.AddVertex( seg, bufferPcbOutlines[i].x * scale,
-(bufferPcbOutlines[i].y * scale ) );
++i;
} }
aModel.board.EnsureWinding( seg, false ); aModel.board.EnsureWinding( seg, false );
++i;
} }
for( int i = 0; i < allLayerHoles.OutlineCount(); i++ ) // deal with the holes
{ nvert = allLayerHoles.GetCornersCount();
const SHAPE_LINE_CHAIN& outline = allLayerHoles.COutline( i );
i = 0;
while( i < nvert )
{
seg = aModel.holes.NewContour(); seg = aModel.holes.NewContour();
if( seg < 0 ) if( seg < 0 )
@ -745,14 +767,19 @@ static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb )
return; return;
} }
for( int j = 0; j < outline.PointCount(); j++ ) while( i < nvert )
{ {
aModel.holes.AddVertex( seg, (double)outline.CPoint(j).x * scale, if( allLayerHoles[i].end_contour )
-((double)outline.CPoint(j).y * scale ) ); break;
aModel.holes.AddVertex( seg, allLayerHoles[i].x * scale,
-( allLayerHoles[i].y * scale ) );
++i;
} }
aModel.holes.EnsureWinding( seg, true ); aModel.holes.EnsureWinding( seg, true );
++i;
} }
} }
@ -844,7 +871,9 @@ static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb )
static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb ) static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb )
{ {
double scale = aModel.scale; double scale = aModel.scale;
double x, y;
for( int ii = 0; ii < aPcb->GetAreaCount(); ii++ ) for( int ii = 0; ii < aPcb->GetAreaCount(); ii++ )
{ {
@ -861,23 +890,33 @@ static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb )
zone->BuildFilledSolidAreasPolygons( aPcb ); zone->BuildFilledSolidAreasPolygons( aPcb );
} }
const SHAPE_POLY_SET& poly = zone->GetFilledPolysList(); const CPOLYGONS_LIST& poly = zone->GetFilledPolysList();
int nvert = poly.GetCornersCount();
int i = 0;
for( int i = 0; i < poly.OutlineCount(); i++ ) while( i < nvert )
{ {
const SHAPE_LINE_CHAIN& outline = poly.COutline( i );
int seg = vl->NewContour(); int seg = vl->NewContour();
for( int j = 0; j < outline.PointCount(); j++ ) if( seg < 0 )
break;
while( i < nvert )
{ {
if( !vl->AddVertex( seg, (double)outline.CPoint( j ).x * scale, x = poly.GetX(i) * scale;
-((double)outline.CPoint( j ).y * scale ) ) ) y = -(poly.GetY(i) * scale);
if( poly.IsEndContour(i) )
break;
if( !vl->AddVertex( seg, x, y ) )
throw( std::runtime_error( vl->GetError() ) ); throw( std::runtime_error( vl->GetError() ) );
++i;
} }
vl->EnsureWinding( seg, false ); vl->EnsureWinding( seg, false );
++i;
} }
} }
} }

View File

@ -1617,22 +1617,22 @@ void PCB_IO::format( ZONE_CONTAINER* aZone, int aNestLevel ) const
} }
// Save the PolysList // Save the PolysList
const SHAPE_POLY_SET& fv = aZone->GetFilledPolysList(); const CPOLYGONS_LIST& fv = aZone->GetFilledPolysList();
newLine = 0; newLine = 0;
if( !fv.IsEmpty() ) if( fv.GetCornersCount() )
{ {
m_out->Print( aNestLevel+1, "(filled_polygon\n" ); m_out->Print( aNestLevel+1, "(filled_polygon\n" );
m_out->Print( aNestLevel+2, "(pts\n" ); m_out->Print( aNestLevel+2, "(pts\n" );
for( SHAPE_POLY_SET::CONST_ITERATOR it = fv.CIterate(); it; ++it ) for( unsigned it = 0; it < fv.GetCornersCount(); ++it )
{ {
if( newLine == 0 ) if( newLine == 0 )
m_out->Print( aNestLevel+3, "(xy %s %s)", m_out->Print( aNestLevel+3, "(xy %s %s)",
FMT_IU( it->x ).c_str(), FMT_IU( it->y ).c_str() ); FMT_IU( fv.GetX( it ) ).c_str(), FMT_IU( fv.GetY( it ) ).c_str() );
else else
m_out->Print( 0, " (xy %s %s)", m_out->Print( 0, " (xy %s %s)",
FMT_IU( it->x ) .c_str(), FMT_IU( it->y ).c_str() ); FMT_IU( fv.GetX( it ) ).c_str(), FMT_IU( fv.GetY( it ) ).c_str() );
if( newLine < 4 ) if( newLine < 4 )
{ {
@ -1644,14 +1644,14 @@ void PCB_IO::format( ZONE_CONTAINER* aZone, int aNestLevel ) const
m_out->Print( 0, "\n" ); m_out->Print( 0, "\n" );
} }
if( it.IsEndContour() ) if( fv.IsEndContour( it ) )
{ {
if( newLine != 0 ) if( newLine != 0 )
m_out->Print( 0, "\n" ); m_out->Print( 0, "\n" );
m_out->Print( aNestLevel+2, ")\n" ); m_out->Print( aNestLevel+2, ")\n" );
if( !it.IsLastContour() ) if( it+1 != fv.GetCornersCount() )
{ {
newLine = 0; newLine = 0;
m_out->Print( aNestLevel+1, ")\n" ); m_out->Print( aNestLevel+1, ")\n" );

View File

@ -2678,9 +2678,7 @@ void LEGACY_PLUGIN::loadZONE_CONTAINER()
else if( TESTLINE( "$POLYSCORNERS" ) ) else if( TESTLINE( "$POLYSCORNERS" ) )
{ {
// Read the PolysList (polygons used for fill areas in the zone) // Read the PolysList (polygons used for fill areas in the zone)
SHAPE_POLY_SET polysList; CPOLYGONS_LIST polysList;
bool makeNewOutline = true;
while( ( line = READLINE( m_reader ) ) != NULL ) while( ( line = READLINE( m_reader ) ) != NULL )
{ {
@ -2691,17 +2689,11 @@ void LEGACY_PLUGIN::loadZONE_CONTAINER()
BIU x = biuParse( line, &data ); BIU x = biuParse( line, &data );
BIU y = biuParse( data, &data ); BIU y = biuParse( data, &data );
if( makeNewOutline ) bool end_contour = intParse( data, &data ); // end_countour was a bool when file saved, so '0' or '1' here
polysList.NewOutline(); int cornerUtilityFlg = intParse( data );
polysList.Append( x, y ); polysList.Append( CPolyPt( x, y, end_contour, cornerUtilityFlg ) );
bool end_contour = intParse( data, &data ); // end_countour was a bool when file saved, so '0' or '1' here
intParse( data ); // skip corner utility flag
makeNewOutline = end_contour;
} }
zc->AddFilledPolysList( polysList ); zc->AddFilledPolysList( polysList );
} }

View File

@ -757,7 +757,7 @@ void PCB_EDIT_FRAME::createPopUpMenuForZones( ZONE_CONTAINER* edge_zone, wxMenu*
AddMenuItem( zones_menu, ID_POPUP_PCB_FILL_ZONE, _( "Fill Zone" ), AddMenuItem( zones_menu, ID_POPUP_PCB_FILL_ZONE, _( "Fill Zone" ),
KiBitmap( fill_zone_xpm ) ); KiBitmap( fill_zone_xpm ) );
if( !edge_zone->GetFilledPolysList().IsEmpty() ) if( edge_zone->GetFilledPolysList().GetCornersCount() > 0 )
{ {
AddMenuItem( zones_menu, ID_POPUP_PCB_REMOVE_FILLED_AREAS_IN_CURRENT_ZONE, AddMenuItem( zones_menu, ID_POPUP_PCB_REMOVE_FILLED_AREAS_IN_CURRENT_ZONE,
_( "Remove Filled Areas in Zone" ), KiBitmap( zone_unfill_xpm ) ); _( "Remove Filled Areas in Zone" ), KiBitmap( zone_unfill_xpm ) );

View File

@ -885,9 +885,8 @@ void PCB_PAINTER::draw( const ZONE_CONTAINER* aZone )
// Draw the filling // Draw the filling
if( displayMode != PCB_RENDER_SETTINGS::DZ_HIDE_FILLED ) if( displayMode != PCB_RENDER_SETTINGS::DZ_HIDE_FILLED )
{ {
const SHAPE_POLY_SET& polySet = aZone->GetFilledPolysList(); const std::vector<CPolyPt> polyPoints = aZone->GetFilledPolysList().GetList();
if( polyPoints.size() == 0 ) // Nothing to draw
if( polySet.OutlineCount() == 0 ) // Nothing to draw
return; return;
// Set up drawing options // Set up drawing options
@ -905,28 +904,26 @@ void PCB_PAINTER::draw( const ZONE_CONTAINER* aZone )
m_gal->SetIsStroke( true ); m_gal->SetIsStroke( true );
} }
for( int i = 0; i < polySet.OutlineCount(); i++ ) std::vector<CPolyPt>::const_iterator polyIterator;
for( polyIterator = polyPoints.begin(); polyIterator != polyPoints.end(); ++polyIterator )
{ {
const SHAPE_LINE_CHAIN& outline = polySet.COutline( i ); // Find out all of polygons and then draw them
// fixme: GAL drawing API that accepts SHAPEs directly (this fiddling with double<>int conversion corners.push_back( VECTOR2D( *polyIterator ) );
// is just a performance hog)
for( int j = 0; j < outline.PointCount(); j++ ) if( polyIterator->end_contour )
corners.push_back ( (VECTOR2D) outline.CPoint( j ) );
corners.push_back( (VECTOR2D) outline.CPoint( 0 ) );
if( displayMode == PCB_RENDER_SETTINGS::DZ_SHOW_FILLED )
{ {
m_gal->DrawPolygon( corners ); if( displayMode == PCB_RENDER_SETTINGS::DZ_SHOW_FILLED )
m_gal->DrawPolyline( corners ); {
} m_gal->DrawPolygon( corners );
else if( displayMode == PCB_RENDER_SETTINGS::DZ_SHOW_OUTLINED ) m_gal->DrawPolyline( corners );
{ }
m_gal->DrawPolyline( corners ); else if( displayMode == PCB_RENDER_SETTINGS::DZ_SHOW_OUTLINED )
} {
m_gal->DrawPolyline( corners );
}
corners.clear(); corners.clear();
}
} }
} }
} }

View File

@ -2540,7 +2540,7 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER() throw( IO_ERROR, PARSE_ERROR )
wxString netnameFromfile; // the zone net name find in file wxString netnameFromfile; // the zone net name find in file
// bigger scope since each filled_polygon is concatenated in here // bigger scope since each filled_polygon is concatenated in here
SHAPE_POLY_SET pts; CPOLYGONS_LIST pts;
std::auto_ptr< ZONE_CONTAINER > zone( new ZONE_CONTAINER( m_board ) ); std::auto_ptr< ZONE_CONTAINER > zone( new ZONE_CONTAINER( m_board ) );
@ -2790,14 +2790,13 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER() throw( IO_ERROR, PARSE_ERROR )
if( token != T_pts ) if( token != T_pts )
Expecting( T_pts ); Expecting( T_pts );
pts.NewOutline();
for( token = NextTok(); token != T_RIGHT; token = NextTok() ) for( token = NextTok(); token != T_RIGHT; token = NextTok() )
{ {
pts.Append( parseXY() ); pts.Append( CPolyPt( parseXY() ) );
} }
NeedRIGHT(); NeedRIGHT();
pts.CloseLastContour();
} }
break; break;
@ -2842,7 +2841,7 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER() throw( IO_ERROR, PARSE_ERROR )
zone->Outline()->SetHatch( hatchStyle, hatchPitch, true ); zone->Outline()->SetHatch( hatchStyle, hatchPitch, true );
} }
if( !pts.IsEmpty() ) if( pts.GetCornersCount() )
zone->AddFilledPolysList( pts ); zone->AddFilledPolysList( pts );
// Ensure keepout and non copper zones do not have a net // Ensure keepout and non copper zones do not have a net

View File

@ -542,14 +542,15 @@ static const LAYER_ID plot_seq[] = {
/* Plot outlines of copper, for copper layer /* Plot outlines of copper, for copper layer
*/ */
void PlotLayerOutlines( BOARD* aBoard, PLOTTER* aPlotter, #include "clipper.hpp"
void PlotLayerOutlines( BOARD *aBoard, PLOTTER* aPlotter,
LSET aLayerMask, const PCB_PLOT_PARAMS& aPlotOpt ) LSET aLayerMask, const PCB_PLOT_PARAMS& aPlotOpt )
{ {
BRDITEMS_PLOTTER itemplotter( aPlotter, aBoard, aPlotOpt ); BRDITEMS_PLOTTER itemplotter( aPlotter, aBoard, aPlotOpt );
itemplotter.SetLayerSet( aLayerMask ); itemplotter.SetLayerSet( aLayerMask );
SHAPE_POLY_SET outlines; CPOLYGONS_LIST outlines;
for( LSEQ seq = aLayerMask.Seq( plot_seq, DIM( plot_seq ) ); seq; ++seq ) for( LSEQ seq = aLayerMask.Seq( plot_seq, DIM( plot_seq ) ); seq; ++seq )
{ {
@ -558,25 +559,51 @@ void PlotLayerOutlines( BOARD* aBoard, PLOTTER* aPlotter,
outlines.RemoveAllContours(); outlines.RemoveAllContours();
aBoard->ConvertBrdLayerToPolygonalContours( layer, outlines ); aBoard->ConvertBrdLayerToPolygonalContours( layer, outlines );
outlines.Simplify(); // Merge all overlapping polygons.
KI_POLYGON_SET kpolygons;
KI_POLYGON_SET ktmp;
outlines.ExportTo( ktmp );
kpolygons += ktmp;
// Plot outlines // Plot outlines
std::vector< wxPoint > cornerList; std::vector< wxPoint > cornerList;
// Now we have one or more basic polygons: plot each polygon for( unsigned ii = 0; ii < kpolygons.size(); ii++ )
for( int ii = 0; ii < outlines.OutlineCount(); ii++ )
{ {
cornerList.clear(); KI_POLYGON polygon = kpolygons[ii];
const SHAPE_LINE_CHAIN& path = outlines.COutline( ii );
for( int jj = 0; jj < path.PointCount(); jj++ ) // polygon contains only one polygon, but it can have holes linked by
cornerList.push_back( wxPoint( path.CPoint( jj ).x , path.CPoint( jj ).x ) ); // overlapping segments.
// To plot clean outlines, we have to break this polygon into more polygons with
// no overlapping segments, using Clipper, because boost::polygon
// does not allow that
ClipperLib::Path raw_polygon;
ClipperLib::Paths normalized_polygons;
// Ensure the polygon is closed for( unsigned ic = 0; ic < polygon.size(); ic++ )
if( cornerList[0] != cornerList[cornerList.size() - 1] ) {
cornerList.push_back( cornerList[0] ); KI_POLY_POINT corner = *(polygon.begin() + ic);
raw_polygon.push_back( ClipperLib::IntPoint( corner.x(), corner.y() ) );
}
aPlotter->PlotPoly( cornerList, NO_FILL ); ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
// Now we have one or more basic polygons: plot each polygon
for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
{
ClipperLib::Path& polygon = normalized_polygons[ii];
cornerList.clear();
for( unsigned jj = 0; jj < polygon.size(); jj++ )
cornerList.push_back( wxPoint( polygon[jj].X , polygon[jj].Y ) );
// Ensure the polygon is closed
if( cornerList[0] != cornerList[cornerList.size()-1] )
cornerList.push_back( cornerList[0] );
aPlotter->PlotPoly( cornerList, NO_FILL );
}
} }
// Plot pad holes // Plot pad holes
@ -677,8 +704,8 @@ void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
// This extra margin is used to merge too close shapes // This extra margin is used to merge too close shapes
// (distance < aMinThickness), and will be removed when creating // (distance < aMinThickness), and will be removed when creating
// the actual shapes // the actual shapes
SHAPE_POLY_SET areas; // Contains shapes to plot CPOLYGONS_LIST bufferPolys; // Contains shapes to plot
SHAPE_POLY_SET initialPolys; // Contains exact shapes to plot CPOLYGONS_LIST initialPolys; // Contains exact shapes to plot
/* calculates the coeff to compensate radius reduction of holes clearance /* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx ( 1 /cos( PI/circleToSegmentsCount ) * due to the segment approx ( 1 /cos( PI/circleToSegmentsCount )
@ -695,7 +722,7 @@ void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
circleToSegmentsCount, correction ); circleToSegmentsCount, correction );
// add shapes inflated by aMinThickness/2 // add shapes inflated by aMinThickness/2
module->TransformPadsShapesWithClearanceToPolygon( layer, module->TransformPadsShapesWithClearanceToPolygon( layer,
areas, inflate, bufferPolys, inflate,
circleToSegmentsCount, correction ); circleToSegmentsCount, correction );
} }
@ -727,7 +754,7 @@ void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
if( !( via_set & aLayerMask ).any() ) if( !( via_set & aLayerMask ).any() )
continue; continue;
via->TransformShapeWithClearanceToPolygon( areas, via_margin, via->TransformShapeWithClearanceToPolygon( bufferPolys, via_margin,
circleToSegmentsCount, circleToSegmentsCount,
correction ); correction );
via->TransformShapeWithClearanceToPolygon( initialPolys, via_clearance, via->TransformShapeWithClearanceToPolygon( initialPolys, via_clearance,
@ -744,7 +771,7 @@ void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
if( zone->GetLayer() != layer ) if( zone->GetLayer() != layer )
continue; continue;
zone->TransformOutlinesShapeWithClearanceToPolygon( areas, zone->TransformOutlinesShapeWithClearanceToPolygon( bufferPolys,
inflate, true ); inflate, true );
zone->TransformOutlinesShapeWithClearanceToPolygon( initialPolys, zone->TransformOutlinesShapeWithClearanceToPolygon( initialPolys,
0, true ); 0, true );
@ -761,15 +788,56 @@ void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
zone.SetMinThickness( 0 ); // trace polygons only zone.SetMinThickness( 0 ); // trace polygons only
zone.SetLayer ( layer ); zone.SetLayer ( layer );
areas.BooleanAdd( initialPolys ); // Now:
areas.Inflate( -inflate, circleToSegmentsCount ); // 1 - merge polygons which are intersecting, i.e. remove gaps
// having a thickness < aMinThickness
// 2 - deflate resulting polygons by aMinThickness/2
KI_POLYGON_SET areasToMerge;
bufferPolys.ExportTo( areasToMerge );
KI_POLYGON_SET initialAreas;
initialPolys.ExportTo( initialAreas );
// Merge polygons: because each shape was created with an extra margin
// = aMinThickness/2, shapes too close ( dist < aMinThickness )
// will be merged, because they are overlapping
KI_POLYGON_SET areas;
areas |= areasToMerge; // Populates with merged polygons
// Deflate: remove the extra margin, to create the actual shapes
// Here I am using polygon:resize, because this function creates better shapes
// than deflate algo.
// Use here deflate made by Clipper, because:
// Clipper is (by far) faster and better, event using arcs to deflate shapes
// boost::polygon < 1.56 polygon resize function sometimes crashes when deflating using arcs
// boost::polygon >=1.56 polygon resize function just does not work
// Note also we combine polygons using boost::polygon, which works better than Clipper,
// especially with zones using holes linked to main outlines by overlapping segments
CPOLYGONS_LIST tmp;
tmp.ImportFrom( areas );
// Deflate area using Clipper, better than boost::polygon
ClipperLib::Paths areasDeflate;
tmp.ExportTo( areasDeflate );
// Deflate areas: they will have the right size after deflate
ClipperLib::ClipperOffset offset_engine;
circleToSegmentsCount = 16;
offset_engine.ArcTolerance = (double)inflate / 3.14 / circleToSegmentsCount;
offset_engine.AddPaths( areasDeflate, ClipperLib::jtRound, ClipperLib::etClosedPolygon );
offset_engine.Execute( areasDeflate, -inflate );
// Combine the current areas to initial areas. This is mandatory because // Combine the current areas to initial areas. This is mandatory because
// inflate/deflate transform is not perfect, and we want the initial areas perfectly kept // inflate/deflate transform is not perfect, and we want the initial areas perfectly kept
areas.BooleanAdd( initialPolys ); tmp.RemoveAllContours();
areas.Fracture(); tmp.ImportFrom( areasDeflate );
areas.clear();
tmp.ExportTo( areas );
zone.AddFilledPolysList( areas ); // Resize slightly changes shapes (the transform is not perfect).
// So *ensure* initial shapes are kept
areas |= initialAreas;
zone.CopyPolygonsFromKiPolygonListToFilledPolysList( areas );
itemplotter.PlotFilledAreas( &zone ); itemplotter.PlotFilledAreas( &zone );
} }

View File

@ -493,9 +493,10 @@ void BRDITEMS_PLOTTER::PlotTextePcb( TEXTE_PCB* pt_texte )
*/ */
void BRDITEMS_PLOTTER::PlotFilledAreas( ZONE_CONTAINER* aZone ) void BRDITEMS_PLOTTER::PlotFilledAreas( ZONE_CONTAINER* aZone )
{ {
const SHAPE_POLY_SET& polysList = aZone->GetFilledPolysList(); const CPOLYGONS_LIST& polysList = aZone->GetFilledPolysList();
unsigned imax = polysList.GetCornersCount();
if( polysList.IsEmpty() ) if( imax == 0 ) // Nothing to draw
return; return;
// We need a buffer to store corners coordinates: // We need a buffer to store corners coordinates:
@ -510,12 +511,12 @@ void BRDITEMS_PLOTTER::PlotFilledAreas( ZONE_CONTAINER* aZone )
* *
* in non filled mode the outline is plotted, but not the filling items * in non filled mode the outline is plotted, but not the filling items
*/ */
for( SHAPE_POLY_SET::CONST_ITERATOR ic = polysList.CIterate(); ic; ++ic ) for( unsigned ic = 0; ic < imax; ic++ )
{ {
wxPoint pos( ic->x, ic->y ); wxPoint pos = polysList.GetPos( ic );
cornerList.push_back( pos ); cornerList.push_back( pos );
if( ic.IsEndContour() ) // Plot the current filled area outline if( polysList.IsEndContour( ic ) ) // Plot the current filled area outline
{ {
// First, close the outline // First, close the outline
if( cornerList[0] != cornerList[cornerList.size() - 1] ) if( cornerList[0] != cornerList[cornerList.size() - 1] )

View File

@ -44,8 +44,6 @@
#include <boost/make_shared.hpp> #include <boost/make_shared.hpp>
#include <boost/bind.hpp> #include <boost/bind.hpp>
#include <geometry/shape_poly_set.h>
#include <cassert> #include <cassert>
#include <algorithm> #include <algorithm>
#include <limits> #include <limits>
@ -344,16 +342,11 @@ void RN_NET::clearNode( const RN_NODE_PTR& aNode )
} }
RN_POLY::RN_POLY( const SHAPE_POLY_SET* aParent, RN_POLY::RN_POLY( const CPolyPt* aBegin, const CPolyPt* aEnd,
int aSubpolygonIndex,
RN_LINKS& aConnections, const BOX2I& aBBox ) : RN_LINKS& aConnections, const BOX2I& aBBox ) :
m_subpolygonIndex( aSubpolygonIndex ), m_begin( aBegin ), m_end( aEnd ), m_bbox( aBBox )
m_bbox( aBBox ),
m_parentPolyset( aParent )
{ {
const VECTOR2I& p = aParent->CVertex( aSubpolygonIndex, 0 ); m_node = aConnections.AddNode( m_begin->x, m_begin->y );
m_node = aConnections.AddNode( p.x, p.y );
// Mark it as not appropriate as a destination of ratsnest edges // Mark it as not appropriate as a destination of ratsnest edges
// (edges coming out from a polygon vertex look weird) // (edges coming out from a polygon vertex look weird)
@ -363,9 +356,48 @@ RN_POLY::RN_POLY( const SHAPE_POLY_SET* aParent,
bool RN_POLY::HitTest( const RN_NODE_PTR& aNode ) const bool RN_POLY::HitTest( const RN_NODE_PTR& aNode ) const
{ {
VECTOR2I p( aNode->GetX(), aNode->GetY() ); long xt = aNode->GetX();
long yt = aNode->GetY();
return m_parentPolyset->Contains( p, m_subpolygonIndex ); // If the point lies outside the bounding box, there is no point to check it further
if( !m_bbox.Contains( xt, yt ) )
return false;
long xNew, yNew, xOld, yOld, x1, y1, x2, y2;
bool inside = false;
// For the first loop we have to use the last point as the previous point
xOld = m_end->x;
yOld = m_end->y;
for( const CPolyPt* point = m_begin; point <= m_end; ++point )
{
xNew = point->x;
yNew = point->y;
// Swap points if needed, so always x2 >= x1
if( xNew > xOld )
{
x1 = xOld; y1 = yOld;
x2 = xNew; y2 = yNew;
}
else
{
x1 = xNew; y1 = yNew;
x2 = xOld; y2 = yOld;
}
if( ( xNew < xt ) == ( xt <= xOld ) && /* edge "open" at left end */
(double)( yt - y1 ) * (double)( x2 - x1 ) < (double)( y2 - y1 ) * (double)( xt - x1 ) )
{
inside = !inside;
}
xOld = xNew;
yOld = yNew;
}
return inside;
} }
@ -422,14 +454,51 @@ void RN_NET::AddItem( const TRACK* aTrack )
void RN_NET::AddItem( const ZONE_CONTAINER* aZone ) void RN_NET::AddItem( const ZONE_CONTAINER* aZone )
{ {
// Prepare a list of polygons (every zone can contain one or more polygons) // Prepare a list of polygons (every zone can contain one or more polygons)
const SHAPE_POLY_SET& polySet = aZone->GetFilledPolysList(); const std::vector<CPolyPt>& polyPoints = aZone->GetFilledPolysList().GetList();
for( int i = 0; i < polySet.OutlineCount(); ++i ) if( polyPoints.size() == 0 )
return;
// Origin and end of bounding box for a polygon
VECTOR2I origin( polyPoints[0].x, polyPoints[0].y );
VECTOR2I end( polyPoints[0].x, polyPoints[0].y );
unsigned int idxStart = 0;
// Extract polygons from zones
for( unsigned int i = 0; i < polyPoints.size(); ++i )
{ {
const SHAPE_LINE_CHAIN& path = polySet.COutline( i ); const CPolyPt& point = polyPoints[i];
RN_POLY poly = RN_POLY( &polySet, i, m_links, path.BBox() ); if( point.end_contour )
m_zones[aZone].m_Polygons.push_back( poly ); {
RN_POLY poly = RN_POLY( &polyPoints[idxStart], &point,
m_links, BOX2I( origin, end - origin ) );
poly.GetNode()->AddParent( aZone );
m_zones[aZone].m_Polygons.push_back( poly );
idxStart = i + 1;
if( idxStart < polyPoints.size() )
{
origin.x = polyPoints[idxStart].x;
origin.y = polyPoints[idxStart].y;
end.x = polyPoints[idxStart].x;
end.y = polyPoints[idxStart].y;
}
}
else
{
// Determine bounding box
if( point.x < origin.x )
origin.x = point.x;
else if( point.x > end.x )
end.x = point.x;
if( point.y < origin.y )
origin.y = point.y;
else if( point.y > end.y )
end.y = point.y;
}
} }
m_dirty = true; m_dirty = true;

View File

@ -47,7 +47,7 @@ class D_PAD;
class VIA; class VIA;
class TRACK; class TRACK;
class ZONE_CONTAINER; class ZONE_CONTAINER;
class SHAPE_POLY_SET; class CPolyPt;
///> Types of items that are handled by the class ///> Types of items that are handled by the class
enum RN_ITEM_TYPE enum RN_ITEM_TYPE
@ -265,8 +265,7 @@ protected:
class RN_POLY class RN_POLY
{ {
public: public:
RN_POLY( const SHAPE_POLY_SET* aParent, RN_POLY( const CPolyPt* aBegin, const CPolyPt* aEnd,
int aSubpolygonIndex,
RN_LINKS& aConnections, const BOX2I& aBBox ); RN_LINKS& aConnections, const BOX2I& aBBox );
/** /**
@ -288,16 +287,15 @@ public:
bool HitTest( const RN_NODE_PTR& aNode ) const; bool HitTest( const RN_NODE_PTR& aNode ) const;
private: private:
///> Pointer to the first point of polyline bounding the polygon.
const CPolyPt* m_begin;
///> Index of the outline in the parent polygon set ///> Pointer to the last point of polyline bounding the polygon.
int m_subpolygonIndex; const CPolyPt* m_end;
///> Bounding box of the polygon. ///> Bounding box of the polygon.
BOX2I m_bbox; BOX2I m_bbox;
///> Polygon set containing the geometry
const SHAPE_POLY_SET* m_parentPolyset;
///> Node representing a polygon (it has the same coordinates as the first point of its ///> Node representing a polygon (it has the same coordinates as the first point of its
///> bounding polyline. ///> bounding polyline.
RN_NODE_PTR m_node; RN_NODE_PTR m_node;

View File

@ -43,7 +43,6 @@ class TRACK;
class VIA; class VIA;
class NETCLASS; class NETCLASS;
class MODULE; class MODULE;
class SHAPE_POLY_SET;
typedef DSN::T DSN_T; typedef DSN::T DSN_T;
@ -3983,16 +3982,16 @@ public:
* any closed outline inside the main outline is a hole * any closed outline inside the main outline is a hole
* All contours should be closed, i.e. have valid vertices to build a closed polygon * All contours should be closed, i.e. have valid vertices to build a closed polygon
* @param aBoard The BOARD to get information from in order to make the outlines. * @param aBoard The BOARD to get information from in order to make the outlines.
* @param aOutlines The SHAPE_POLY_SET to fill in with main outlines. * @param aOutlines The CPOLYGONS_LIST to fill in with main outlines.
* @param aHoles The empty SHAPE_POLY_SET to fill in with holes, if any. * @param aHoles The empty CPOLYGONS_LIST to fill in with holes, if any.
* @param aErrorText = a wxString reference to display an error message * @param aErrorText = a wxString reference to display an error message
* with the coordinate of the point which creates the error * with the coordinate of the point which creates the error
* (default = NULL , no message returned on error) * (default = NULL , no message returned on error)
* @return true if success, false if a contour is not valid * @return true if success, false if a contour is not valid
*/ */
bool GetBoardPolygonOutlines( BOARD* aBoard, bool GetBoardPolygonOutlines( BOARD* aBoard,
SHAPE_POLY_SET& aOutlines, CPOLYGONS_LIST& aOutlines,
SHAPE_POLY_SET& aHoles, CPOLYGONS_LIST& aHoles,
wxString* aErrorText = NULL ); wxString* aErrorText = NULL );
}; };

View File

@ -53,8 +53,6 @@
#include <collectors.h> #include <collectors.h>
#include <geometry/shape_poly_set.h>
#include <specctra.h> #include <specctra.h>
using namespace DSN; using namespace DSN;
@ -1332,8 +1330,8 @@ void SPECCTRA_DB::fillBOUNDARY( BOARD* aBoard, BOUNDARY* boundary )
* All contours should be closed, i.e. valid closed polygon vertices * All contours should be closed, i.e. valid closed polygon vertices
*/ */
bool SPECCTRA_DB::GetBoardPolygonOutlines( BOARD* aBoard, bool SPECCTRA_DB::GetBoardPolygonOutlines( BOARD* aBoard,
SHAPE_POLY_SET& aOutlines, CPOLYGONS_LIST& aOutlines,
SHAPE_POLY_SET& aHoles, CPOLYGONS_LIST& aHoles,
wxString* aErrorText ) wxString* aErrorText )
{ {
bool success = true; bool success = true;
@ -1349,8 +1347,6 @@ bool SPECCTRA_DB::GetBoardPolygonOutlines( BOARD* aBoard,
BOUNDARY* boundary = new BOUNDARY( 0 ); BOUNDARY* boundary = new BOUNDARY( 0 );
pcb->structure->SetBOUNDARY( boundary ); pcb->structure->SetBOUNDARY( boundary );
aOutlines.NewOutline();
try try
{ {
fillBOUNDARY( aBoard, boundary ); fillBOUNDARY( aBoard, boundary );
@ -1361,9 +1357,11 @@ bool SPECCTRA_DB::GetBoardPolygonOutlines( BOARD* aBoard,
{ {
corner.x = buffer[ii] * specctra2UIfactor; corner.x = buffer[ii] * specctra2UIfactor;
corner.y = - buffer[ii+1] * specctra2UIfactor; corner.y = - buffer[ii+1] * specctra2UIfactor;
aOutlines.Append( corner.x, corner.y ); aOutlines.Append( corner );
} }
aOutlines.CloseLastContour();
// Export holes, stored as keepouts polygonal shapes. // Export holes, stored as keepouts polygonal shapes.
// by fillBOUNDARY() // by fillBOUNDARY()
KEEPOUTS& holes = pcb->structure->keepouts; KEEPOUTS& holes = pcb->structure->keepouts;
@ -1373,15 +1371,13 @@ bool SPECCTRA_DB::GetBoardPolygonOutlines( BOARD* aBoard,
KEEPOUT& keepout = *i; KEEPOUT& keepout = *i;
PATH* poly_hole = (PATH*)keepout.shape; PATH* poly_hole = (PATH*)keepout.shape;
POINTS& plist = poly_hole->GetPoints(); POINTS& plist = poly_hole->GetPoints();
aHoles.NewOutline();
for( unsigned ii = 0; ii < plist.size(); ii++ ) for( unsigned ii = 0; ii < plist.size(); ii++ )
{ {
corner.x = plist[ii].x * specctra2UIfactor; corner.x = plist[ii].x * specctra2UIfactor;
corner.y = - plist[ii].y * specctra2UIfactor; corner.y = - plist[ii].y * specctra2UIfactor;
aHoles.Append( corner.x, corner.y ); aHoles.Append( corner );
} }
aHoles.CloseLastContour();
} }
} }
catch( const IO_ERROR& ioe ) catch( const IO_ERROR& ioe )
@ -1401,24 +1397,23 @@ bool SPECCTRA_DB::GetBoardPolygonOutlines( BOARD* aBoard,
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox.Inflate( Millimeter2iu( 1.0 ) ); bbbox.Inflate( Millimeter2iu( 1.0 ) );
aOutlines.RemoveAllContours();
aOutlines.NewOutline();
corner.x = bbbox.GetOrigin().x; corner.x = bbbox.GetOrigin().x;
corner.y = bbbox.GetOrigin().y; corner.y = bbbox.GetOrigin().y;
aOutlines.Append( corner.x, corner.y ); aOutlines.Append( corner );
corner.x = bbbox.GetOrigin().x; corner.x = bbbox.GetOrigin().x;
corner.y = bbbox.GetEnd().y; corner.y = bbbox.GetEnd().y;
aOutlines.Append( corner.x, corner.y ); aOutlines.Append( corner );
corner.x = bbbox.GetEnd().x; corner.x = bbbox.GetEnd().x;
corner.y = bbbox.GetEnd().y; corner.y = bbbox.GetEnd().y;
aOutlines.Append( corner.x, corner.y ); aOutlines.Append( corner );
corner.x = bbbox.GetEnd().x; corner.x = bbbox.GetEnd().x;
corner.y = bbbox.GetOrigin().y; corner.y = bbbox.GetOrigin().y;
aOutlines.Append( corner.x, corner.y ); aOutlines.Append( corner );
aOutlines.CloseLastContour();
} }
return success; return success;

View File

@ -54,7 +54,7 @@
* to add holes for pads and tracks and other items not in net. * to add holes for pads and tracks and other items not in net.
*/ */
bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* aOutlineBuffer ) bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, CPOLYGONS_LIST* aOutlineBuffer )
{ {
/* convert outlines + holes to outlines without holes (adding extra segments if necessary) /* convert outlines + holes to outlines without holes (adding extra segments if necessary)
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
@ -92,7 +92,7 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET*
} }
if( aOutlineBuffer ) if( aOutlineBuffer )
aOutlineBuffer->Append( ConvertPolyListToPolySet( m_smoothedPoly->m_CornersList ) ); aOutlineBuffer->Append( m_smoothedPoly->m_CornersList );
/* For copper layers, we now must add holes in the Polygon list. /* For copper layers, we now must add holes in the Polygon list.
* holes are pads and tracks with their clearance area * holes are pads and tracks with their clearance area
@ -105,14 +105,15 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET*
if( IsOnCopperLayer() ) if( IsOnCopperLayer() )
{ {
AddClearanceAreasPolygonsToPolysList_NG( aPcb ); if(g_UseOldZoneFillingAlgo)
AddClearanceAreasPolygonsToPolysList( aPcb );
else
AddClearanceAreasPolygonsToPolysList_NG( aPcb );
} }
else else
{ {
int margin = m_ZoneMinThickness / 2; int margin = m_ZoneMinThickness / 2;
m_FilledPolysList = ConvertPolyListToPolySet( m_smoothedPoly->m_CornersList ); m_smoothedPoly->m_CornersList.InflateOutline(m_FilledPolysList, -margin, true );
m_FilledPolysList.Inflate( -margin, 16 );
m_FilledPolysList.Fracture();
} }
if( m_FillMode ) // if fill mode uses segments, create them: if( m_FillMode ) // if fill mode uses segments, create them:
@ -134,9 +135,11 @@ static bool SortByXValues( const int& a, const int &b )
int ZONE_CONTAINER::FillZoneAreasWithSegments() int ZONE_CONTAINER::FillZoneAreasWithSegments()
{ {
int ics, ice;
int count = 0; int count = 0;
std::vector <int> x_coordinates; std::vector <int> x_coordinates;
bool error = false; bool error = false;
int istart, iend; // index of the starting and the endif corner of one filled area in m_FilledPolysList
int margin = m_ZoneMinThickness * 2 / 10; int margin = m_ZoneMinThickness * 2 / 10;
int minwidth = Mils2iu( 2 ); int minwidth = Mils2iu( 2 );
margin = std::max ( minwidth, margin ); margin = std::max ( minwidth, margin );
@ -145,100 +148,113 @@ int ZONE_CONTAINER::FillZoneAreasWithSegments()
// Read all filled areas in m_FilledPolysList // Read all filled areas in m_FilledPolysList
m_FillSegmList.clear(); m_FillSegmList.clear();
istart = 0;
int end_list = m_FilledPolysList.GetCornersCount() - 1;
for ( int index = 0; index < m_FilledPolysList.OutlineCount(); index++ ) for( int ic = 0; ic <= end_list; ic++ )
{ {
const SHAPE_LINE_CHAIN& outline = m_FilledPolysList.COutline( index ); CPolyPt* corner = &m_FilledPolysList[ic];
const BOX2I& rect = outline.BBox(); if ( corner->end_contour || ( ic == end_list ) )
// Calculate the y limits of the zone
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += step )
{ {
// find all intersection points of an infinite line with polyline sides iend = ic;
x_coordinates.clear(); EDA_RECT rect = CalculateSubAreaBoundaryBox( istart, iend );
for( int v = 0; v < outline.PointCount(); v++ ) // Calculate the y limits of the zone
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += step )
{ {
// find all intersection points of an infinite line with polyline sides
x_coordinates.clear();
int seg_startX = outline.CPoint( v ).x; for( ics = istart, ice = iend; ics <= iend; ice = ics, ics++ )
int seg_startY = outline.CPoint( v ).y; {
int seg_endX = outline.CPoint( v + 1 ).x; if( m_FilledPolysList[ice].m_flags )
int seg_endY = outline.CPoint( v + 1 ).y; continue;
/* Trivial cases: skip if ref above or below the segment to test */ int seg_startX = m_FilledPolysList[ics].x;
if( ( seg_startY > refy ) && ( seg_endY > refy ) ) int seg_startY = m_FilledPolysList[ics].y;
continue; int seg_endX = m_FilledPolysList[ice].x;
int seg_endY = m_FilledPolysList[ice].y;
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
continue;
/* at this point refy is between seg_startY and seg_endY /* Trivial cases: skip if ref above or below the segment to test */
* see if an horizontal line at Y = refy is intersecting this segment if( ( seg_startY > refy ) && (seg_endY > refy ) )
*/ continue;
// calculate the x position of the intersection of this segment and the
// infinite line this is more easier if we move the X,Y axis origin to
// the segment start point:
seg_endX -= seg_startX; // segment below ref point, or its Y end pos on Y coordinate ref point: skip
seg_endY -= seg_startY; if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
double newrefy = (double) ( refy - seg_startY ); continue;
double intersec_x;
if ( seg_endY == 0 ) // horizontal segment on the same line: skip /* at this point refy is between seg_startY and seg_endY
continue; * see if an horizontal line at Y = refy is intersecting this segment
*/
// calculate the x position of the intersection of this segment and the
// infinite line this is more easier if we move the X,Y axis origin to
// the segment start point:
seg_endX -= seg_startX;
seg_endY -= seg_startY;
double newrefy = (double) ( refy - seg_startY );
double intersec_x;
// Now calculate the x intersection coordinate of the horizontal line at if ( seg_endY == 0 ) // horizontal segment on the same line: skip
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the continue;
// horizontal line at the new refy position the line slope is:
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is:
// intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope
// exists (seg_end_y not O)
double inv_slope = (double) seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back( (int) intersec_x + seg_startX );
}
// A line scan is finished: build list of segments // Now calculate the x intersection coordinate of the horizontal line at
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
// horizontal line at the new refy position the line slope is:
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is:
// intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope
// exists (seg_end_y not O)
double inv_slope = (double) seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back( (int) intersec_x + seg_startX );
}
// Sort intersection points by increasing x value: // A line scan is finished: build list of segments
// So 2 consecutive points are the ends of a segment
sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues );
// Create segments // Sort intersection points by increasing x value:
// So 2 consecutive points are the ends of a segment
sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues );
if( !error && ( x_coordinates.size() & 1 ) != 0 ) // Create segments
{ // An even number of coordinates is expected, because a segment has 2 ends.
// An if this algorithm always works, it must always find an even count. if ( !error && ( x_coordinates.size() & 1 ) != 0 )
wxString msg = wxT( "Fill Zone: odd number of points at y = " ); { // An even number of coordinates is expected, because a segment has 2 ends.
msg << refy; // An if this algorithm always works, it must always find an even count.
wxMessageBox( msg ); wxString msg = wxT("Fill Zone: odd number of points at y = ");
error = true; msg << refy;
} wxMessageBox(msg );
error = true;
}
if( error )
break;
int iimax = x_coordinates.size() - 1;
for( int ii = 0; ii < iimax; ii +=2 )
{
wxPoint seg_start, seg_end;
count++;
seg_start.x = x_coordinates[ii];
seg_start.y = refy;
seg_end.x = x_coordinates[ii+1];
seg_end.y = refy;
SEGMENT segment( seg_start, seg_end );
m_FillSegmList.push_back( segment );
}
} //End examine segments in one area
if( error ) if( error )
break; break;
int iimax = x_coordinates.size() - 1; istart = iend + 1; // istart points the first corner of the next area
} // End find one end of outline
for( int ii = 0; ii < iimax; ii += 2 )
{
wxPoint seg_start, seg_end;
count++;
seg_start.x = x_coordinates[ii];
seg_start.y = refy;
seg_end.x = x_coordinates[ii + 1];
seg_end.y = refy;
SEGMENT segment( seg_start, seg_end );
m_FillSegmList.push_back( segment );
}
} //End examine segments in one area
if( error ) if( error )
break; break;
} } // End examine all areas
if( !error ) if( !error )
m_IsFilled = true; m_IsFilled = true;

View File

@ -48,6 +48,7 @@
#include <sstream> #include <sstream>
#include <fctsys.h> #include <fctsys.h>
#include <polygons_defs.h>
#include <wxPcbStruct.h> #include <wxPcbStruct.h>
#include <trigo.h> #include <trigo.h>
@ -69,7 +70,7 @@
#include <boost/foreach.hpp> #include <boost/foreach.hpp>
extern void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, extern void BuildUnconnectedThermalStubsPolygonList( CPOLYGONS_LIST& aCornerBuffer,
BOARD* aPcb, ZONE_CONTAINER* aZone, BOARD* aPcb, ZONE_CONTAINER* aZone,
double aArcCorrection, double aArcCorrection,
double aRoundPadThermalRotation); double aRoundPadThermalRotation);
@ -77,7 +78,7 @@ extern void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuff
extern void Test_For_Copper_Island_And_Remove( BOARD* aPcb, extern void Test_For_Copper_Island_And_Remove( BOARD* aPcb,
ZONE_CONTAINER* aZone_container ); ZONE_CONTAINER* aZone_container );
extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, extern void CreateThermalReliefPadPolygon( CPOLYGONS_LIST& aCornerBuffer,
D_PAD& aPad, D_PAD& aPad,
int aThermalGap, int aThermalGap,
int aCopperThickness, int aCopperThickness,
@ -89,7 +90,7 @@ extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
// Local Variables: // Local Variables:
static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads
void ZONE_CONTAINER::buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeatures ) void ZONE_CONTAINER::buildFeatureHoleList( BOARD* aPcb, CPOLYGONS_LIST& aFeatures )
{ {
int segsPerCircle; int segsPerCircle;
double correctionFactor; double correctionFactor;
@ -367,6 +368,83 @@ void ZONE_CONTAINER::buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeature
} }
static const SHAPE_POLY_SET convertPolyListToPolySet(const CPOLYGONS_LIST& aList)
{
SHAPE_POLY_SET rv;
unsigned corners_count = aList.GetCornersCount();
// Enter main outline: this is the first contour
unsigned ic = 0;
if(!corners_count)
return rv;
while( ic < corners_count )
{
rv.NewOutline( );
while( ic < corners_count )
{
rv.AppendVertex( aList.GetX(ic), aList.GetY(ic) );
if( aList.IsEndContour( ic ) )
break;
ic++;
}
ic++;
}
return rv;
}
static const CPOLYGONS_LIST convertPolySetToPolyList(const SHAPE_POLY_SET& aPolyset)
{
CPOLYGONS_LIST list;
CPolyPt corner, firstCorner;
for( int ii = 0; ii < aPolyset.OutlineCount(); ii++ )
{
for( int jj = 0; jj < aPolyset.VertexCount(ii); jj++ )
{
VECTOR2I v = aPolyset.GetVertex( jj, ii );
corner.x = v.x;
corner.y = v.y;
corner.end_contour = false;
if(!jj)
firstCorner = corner;
list.AddCorner( corner );
}
firstCorner.end_contour = true;
list.AddCorner( firstCorner );
}
return list;
}
static const SHAPE_POLY_SET convertBoostToPolySet ( const KI_POLYGON_SET& aSet )
{
SHAPE_POLY_SET rv;
BOOST_FOREACH ( const KI_POLYGON &poly, aSet )
{
rv.NewOutline();
for ( KI_POLYGON::iterator_type corner = poly.begin(); corner != poly.end(); ++ corner )
{
rv.AppendVertex ( corner->x(), corner->y() );
}
}
return rv;
}
/** /**
* Function AddClearanceAreasPolygonsToPolysList * Function AddClearanceAreasPolygonsToPolysList
@ -424,18 +502,16 @@ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList_NG( BOARD* aPcb )
if(g_DumpZonesWhenFilling) if(g_DumpZonesWhenFilling)
dumper->BeginGroup("clipper-zone"); dumper->BeginGroup("clipper-zone");
SHAPE_POLY_SET solidAreas = ConvertPolyListToPolySet( m_smoothedPoly->m_CornersList ); m_smoothedPoly->m_CornersList.InflateOutline( tmp, -outline_half_thickness, true );
SHAPE_POLY_SET solidAreas = convertPolyListToPolySet( tmp );
solidAreas.Inflate( -outline_half_thickness, segsPerCircle );
solidAreas.Simplify();
SHAPE_POLY_SET holes;
if(g_DumpZonesWhenFilling) if(g_DumpZonesWhenFilling)
dumper->Write( &solidAreas, "solid-areas" ); dumper->Write( &solidAreas, "solid-areas" );
tmp.RemoveAllContours(); tmp.RemoveAllContours();
buildFeatureHoleList( aPcb, holes ); buildFeatureHoleList( aPcb, tmp );
SHAPE_POLY_SET holes = convertPolyListToPolySet( tmp );
if(g_DumpZonesWhenFilling) if(g_DumpZonesWhenFilling)
dumper->Write( &holes, "feature-holes" ); dumper->Write( &holes, "feature-holes" );
@ -445,49 +521,61 @@ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList_NG( BOARD* aPcb )
if (g_DumpZonesWhenFilling) if (g_DumpZonesWhenFilling)
dumper->Write( &holes, "feature-holes-postsimplify" ); dumper->Write( &holes, "feature-holes-postsimplify" );
solidAreas.BooleanSubtract( holes ); solidAreas.Subtract( holes );
if (g_DumpZonesWhenFilling) if (g_DumpZonesWhenFilling)
dumper->Write( &solidAreas, "solid-areas-minus-holes" ); dumper->Write( &solidAreas, "solid-areas-minus-holes" );
m_FilledPolysList.RemoveAllContours();
SHAPE_POLY_SET fractured = solidAreas; SHAPE_POLY_SET fractured = solidAreas;
fractured.Fracture(); fractured.Fracture();
if (g_DumpZonesWhenFilling) if (g_DumpZonesWhenFilling)
dumper->Write( &fractured, "fractured" ); dumper->Write( &fractured, "fractured" );
m_FilledPolysList = fractured; m_FilledPolysList = convertPolySetToPolyList( fractured );
if (g_DumpZonesWhenFilling)
{
SHAPE_POLY_SET dupa = convertPolyListToPolySet ( m_FilledPolysList );
dumper->Write( &dupa, "verify-conv" );
}
// Remove insulated islands: // Remove insulated islands:
if( GetNetCode() > 0 ) if( GetNetCode() > 0 )
TestForCopperIslandAndRemoveInsulatedIslands( aPcb ); TestForCopperIslandAndRemoveInsulatedIslands( aPcb );
SHAPE_POLY_SET thermalHoles; tmp.RemoveAllContours();
// Test thermal stubs connections and add polygons to remove unconnected stubs. // Test thermal stubs connections and add polygons to remove unconnected stubs.
// (this is a refinement for thermal relief shapes) // (this is a refinement for thermal relief shapes)
if( GetNetCode() > 0 ) if( GetNetCode() > 0 )
BuildUnconnectedThermalStubsPolygonList( thermalHoles, aPcb, this, BuildUnconnectedThermalStubsPolygonList( tmp, aPcb, this,
correctionFactor, s_thermalRot ); correctionFactor, s_thermalRot );
// remove copper areas corresponding to not connected stubs // remove copper areas corresponding to not connected stubs
if( !thermalHoles.IsEmpty() ) if( tmp.GetCornersCount() )
{ {
SHAPE_POLY_SET thermalHoles = convertPolyListToPolySet ( tmp );
thermalHoles.Simplify(); thermalHoles.Simplify();
// Remove unconnected stubs // Remove unconnected stubs
solidAreas.BooleanSubtract( thermalHoles ); solidAreas.Subtract ( thermalHoles );
if (g_DumpZonesWhenFilling)
dumper->Write ( &thermalHoles, "thermal-holes" );
if( g_DumpZonesWhenFilling )
dumper->Write( &thermalHoles, "thermal-holes" );
// put these areas in m_FilledPolysList // put these areas in m_FilledPolysList
m_FilledPolysList.RemoveAllContours();
SHAPE_POLY_SET fractured = solidAreas; SHAPE_POLY_SET fractured = solidAreas;
fractured.Fracture(); fractured.Fracture();
if( g_DumpZonesWhenFilling ) if (g_DumpZonesWhenFilling)
dumper->Write ( &fractured, "fractured" ); dumper->Write ( &fractured, "fractured" );
m_FilledPolysList = fractured; m_FilledPolysList = convertPolySetToPolyList( fractured );
if( GetNetCode() > 0 ) if( GetNetCode() > 0 )
TestForCopperIslandAndRemoveInsulatedIslands( aPcb ); TestForCopperIslandAndRemoveInsulatedIslands( aPcb );
@ -499,4 +587,121 @@ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList_NG( BOARD* aPcb )
void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb ) void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb )
{ {
int segsPerCircle;
double correctionFactor;
std::auto_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO( "zones_dump.txt", true ) );
if(g_DumpZonesWhenFilling)
dumper->BeginGroup("boost-zone");
// Set the number of segments in arc approximations
if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
// this is a place to store holes (i.e. tracks, pads ... areas as polygons outlines)
// static to avoid unnecessary memory allocation when filling many zones.
CPOLYGONS_LIST cornerBufferPolysToSubstract;
// This KI_POLYGON_SET is the area(s) to fill, with m_ZoneMinThickness/2
KI_POLYGON_SET polyset_zone_solid_areas;
int outline_half_thickness = m_ZoneMinThickness / 2;
/* First, creates the main polygon (i.e. the filled area using only one outline)
* to reserve a m_ZoneMinThickness/2 margin around the outlines and holes
* this margin is the room to redraw outlines with segments having a width set to
* m_ZoneMinThickness
* so m_ZoneMinThickness is the min thickness of the filled zones areas
* the main polygon is stored in polyset_zone_solid_areas
*/
CPOLYGONS_LIST tmp;
m_smoothedPoly->m_CornersList.InflateOutline( tmp, -outline_half_thickness, true );
tmp.ExportTo( polyset_zone_solid_areas );
if( polyset_zone_solid_areas.size() == 0 )
return;
if (g_DumpZonesWhenFilling)
dumper->Write ( convertBoostToPolySet( polyset_zone_solid_areas ), "solid-areas" );
buildFeatureHoleList( aPcb, cornerBufferPolysToSubstract );
// cornerBufferPolysToSubstract contains polygons to substract.
// polyset_zone_solid_areas contains the main filled area
// Calculate now actual solid areas
if( cornerBufferPolysToSubstract.GetCornersCount() > 0 )
{
KI_POLYGON_SET polyset_holes;
cornerBufferPolysToSubstract.ExportTo( polyset_holes );
if (g_DumpZonesWhenFilling)
dumper->Write ( convertBoostToPolySet( polyset_holes ), "feature-holes" );
// Remove holes from initial area.:
polyset_zone_solid_areas -= polyset_holes;
}
// put solid areas in m_FilledPolysList:
m_FilledPolysList.RemoveAllContours();
CopyPolygonsFromKiPolygonListToFilledPolysList( polyset_zone_solid_areas );
// Remove insulated islands:
if( GetNetCode() > 0 )
TestForCopperIslandAndRemoveInsulatedIslands( aPcb );
// Now we remove all unused thermal stubs.
cornerBufferPolysToSubstract.RemoveAllContours();
// Test thermal stubs connections and add polygons to remove unconnected stubs.
// (this is a refinement for thermal relief shapes)
if( GetNetCode() > 0 )
BuildUnconnectedThermalStubsPolygonList( cornerBufferPolysToSubstract, aPcb, this,
correctionFactor, s_thermalRot );
// remove copper areas corresponding to not connected stubs
if( cornerBufferPolysToSubstract.GetCornersCount() )
{
KI_POLYGON_SET polyset_holes;
cornerBufferPolysToSubstract.ExportTo( polyset_holes );
if (g_DumpZonesWhenFilling)
dumper->Write ( convertBoostToPolySet( polyset_holes ), "thermal-holes" );
// Remove unconnected stubs
polyset_zone_solid_areas -= polyset_holes;
// put these areas in m_FilledPolysList
m_FilledPolysList.RemoveAllContours();
CopyPolygonsFromKiPolygonListToFilledPolysList( polyset_zone_solid_areas );
if( GetNetCode() > 0 )
TestForCopperIslandAndRemoveInsulatedIslands( aPcb );
}
if (g_DumpZonesWhenFilling)
dumper->Write ( convertBoostToPolySet( polyset_zone_solid_areas ), "complete" );
cornerBufferPolysToSubstract.RemoveAllContours();
}
void ZONE_CONTAINER::CopyPolygonsFromKiPolygonListToFilledPolysList( KI_POLYGON_SET& aKiPolyList )
{
m_FilledPolysList.RemoveAllContours();
m_FilledPolysList.ImportFrom( aKiPolyList );
} }

View File

@ -27,6 +27,7 @@
*/ */
#include <fctsys.h> #include <fctsys.h>
#include <polygons_defs.h>
#include <PolyLine.h> #include <PolyLine.h>
#include <wxPcbStruct.h> #include <wxPcbStruct.h>
#include <trigo.h> #include <trigo.h>
@ -47,10 +48,11 @@
* false to create the outline polygon. * false to create the outline polygon.
*/ */
void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon( void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance ) CPOLYGONS_LIST& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance )
{ {
// Creates the zone outline polygon (with linked holes if any) // Creates the zone outline polygon (with linked holes if any)
BuildFilledSolidAreasPolygons( NULL, &aCornerBuffer ); CPOLYGONS_LIST zoneOutline;
BuildFilledSolidAreasPolygons( NULL, &zoneOutline );
// add clearance to outline // add clearance to outline
int clearance = aMinClearanceValue; int clearance = aMinClearanceValue;
@ -65,9 +67,9 @@ void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
// Calculate the polygon with clearance // Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created. // holes are linked to the main outline, so only one polygon is created.
if( clearance ) if( clearance )
aCornerBuffer.Inflate( clearance, 16 ); zoneOutline.InflateOutline( aCornerBuffer, clearance, true );
else
aCornerBuffer.Fracture( ); ConvertPolysListWithHolesToOnePolygon( zoneOutline, aCornerBuffer );
} }
@ -76,14 +78,14 @@ void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
* Function BuildUnconnectedThermalStubsPolygonList * Function BuildUnconnectedThermalStubsPolygonList
* Creates a set of polygons corresponding to stubs created by thermal shapes on pads * Creates a set of polygons corresponding to stubs created by thermal shapes on pads
* which are not connected to a zone (dangling bridges) * which are not connected to a zone (dangling bridges)
* @param aCornerBuffer = a SHAPE_POLY_SET where to store polygons * @param aCornerBuffer = a CPOLYGONS_LIST where to store polygons
* @param aPcb = the board. * @param aPcb = the board.
* @param aZone = a pointer to the ZONE_CONTAINER to examine. * @param aZone = a pointer to the ZONE_CONTAINER to examine.
* @param aArcCorrection = a pointer to the ZONE_CONTAINER to examine. * @param aArcCorrection = a pointer to the ZONE_CONTAINER to examine.
* @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads * @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads
*/ */
void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, void BuildUnconnectedThermalStubsPolygonList( CPOLYGONS_LIST& aCornerBuffer,
BOARD* aPcb, BOARD* aPcb,
ZONE_CONTAINER* aZone, ZONE_CONTAINER* aZone,
double aArcCorrection, double aArcCorrection,
@ -233,7 +235,6 @@ void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
break; break;
} }
aCornerBuffer.NewOutline();
// add computed polygon to list // add computed polygon to list
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ ) for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
@ -241,7 +242,11 @@ void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
wxPoint cpos = corners_buffer[ic]; wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, fAngle ); // Rotate according to module orientation RotatePoint( &cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ShapePos(); // Shift origin to position cpos += pad->ShapePos(); // Shift origin to position
aCornerBuffer.Append( cpos.x, cpos.y ); CPolyPt corner;
corner.x = cpos.x;
corner.y = cpos.y;
corner.end_contour = ( ic < (corners_buffer.size() - 1) ) ? false : true;
aCornerBuffer.Append( corner );
} }
} }
} }

View File

@ -40,7 +40,7 @@
void ZONE_CONTAINER::TestForCopperIslandAndRemoveInsulatedIslands( BOARD* aPcb ) void ZONE_CONTAINER::TestForCopperIslandAndRemoveInsulatedIslands( BOARD* aPcb )
{ {
if( m_FilledPolysList.IsEmpty() ) if( m_FilledPolysList.GetCornersCount() == 0 )
return; return;
// Build a list of points connected to the net: // Build a list of points connected to the net:
@ -76,27 +76,74 @@ void ZONE_CONTAINER::TestForCopperIslandAndRemoveInsulatedIslands( BOARD* aPcb )
} }
// test if a point is inside // test if a point is inside
unsigned indexstart = 0, indexend;
bool connected = false;
for( int outline = 0; outline < m_FilledPolysList.OutlineCount(); outline++ ) for( indexend = 0; indexend < m_FilledPolysList.GetCornersCount(); indexend++ )
{ {
bool connected = false; if( m_FilledPolysList[indexend].end_contour ) // end of a filled sub-area found
for( unsigned ic = 0; ic < listPointsCandidates.size(); ic++ )
{ {
// test if this area is connected to a board item: EDA_RECT bbox = CalculateSubAreaBoundaryBox( indexstart, indexend );
wxPoint pos = listPointsCandidates[ic];
if( m_FilledPolysList.Contains( VECTOR2I( pos.x, pos.y ), outline ) ) for( unsigned ic = 0; ic < listPointsCandidates.size(); ic++ )
{ {
connected = true; // test if this area is connected to a board item:
break; wxPoint pos = listPointsCandidates[ic];
}
}
if( !connected ) // this polygon is connected: analyse next polygon if( !bbox.Contains( pos ) )
{ continue;
m_FilledPolysList.DeletePolygon( outline );
outline--; if( TestPointInsidePolygon( m_FilledPolysList, indexstart, indexend,
pos.x, pos.y ) )
{
connected = true;
break;
}
}
if( connected ) // this polygon is connected: analyse next polygon
{
indexstart = indexend + 1; // indexstart points the first point of the next polygon
connected = false;
}
else // Not connected: remove this polygon
{
m_FilledPolysList.DeleteCorners( indexstart, indexend );
indexend = indexstart; /* indexstart points the first point of the next polygon
* because the current poly is removed */
}
} }
} }
} }
EDA_RECT ZONE_CONTAINER::CalculateSubAreaBoundaryBox( int aIndexStart, int aIndexEnd )
{
CPolyPt start_point, end_point;
EDA_RECT bbox;
start_point = m_FilledPolysList[aIndexStart];
end_point = start_point;
for( int ii = aIndexStart; ii <= aIndexEnd; ii++ )
{
CPolyPt ptst = m_FilledPolysList[ii];
if( start_point.x > ptst.x )
start_point.x = ptst.x;
if( start_point.y > ptst.y )
start_point.y = ptst.y;
if( end_point.x < ptst.x )
end_point.x = ptst.x;
if( end_point.y < ptst.y )
end_point.y = ptst.y;
}
bbox.SetOrigin( start_point.x, start_point.y );
bbox.SetEnd( wxPoint( end_point.x, end_point.y ) );
return bbox;
}

View File

@ -51,8 +51,8 @@ void Merge_SubNets_Connected_By_CopperAreas( BOARD* aPcb, int aNetcode );
bool sort_areas( const ZONE_CONTAINER* ref, const ZONE_CONTAINER* tst ) bool sort_areas( const ZONE_CONTAINER* ref, const ZONE_CONTAINER* tst )
{ {
if( ref->GetNetCode() == tst->GetNetCode() ) if( ref->GetNetCode() == tst->GetNetCode() )
return ref->GetFilledPolysList().TotalVertices() < return ref->GetFilledPolysList().GetCornersCount() <
tst->GetFilledPolysList().TotalVertices(); tst->GetFilledPolysList().GetCornersCount();
else else
return ref->GetNetCode() < tst->GetNetCode(); return ref->GetNetCode() < tst->GetNetCode();
} }
@ -101,7 +101,7 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode )
if( aNetcode >= 0 && aNetcode != zone->GetNetCode() ) if( aNetcode >= 0 && aNetcode != zone->GetNetCode() )
continue; continue;
if( zone->GetFilledPolysList().IsEmpty() ) if( zone->GetFilledPolysList().GetCornersCount() == 0 )
continue; continue;
zones_candidates.push_back( zone ); zones_candidates.push_back( zone );
@ -156,11 +156,16 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode )
} }
// test if a candidate is inside a filled area of this zone // test if a candidate is inside a filled area of this zone
const SHAPE_POLY_SET& polysList = zone->GetFilledPolysList(); unsigned indexstart = 0, indexend;
const CPOLYGONS_LIST& polysList = zone->GetFilledPolysList();
for( int outline = 0; outline < polysList.OutlineCount(); outline++ ) for( indexend = 0; indexend < polysList.GetCornersCount(); indexend++ )
{ {
// end of a filled sub-area found
if( polysList.IsEndContour( indexend ) )
{
subnet++; subnet++;
EDA_RECT bbox = zone->CalculateSubAreaBoundaryBox( indexstart, indexend );
for( unsigned ic = 0; ic < candidates.size(); ic++ ) for( unsigned ic = 0; ic < candidates.size(); ic++ )
{ {
@ -202,14 +207,22 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode )
bool connected = false; bool connected = false;
if( polysList.Contains( VECTOR2I( pos1.x, pos1.y ), outline ) ) if( bbox.Contains( pos1 ) )
connected = true;
if( !connected && ( pos1 != pos2 ) )
{ {
if( polysList.Contains( VECTOR2I( pos2.x, pos2.y ), outline ) ) if( TestPointInsidePolygon( polysList, indexstart,
indexend, pos1.x, pos1.y ) )
connected = true; connected = true;
} }
if( !connected && (pos1 != pos2 ) )
{
if( bbox.Contains( pos2 ) )
{
if( TestPointInsidePolygon( polysList,
indexstart, indexend,
pos2.x, pos2.y ) )
connected = true;
}
}
if( connected ) if( connected )
{ {
@ -234,7 +247,13 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode )
} // End if ( old_subnet > 0 ) } // End if ( old_subnet > 0 )
} // End if( connected ) } // End if( connected )
} }
}
// End test candidates for the current filled area
indexstart = indexend + 1; // prepare test next area, starting at indexend+1
// (if exists). End read one area in
// zone->m_FilledPolysList
}
} // End read all segments in zone
} // End read all zones candidates } // End read all zones candidates
} }

View File

@ -290,26 +290,62 @@ bool BOARD::CombineAreas( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_
return false; return false;
} }
SHAPE_POLY_SET mergedOutlines = ConvertPolyListToPolySet( area_ref->Outline()->m_CornersList ); // polygons intersect, combine them
SHAPE_POLY_SET areaToMergePoly = ConvertPolyListToPolySet( area_to_combine->Outline()->m_CornersList ); KI_POLYGON_WITH_HOLES areaRefPoly;
KI_POLYGON_WITH_HOLES areaToMergePoly;
area_ref->Outline()->m_CornersList.ExportTo( areaRefPoly );
area_to_combine->Outline()->m_CornersList.ExportTo( areaToMergePoly );
mergedOutlines.BooleanAdd( areaToMergePoly ); KI_POLYGON_WITH_HOLES_SET mergedOutlines;
mergedOutlines.Simplify(); mergedOutlines.push_back( areaRefPoly );
mergedOutlines |= areaToMergePoly;
// We should have one polygon with hole // We should have one polygon with hole
// We can have 2 polygons with hole, if the 2 initial polygons have only one common corner // We can have 2 polygons with hole, if the 2 initial polygons have only one common corner
// and therefore cannot be merged (they are dectected as intersecting) // and therefore cannot be merged (they are dectected as intersecting)
// but we should never have more than 2 polys // but we should never have more than 2 polys
if( mergedOutlines.OutlineCount() > 2 ) if( mergedOutlines.size() > 2 )
{ {
wxLogMessage(wxT("BOARD::CombineAreas error: more than 2 polys after merging") ); wxLogMessage(wxT("BOARD::CombineAreas error: more than 2 polys after merging") );
return false; return false;
} }
if( mergedOutlines.OutlineCount() > 1 ) if( mergedOutlines.size() > 1 )
return false; return false;
area_ref->Outline()->m_CornersList = ConvertPolySetToPolyList( mergedOutlines ); areaRefPoly = mergedOutlines[0];
area_ref->Outline()->RemoveAllContours();
KI_POLYGON_WITH_HOLES::iterator_type corner = areaRefPoly.begin();
// create area with external contour: Recreate only area edges, NOT holes
area_ref->Outline()->Start( area_ref->GetLayer(), corner->x(), corner->y(),
area_ref->Outline()->GetHatchStyle() );
while( ++corner != areaRefPoly.end() )
{
area_ref->Outline()->AppendCorner( corner->x(), corner->y() );
}
area_ref->Outline()->CloseLastContour();
// add holes (set of polygons)
KI_POLYGON_WITH_HOLES::iterator_holes_type hole = areaRefPoly.begin_holes();
while( hole != areaRefPoly.end_holes() )
{
KI_POLYGON::iterator_type hole_corner = hole->begin();
// create area with external contour: Recreate only area edges, NOT holes
while( hole_corner != hole->end() )
{
area_ref->Outline()->AppendCorner( hole_corner->x(), hole_corner->y() );
hole_corner++;
}
area_ref->Outline()->CloseLastContour();
hole++;
}
RemoveArea( aDeletedList, area_to_combine ); RemoveArea( aDeletedList, area_to_combine );

View File

@ -9,6 +9,12 @@ set(POLYGON_SRCS
PolyLine.cpp PolyLine.cpp
polygon_test_point_inside.cpp polygon_test_point_inside.cpp
clipper.cpp clipper.cpp
poly2tri/common/shapes.cc
poly2tri/sweep/sweep.cc
poly2tri/sweep/cdt.cc
poly2tri/sweep/advancing_front.cc
poly2tri/sweep/sweep_context.cc
) )
add_library(polygon STATIC ${POLYGON_SRCS}) add_library(polygon STATIC ${POLYGON_SRCS})

View File

@ -115,19 +115,85 @@ CPolyLine::~CPolyLine()
* @return the polygon count (always >= 1, because there is at least one polygon) * @return the polygon count (always >= 1, because there is at least one polygon)
* There are new polygons only if the polygon count is > 1 * There are new polygons only if the polygon count is > 1
*/ */
#include "clipper.hpp"
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList ) int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList )
{ {
ClipperLib::Path raw_polygon;
ClipperLib::Paths normalized_polygons;
SHAPE_POLY_SET polySet = ConvertPolyListToPolySet( m_CornersList ); unsigned corners_count = m_CornersList.GetCornersCount();
polySet.Simplify(); KI_POLYGON_SET polysholes;
KI_POLYGON_WITH_HOLES mainpoly;
std::vector<KI_POLY_POINT> cornerslist;
KI_POLYGON_WITH_HOLES_SET all_contours;
KI_POLYGON poly_tmp;
// Normalize first contour
unsigned ic = 0;
while( ic < corners_count )
{
const CPolyPt& corner = m_CornersList[ic++];
raw_polygon.push_back( ClipperLib::IntPoint( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
// enter main outline
for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
{
ClipperLib::Path& polygon = normalized_polygons[ii];
cornerslist.clear();
for( unsigned jj = 0; jj < polygon.size(); jj++ )
cornerslist.push_back( KI_POLY_POINT( KiROUND( polygon[jj].X ),
KiROUND( polygon[jj].Y ) ) );
mainpoly.set( cornerslist.begin(), cornerslist.end() );
all_contours.push_back( mainpoly );
}
// Enter holes
while( ic < corners_count )
{
cornerslist.clear();
raw_polygon.clear();
normalized_polygons.clear();
// Normalize current hole and add it to hole list
while( ic < corners_count )
{
const CPolyPt& corner = m_CornersList[ic++];
raw_polygon.push_back( ClipperLib::IntPoint( corner.x, corner.y ) );
if( corner.end_contour )
{
ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
{
ClipperLib::Path& polygon = normalized_polygons[ii];
cornerslist.clear();
for( unsigned jj = 0; jj < polygon.size(); jj++ )
cornerslist.push_back( KI_POLY_POINT( KiROUND( polygon[jj].X ),
KiROUND( polygon[jj].Y ) ) );
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
polysholes.push_back( poly_tmp );
}
break;
}
}
}
all_contours -= polysholes;
// copy polygon with holes to destination
RemoveAllContours(); RemoveAllContours();
for( int ii = 0; ii < polySet.OutlineCount(); ii++ ) #define outlines all_contours
for( unsigned ii = 0; ii < outlines.size(); ii++ )
{ {
CPolyLine* polyline = this; CPolyLine* polyline = this;
if( ii > 0 ) if( ii > 0 )
{ {
polyline = new CPolyLine; polyline = new CPolyLine;
@ -135,14 +201,35 @@ int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList )
aNewPolygonList->push_back( polyline ); aNewPolygonList->push_back( polyline );
} }
SHAPE_POLY_SET pnew; KI_POLYGON_WITH_HOLES& curr_poly = outlines[ii];
pnew.NewOutline(); KI_POLYGON_WITH_HOLES::iterator_type corner = curr_poly.begin();
pnew.Polygon( 0 ) = polySet.CPolygon( ii ); // enter main contour
while( corner != curr_poly.end() )
{
polyline->AppendCorner( corner->x(), corner->y() );
corner++;
}
polyline->CloseLastContour();
polyline->m_CornersList = ConvertPolySetToPolyList( pnew ); // add holes (set of polygons)
KI_POLYGON_WITH_HOLES::iterator_holes_type hole = curr_poly.begin_holes();
while( hole != curr_poly.end_holes() )
{
KI_POLYGON::iterator_type hole_corner = hole->begin();
// create area with external contour: Recreate only area edges, NOT holes
while( hole_corner != hole->end() )
{
polyline->AppendCorner( hole_corner->x(), hole_corner->y() );
hole_corner++;
}
polyline->CloseLastContour();
hole++;
}
polyline->RemoveNullSegments();
} }
return polySet.OutlineCount(); return outlines.size();
} }
/** /**
@ -1173,6 +1260,375 @@ int CPolyLine::HitTestForCorner( const wxPoint& aPos, int aDistMax ) const
return corner; return corner;
} }
/*
* Copy the contours to a KI_POLYGON_WITH_HOLES
* The first contour is the main outline, others are holes
*/
void CPOLYGONS_LIST::ExportTo( KI_POLYGON_WITH_HOLES& aPolygoneWithHole ) const
{
unsigned corners_count = m_cornersList.size();
std::vector<KI_POLY_POINT> cornerslist;
KI_POLYGON poly;
// Enter main outline: this is the first contour
unsigned ic = 0;
while( ic < corners_count )
{
const CPolyPt& corner = GetCorner( ic++ );
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
aPolygoneWithHole.set( cornerslist.begin(), cornerslist.end() );
// Enter holes: they are next contours (when exist)
if( ic < corners_count )
{
KI_POLYGON_SET holePolyList;
while( ic < corners_count )
{
cornerslist.clear();
while( ic < corners_count )
{
cornerslist.push_back( KI_POLY_POINT( GetX( ic ), GetY( ic ) ) );
if( IsEndContour( ic++ ) )
break;
}
bpl::set_points( poly, cornerslist.begin(), cornerslist.end() );
holePolyList.push_back( poly );
}
aPolygoneWithHole.set_holes( holePolyList.begin(), holePolyList.end() );
}
}
/**
* Copy all contours to a KI_POLYGON_SET aPolygons
* Each contour is copied into a KI_POLYGON, and each KI_POLYGON
* is append to aPolygons
*/
void CPOLYGONS_LIST::ExportTo( KI_POLYGON_SET& aPolygons ) const
{
std::vector<KI_POLY_POINT> cornerslist;
unsigned corners_count = GetCornersCount();
// Count the number of polygons in aCornersBuffer
int polycount = 0;
for( unsigned ii = 0; ii < corners_count; ii++ )
{
if( IsEndContour( ii ) )
polycount++;
}
aPolygons.reserve( polycount );
for( unsigned icnt = 0; icnt < corners_count; )
{
KI_POLYGON poly;
cornerslist.clear();
unsigned ii;
for( ii = icnt; ii < corners_count; ii++ )
{
cornerslist.push_back( KI_POLY_POINT( GetX( ii ), GetY( ii ) ) );
if( IsEndContour( ii ) )
break;
}
bpl::set_points( poly, cornerslist.begin(), cornerslist.end() );
aPolygons.push_back( poly );
icnt = ii + 1;
}
}
/*
* Copy all contours to a ClipperLib::Paths& aPolygons
* Each contour is copied into a ClipperLib::Path, and each ClipperLib::Path
* is append to aPolygons
*/
void CPOLYGONS_LIST::ExportTo( ClipperLib::Paths& aPolygons ) const
{
unsigned corners_count = GetCornersCount();
// Count the number of polygons in aCornersBuffer
int polycount = 0;
for( unsigned ii = 0; ii < corners_count; ii++ )
{
if( IsEndContour( ii ) )
polycount++;
}
aPolygons.reserve( polycount );
for( unsigned icnt = 0; icnt < corners_count; )
{
ClipperLib::Path poly;
unsigned ii;
for( ii = icnt; ii < corners_count; ii++ )
{
poly << ClipperLib::IntPoint( GetX( ii ), GetY( ii ) );
if( IsEndContour( ii ) )
break;
}
aPolygons.push_back( poly );
icnt = ii + 1;
}
}
/* Imports all polygons found in a KI_POLYGON_SET in list
*/
void CPOLYGONS_LIST::ImportFrom( KI_POLYGON_SET& aPolygons )
{
CPolyPt corner;
for( unsigned ii = 0; ii < aPolygons.size(); ii++ )
{
KI_POLYGON& poly = aPolygons[ii];
for( unsigned jj = 0; jj < poly.size(); jj++ )
{
KI_POLY_POINT point = *(poly.begin() + jj);
corner.x = point.x();
corner.y = point.y();
corner.end_contour = false;
AddCorner( corner );
}
CloseLastContour();
}
}
/* Imports all polygons found in a ClipperLib::Paths in list
*/
void CPOLYGONS_LIST::ImportFrom( ClipperLib::Paths& aPolygons )
{
CPolyPt corner;
for( unsigned ii = 0; ii < aPolygons.size(); ii++ )
{
ClipperLib::Path& polygon = aPolygons[ii];
for( unsigned jj = 0; jj < polygon.size(); jj++ )
{
corner.x = int( polygon[jj].X );
corner.y = int( polygon[jj].Y );
corner.end_contour = false;
AddCorner( corner );
}
CloseLastContour();
}
}
/* Inflate the outline stored in m_cornersList.
* The first polygon is the external outline. It is inflated
* The other polygons are holes. they are deflated
* aResult = the Inflated outline
* aInflateValue = the Inflate value. when < 0, this is a deflate transform
* aLinkHoles = if true, aResult contains only one polygon,
* with holes linked by overlapping segments
*
* Important Note:
* Inflating a polygon with acute angles or a non convex polygon gives non optimal shapes
* for your purposes (creating a clearance area from zones).
* So when inflating a polygon, we combine it with a "thick outline"
* with a thickness = aInflateValue*2.
* the inflated polygon shape is much better to build a polygon
* from a polygon + clearance area
*
* Generic algos (Clipper, Boost Polygon) can inflate polygons, but the result is
* not always suitable (they work fine only for polygons with non acute angle)
*
* To deflate polygons, the same calculation is made, but instead of adding the "thick outline"
* we substract it.
*/
#include <convert_basic_shapes_to_polygon.h>
void CPOLYGONS_LIST::InflateOutline( CPOLYGONS_LIST& aResult, int aInflateValue, bool aLinkHoles )
{
KI_POLYGON_SET polyset_outline;
ExportTo( polyset_outline );
// Extract holes (cutout areas) and add them to the hole buffer
KI_POLYGON_SET outlineHoles;
while( polyset_outline.size() > 1 )
{
outlineHoles.push_back( polyset_outline.back() );
polyset_outline.pop_back();
}
// inflate main outline
unsigned icnt = 0;
int width = std::abs( aInflateValue * 2 );
if( polyset_outline.size() )
{
CPOLYGONS_LIST outlines;
for( ; icnt < GetCornersCount(); icnt++ )
{
unsigned ii = icnt+1;
if( IsEndContour( icnt ) )
ii = 0;
TransformRoundedEndsSegmentToPolygon( outlines,
GetPos( icnt ), GetPos( ii ), 16, width );
if( IsEndContour( icnt ) )
break;
}
KI_POLYGON_SET thicklines;
outlines.ExportTo( thicklines );
if( aInflateValue > 0 ) // Inflate main outline
polyset_outline += thicklines;
else if( aInflateValue < 0 ) // Actually a deflate transform
polyset_outline -= thicklines; // deflate main outline
}
// deflate outline holes
if( outlineHoles.size() )
{
int deflateValue = -aInflateValue;
CPOLYGONS_LIST outlines;
icnt += 1; // points the first point of the first hole
unsigned firstpoint = icnt;
for( ; icnt < GetCornersCount(); icnt++ )
{
unsigned ii = icnt+1;
if( IsEndContour( icnt ) || ii >= GetCornersCount() )
{
ii = firstpoint;
firstpoint = icnt+1;
}
TransformRoundedEndsSegmentToPolygon( outlines,
GetPos( icnt ), GetPos( ii ), 16, width );
}
KI_POLYGON_SET thicklines;
outlines.ExportTo( thicklines );
if( deflateValue > 0 ) // Inflate holes
outlineHoles += thicklines;
else if( deflateValue < 0 ) // deflate holes
outlineHoles -= thicklines;
}
// Copy modified polygons
if( !aLinkHoles )
{
aResult.ImportFrom( polyset_outline );
if( outlineHoles.size() )
aResult.ImportFrom( outlineHoles );
}
else
{
polyset_outline -= outlineHoles;
aResult.ImportFrom( polyset_outline );
}
}
/**
* Function ConvertPolysListWithHolesToOnePolygon
* converts the outline contours aPolysListWithHoles with holes to one polygon
* with no holes (only one contour)
* holes are linked to main outlines by overlap segments, to give only one polygon
*
* @param aPolysListWithHoles = the list of corners of contours (haing holes
* @param aOnePolyList = a polygon with no holes
*/
void ConvertPolysListWithHolesToOnePolygon( const CPOLYGONS_LIST& aPolysListWithHoles,
CPOLYGONS_LIST& aOnePolyList )
{
unsigned corners_count = aPolysListWithHoles.GetCornersCount();
int polycount = 0;
for( unsigned ii = 0; ii < corners_count; ii++ )
{
if( aPolysListWithHoles.IsEndContour( ii ) )
polycount++;
}
// If polycount<= 1, there is no holes found, and therefore just copy the polygon.
if( polycount <= 1 )
{
aOnePolyList.Append( aPolysListWithHoles );
return;
}
// Holes are found: convert them to only one polygon with overlap segments
KI_POLYGON_SET polysholes;
KI_POLYGON_SET mainpoly;
KI_POLYGON poly_tmp;
std::vector<KI_POLY_POINT> cornerslist;
corners_count = aPolysListWithHoles.GetCornersCount();
unsigned ic = 0;
// enter main outline
while( ic < corners_count )
{
const CPolyPt& corner = aPolysListWithHoles.GetCorner( ic++ );
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
mainpoly.push_back( poly_tmp );
while( ic < corners_count )
{
cornerslist.clear();
{
while( ic < corners_count )
{
const CPolyPt& corner = aPolysListWithHoles.GetCorner( ic++ );
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
polysholes.push_back( poly_tmp );
}
}
mainpoly -= polysholes;
// copy polygon with no holes to destination
// Because all holes are now linked to the main outline
// by overlapping segments, we should have only one polygon in list
wxASSERT( mainpoly.size() == 1 );
aOnePolyList.ImportFrom( mainpoly );
}
/** /**
* Function IsPolygonSelfIntersecting * Function IsPolygonSelfIntersecting
@ -1268,80 +1724,21 @@ bool CPolyLine::IsPolygonSelfIntersecting()
return false; return false;
} }
const SHAPE_POLY_SET ConvertPolyListToPolySet( const CPOLYGONS_LIST& aList )
/* converts the outline aOnePolyList (only one contour,
* holes are linked by overlapping segments) to
* to one main polygon and holes (polygons inside main polygon)
* aOnePolyList = a only one polygon ( holes are linked )
* aPolysListWithHoles = the list of corners of contours
* (main outline and holes)
*/
void ConvertOnePolygonToPolysListWithHoles( const CPOLYGONS_LIST& aOnePolyList,
CPOLYGONS_LIST& aPolysListWithHoles )
{ {
SHAPE_POLY_SET rv; ClipperLib::Paths initialPoly;
ClipperLib::Paths modifiedPoly;
unsigned corners_count = aList.GetCornersCount(); aOnePolyList.ExportTo( initialPoly );
SimplifyPolygon(initialPoly[0], modifiedPoly );
// Enter main outline: this is the first contour aPolysListWithHoles.ImportFrom( modifiedPoly );
unsigned ic = 0;
if( !corners_count )
return rv;
int index = 0;
while( ic < corners_count )
{
int hole = -1;
if( index == 0 )
{
rv.NewOutline();
hole = -1;
}
else
{
hole = rv.NewHole();
}
while( ic < corners_count )
{
rv.Append( aList.GetX( ic ), aList.GetY( ic ), 0, hole );
if( aList.IsEndContour( ic ) )
break;
ic++;
}
ic++;
index++;
}
return rv;
} }
const CPOLYGONS_LIST ConvertPolySetToPolyList(const SHAPE_POLY_SET& aPolyset)
{
CPOLYGONS_LIST list;
CPolyPt corner, firstCorner;
const SHAPE_POLY_SET::POLYGON& poly = aPolyset.CPolygon( 0 );
for( unsigned int jj = 0; jj < poly.size() ; jj++ )
{
const SHAPE_LINE_CHAIN& path = poly[jj];
for( int i = 0; i < path.PointCount(); i++ )
{
const VECTOR2I &v = path.CPoint( i );
corner.x = v.x;
corner.y = v.y;
corner.end_contour = false;
if( i == 0 )
firstCorner = corner;
list.AddCorner( corner );
}
firstCorner.end_contour = true;
list.AddCorner( firstCorner );
}
return list;
}

View File

@ -53,8 +53,8 @@
#include <wx/gdicmn.h> // for wxPoint definition #include <wx/gdicmn.h> // for wxPoint definition
#include <layers_id_colors_and_visibility.h> // for LAYER_NUM definition #include <layers_id_colors_and_visibility.h> // for LAYER_NUM definition
#include <class_eda_rect.h> // for EDA_RECT definition #include <class_eda_rect.h> // for EDA_RECT definition
#include <polygons_defs.h>
#include <geometry/shape_poly_set.h> // fixme #include <clipper.hpp>
class CSegment class CSegment
{ {
@ -116,21 +116,30 @@ private:
public: public:
CPOLYGONS_LIST() {}; CPOLYGONS_LIST() {};
CPolyPt& operator [](int aIdx) { return m_cornersList[aIdx]; } CPolyPt& operator [](int aIdx) {return m_cornersList[aIdx]; }
// Accessor: // Accessor:
const std::vector <CPolyPt>& GetList() const {return m_cornersList;} const std::vector <CPolyPt>& GetList() const {return m_cornersList;}
int GetX( int ic ) const { return m_cornersList[ic].x; } int GetX( int ic ) const { return m_cornersList[ic].x; }
void SetX( int ic, int aValue ) { m_cornersList[ic].x = aValue; } void SetX( int ic, int aValue ) { m_cornersList[ic].x = aValue; }
int GetY( int ic ) const { return m_cornersList[ic].y; } int GetY( int ic ) const { return m_cornersList[ic].y; }
void SetY( int ic, int aValue ) { m_cornersList[ic].y = aValue; } void SetY( int ic, int aValue ) { m_cornersList[ic].y = aValue; }
int GetUtility( int ic ) const { return m_cornersList[ic].m_flags; }
void SetFlag( int ic, int aFlag )
{
m_cornersList[ic].m_flags = aFlag;
}
bool IsEndContour( int ic ) const bool IsEndContour( int ic ) const
{ {
return m_cornersList[ic].end_contour; return m_cornersList[ic].end_contour;
} }
void SetEndContour( int ic, bool end_contour )
{
m_cornersList[ic].end_contour = end_contour;
}
const wxPoint& GetPos( int ic ) const { return m_cornersList[ic]; } const wxPoint& GetPos( int ic ) const { return m_cornersList[ic]; }
const CPolyPt& GetCorner( int ic ) const { return m_cornersList[ic]; } const CPolyPt& GetCorner( int ic ) const { return m_cornersList[ic]; }
@ -148,7 +157,6 @@ public:
m_cornersList.erase( m_cornersList.begin() + aIdx ); m_cornersList.erase( m_cornersList.begin() + aIdx );
} }
// used only to erase an entire polygon
void DeleteCorners( int aIdFirstCorner, int aIdLastCorner ) void DeleteCorners( int aIdFirstCorner, int aIdLastCorner )
{ {
m_cornersList.erase( m_cornersList.begin() + aIdFirstCorner, m_cornersList.erase( m_cornersList.begin() + aIdFirstCorner,
@ -204,6 +212,56 @@ public:
* (number of corners flagged "end_contour" * (number of corners flagged "end_contour"
*/ */
int GetContoursCount() const; int GetContoursCount() const;
/**
* Function ExportTo
* Copy all contours to a KI_POLYGON_SET, each contour is exported
* to a KI_POLYGON
* @param aPolygons = the KI_POLYGON_SET to populate
*/
void ExportTo( KI_POLYGON_SET& aPolygons ) const;
/**
* Function ExportTo
* Copy the contours to a KI_POLYGON_WITH_HOLES
* The first contour is the main outline, others are holes
* @param aPolygoneWithHole = the KI_POLYGON_WITH_HOLES to populate
*/
void ExportTo( KI_POLYGON_WITH_HOLES& aPolygoneWithHole ) const;
/**
* Function ExportTo
* Copy all contours to a ClipperLib::Paths, each contour is exported
* to a ClipperLib::Path
* @param aPolygons = the ClipperLib::Paths to populate
*/
void ExportTo( ClipperLib::Paths& aPolygons ) const;
/**
* Function ImportFrom
* Copy all polygons from a KI_POLYGON_SET in list
* @param aPolygons = the KI_POLYGON_SET to import
*/
void ImportFrom( KI_POLYGON_SET& aPolygons );
/**
* Function ImportFrom
* Copy all polygons from a ClipperLib::Paths in list
* @param aPolygons = the ClipperLib::Paths to import
*/
void ImportFrom( ClipperLib::Paths& aPolygons );
/**
* Function InflateOutline
* Inflate the outline stored in m_cornersList.
* The first polygon is the external outline. It is inflated
* The other polygons are holes. they are deflated
* @param aResult = the Inflated outline
* @param aInflateValue = the Inflate value. when < 0, this is a deflate transform
* @param aLinkHoles = if true, aResult contains only one polygon,
* with holes linked by overlapping segments
*/
void InflateOutline( CPOLYGONS_LIST& aResult, int aInflateValue, bool aLinkHoles );
}; };
class CPolyLine class CPolyLine
@ -389,6 +447,9 @@ public:
const wxPoint& GetPos( int ic ) const { return m_CornersList.GetPos( ic ); } const wxPoint& GetPos( int ic ) const { return m_CornersList.GetPos( ic ); }
int GetUtility( int ic ) const { return m_CornersList.GetUtility( ic ); };
void SetUtility( int ic, int aFlag ) { m_CornersList.SetFlag( ic, aFlag ); };
int GetHatchPitch() const { return m_hatchPitch; } int GetHatchPitch() const { return m_hatchPitch; }
static int GetDefaultHatchPitchMils() { return 20; } // default hatch pitch value in mils static int GetDefaultHatchPitchMils() { return 20; } // default hatch pitch value in mils
@ -412,6 +473,11 @@ public:
m_CornersList.SetY( ic, y ); m_CornersList.SetY( ic, y );
} }
void SetEndContour( int ic, bool end_contour )
{
m_CornersList.SetEndContour( ic, end_contour );
}
void SetHatchStyle( enum HATCH_STYLE style ) void SetHatchStyle( enum HATCH_STYLE style )
{ {
m_hatchStyle = style; m_hatchStyle = style;
@ -483,7 +549,30 @@ public:
std::vector <CSegment> m_HatchLines; // hatch lines showing the polygon area std::vector <CSegment> m_HatchLines; // hatch lines showing the polygon area
}; };
const SHAPE_POLY_SET ConvertPolyListToPolySet( const CPOLYGONS_LIST& aList ); /**
const CPOLYGONS_LIST ConvertPolySetToPolyList( const SHAPE_POLY_SET& aPolyset ); * Function ConvertPolysListWithHolesToOnePolygon
* converts the outline contours aPolysListWithHoles with holes to one polygon
* with no holes (only one contour)
* holes are linked to main outlines by overlap segments, to give only one polygon
*
* @param aPolysListWithHoles = the list of corners of contours
* (main outline and holes)
* @param aOnePolyList = a polygon with no holes
*/
void ConvertPolysListWithHolesToOnePolygon( const CPOLYGONS_LIST& aPolysListWithHoles,
CPOLYGONS_LIST& aOnePolyList );
/**
* Function ConvertOnePolygonToPolysListWithHoles
* converts the outline aOnePolyList (only one contour,
* holes are linked by overlapping segments) to
* to one main polygon and holes (polygons inside main polygon)
* @param aOnePolyList = a polygon with no holes
* @param aPolysListWithHoles = the list of corners of contours
* (main outline and holes)
*/
void ConvertOnePolygonToPolysListWithHoles( const CPOLYGONS_LIST& aOnePolyList,
CPOLYGONS_LIST& aPolysListWithHoles );
#endif // #ifndef POLYLINE_H #endif // #ifndef POLYLINE_H

View File

@ -0,0 +1,500 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "shapes.h"
#include <iostream>
namespace p2t {
Triangle::Triangle( Point& a, Point& b, Point& c )
{
points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
interior_ = false;
}
// Update neighbor pointers
void Triangle::MarkNeighbor( Point* p1, Point* p2, Triangle* t )
{
if( (p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]) )
neighbors_[0] = t;
else if( (p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]) )
neighbors_[1] = t;
else if( (p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]) )
neighbors_[2] = t;
else
assert( 0 );
}
// Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor( Triangle& t )
{
if( t.Contains( points_[1], points_[2] ) )
{
neighbors_[0] = &t;
t.MarkNeighbor( points_[1], points_[2], this );
}
else if( t.Contains( points_[0], points_[2] ) )
{
neighbors_[1] = &t;
t.MarkNeighbor( points_[0], points_[2], this );
}
else if( t.Contains( points_[0], points_[1] ) )
{
neighbors_[2] = &t;
t.MarkNeighbor( points_[0], points_[1], this );
}
}
/**
* Clears all references to all other triangles and points
*/
void Triangle::Clear()
{
Triangle* t;
for( int i = 0; i<3; i++ )
{
t = neighbors_[i];
if( t != NULL )
{
t->ClearNeighbor( this );
}
}
ClearNeighbors();
points_[0] = points_[1] = points_[2] = NULL;
}
void Triangle::ClearNeighbor( Triangle* triangle )
{
if( neighbors_[0] == triangle )
{
neighbors_[0] = NULL;
}
else if( neighbors_[1] == triangle )
{
neighbors_[1] = NULL;
}
else
{
neighbors_[2] = NULL;
}
}
void Triangle::ClearNeighbors()
{
neighbors_[0] = NULL;
neighbors_[1] = NULL;
neighbors_[2] = NULL;
}
void Triangle::ClearDelunayEdges()
{
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
}
Point* Triangle::OppositePoint( Triangle& t, Point& p )
{
Point* cw = t.PointCW( p );
/*
double x = cw->x;
double y = cw->y;
x = p.x;
y = p.y;
*/
return PointCW( *cw );
}
// Legalized triangle by rotating clockwise around point(0)
void Triangle::Legalize( Point& point )
{
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &point;
}
// Legalize triagnle by rotating clockwise around oPoint
void Triangle::Legalize( Point& opoint, Point& npoint )
{
if( &opoint == points_[0] )
{
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &npoint;
}
else if( &opoint == points_[1] )
{
points_[2] = points_[1];
points_[1] = points_[0];
points_[0] = &npoint;
}
else if( &opoint == points_[2] )
{
points_[0] = points_[2];
points_[2] = points_[1];
points_[1] = &npoint;
}
else
{
assert( 0 );
}
}
int Triangle::Index( const Point* p )
{
if( p == points_[0] )
{
return 0;
}
else if( p == points_[1] )
{
return 1;
}
else if( p == points_[2] )
{
return 2;
}
assert( 0 );
return 0; // you better hope its a Debug build.
}
int Triangle::EdgeIndex( const Point* p1, const Point* p2 )
{
if( points_[0] == p1 )
{
if( points_[1] == p2 )
{
return 2;
}
else if( points_[2] == p2 )
{
return 1;
}
}
else if( points_[1] == p1 )
{
if( points_[2] == p2 )
{
return 0;
}
else if( points_[0] == p2 )
{
return 2;
}
}
else if( points_[2] == p1 )
{
if( points_[0] == p2 )
{
return 1;
}
else if( points_[1] == p2 )
{
return 0;
}
}
return -1;
}
void Triangle::MarkConstrainedEdge( const int index )
{
constrained_edge[index] = true;
}
void Triangle::MarkConstrainedEdge( Edge& edge )
{
MarkConstrainedEdge( edge.p, edge.q );
}
// Mark edge as constrained
void Triangle::MarkConstrainedEdge( Point* p, Point* q )
{
if( (q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0]) )
{
constrained_edge[2] = true;
}
else if( (q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0]) )
{
constrained_edge[1] = true;
}
else if( (q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1]) )
{
constrained_edge[0] = true;
}
}
// The point counter-clockwise to given point
Point* Triangle::PointCW( Point& point )
{
if( &point == points_[0] )
{
return points_[2];
}
else if( &point == points_[1] )
{
return points_[0];
}
else if( &point == points_[2] )
{
return points_[1];
}
assert( 0 );
return NULL; // you better hope its a Debug build.
}
// The point counter-clockwise to given point
Point* Triangle::PointCCW( Point& point )
{
if( &point == points_[0] )
{
return points_[1];
}
else if( &point == points_[1] )
{
return points_[2];
}
else if( &point == points_[2] )
{
return points_[0];
}
assert( 0 );
return NULL; // you better hope its a Debug build.
}
// The neighbor clockwise to given point
Triangle* Triangle::NeighborCW( Point& point )
{
if( &point == points_[0] )
{
return neighbors_[1];
}
else if( &point == points_[1] )
{
return neighbors_[2];
}
return neighbors_[0];
}
// The neighbor counter-clockwise to given point
Triangle* Triangle::NeighborCCW( Point& point )
{
if( &point == points_[0] )
{
return neighbors_[2];
}
else if( &point == points_[1] )
{
return neighbors_[0];
}
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW( Point& p )
{
if( &p == points_[0] )
{
return constrained_edge[2];
}
else if( &p == points_[1] )
{
return constrained_edge[0];
}
return constrained_edge[1];
}
bool Triangle::GetConstrainedEdgeCW( Point& p )
{
if( &p == points_[0] )
{
return constrained_edge[1];
}
else if( &p == points_[1] )
{
return constrained_edge[2];
}
return constrained_edge[0];
}
void Triangle::SetConstrainedEdgeCCW( Point& p, bool ce )
{
if( &p == points_[0] )
{
constrained_edge[2] = ce;
}
else if( &p == points_[1] )
{
constrained_edge[0] = ce;
}
else
{
constrained_edge[1] = ce;
}
}
void Triangle::SetConstrainedEdgeCW( Point& p, bool ce )
{
if( &p == points_[0] )
{
constrained_edge[1] = ce;
}
else if( &p == points_[1] )
{
constrained_edge[2] = ce;
}
else
{
constrained_edge[0] = ce;
}
}
bool Triangle::GetDelunayEdgeCCW( Point& p )
{
if( &p == points_[0] )
{
return delaunay_edge[2];
}
else if( &p == points_[1] )
{
return delaunay_edge[0];
}
return delaunay_edge[1];
}
bool Triangle::GetDelunayEdgeCW( Point& p )
{
if( &p == points_[0] )
{
return delaunay_edge[1];
}
else if( &p == points_[1] )
{
return delaunay_edge[2];
}
return delaunay_edge[0];
}
void Triangle::SetDelunayEdgeCCW( Point& p, bool e )
{
if( &p == points_[0] )
{
delaunay_edge[2] = e;
}
else if( &p == points_[1] )
{
delaunay_edge[0] = e;
}
else
{
delaunay_edge[1] = e;
}
}
void Triangle::SetDelunayEdgeCW( Point& p, bool e )
{
if( &p == points_[0] )
{
delaunay_edge[1] = e;
}
else if( &p == points_[1] )
{
delaunay_edge[2] = e;
}
else
{
delaunay_edge[0] = e;
}
}
// The neighbor across to given point
Triangle& Triangle::NeighborAcross( Point& opoint )
{
if( &opoint == points_[0] )
{
return *neighbors_[0];
}
else if( &opoint == points_[1] )
{
return *neighbors_[1];
}
return *neighbors_[2];
}
void Triangle::DebugPrint()
{
std::cout << points_[0]->x << "," << points_[0]->y << " ";
std::cout << points_[1]->x << "," << points_[1]->y << " ";
std::cout << points_[2]->x << "," << points_[2]->y << "\n";
}
}

View File

@ -0,0 +1,351 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Include guard
#ifndef SHAPES_H
#define SHAPES_H
#include <vector>
#include <cstddef>
#include <assert.h>
#include <cmath>
namespace p2t {
struct Edge;
struct Point
{
double x, y;
/// Default constructor does nothing (for performance).
Point()
{
x = 0.0;
y = 0.0;
}
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point( double x, double y ) : x( x ), y( y ) {}
/// Set this point to all zeros.
void set_zero()
{
x = 0.0;
y = 0.0;
}
/// Set this point to some specified coordinates.
void set( double x_, double y_ )
{
x = x_;
y = y_;
}
/// Negate this point.
Point operator -() const
{
Point v;
v.set( -x, -y );
return v;
}
/// Add a point to this point.
void operator +=( const Point& v )
{
x += v.x;
y += v.y;
}
/// Subtract a point from this point.
void operator -=( const Point& v )
{
x -= v.x;
y -= v.y;
}
/// Multiply this point by a scalar.
void operator *=( double a )
{
x *= a;
y *= a;
}
/// Get the length of this point (the norm).
double Length() const
{
return sqrt( x * x + y * y );
}
/// Convert this point into a unit point. Returns the Length.
double Normalize()
{
double len = Length();
x /= len;
y /= len;
return len;
}
};
// Represents a simple polygon's edge
struct Edge
{
Point* p, * q;
/// Constructor
Edge( Point& p1, Point& p2 ) : p( &p1 ), q( &p2 )
{
if( p1.y > p2.y )
{
q = &p1;
p = &p2;
}
else if( p1.y == p2.y )
{
if( p1.x > p2.x )
{
q = &p1;
p = &p2;
}
else if( p1.x == p2.x )
{
// Repeat points
assert( false );
}
}
q->edge_list.push_back( this );
}
};
// Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL"
class Triangle
{
public:
/// Constructor
Triangle( Point& a, Point& b, Point& c );
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
Point* GetPoint( const int& index );
Point* PointCW( Point& point );
Point* PointCCW( Point& point );
Point* OppositePoint( Triangle& t, Point& p );
Triangle* GetNeighbor( const int& index );
void MarkNeighbor( Point* p1, Point* p2, Triangle* t );
void MarkNeighbor( Triangle& t );
void MarkConstrainedEdge( const int index );
void MarkConstrainedEdge( Edge& edge );
void MarkConstrainedEdge( Point* p, Point* q );
int Index( const Point* p );
int EdgeIndex( const Point* p1, const Point* p2 );
Triangle* NeighborCW( Point& point );
Triangle* NeighborCCW( Point& point );
bool GetConstrainedEdgeCCW( Point& p );
bool GetConstrainedEdgeCW( Point& p );
void SetConstrainedEdgeCCW( Point& p, bool ce );
void SetConstrainedEdgeCW( Point& p, bool ce );
bool GetDelunayEdgeCCW( Point& p );
bool GetDelunayEdgeCW( Point& p );
void SetDelunayEdgeCCW( Point& p, bool e );
void SetDelunayEdgeCW( Point& p, bool e );
bool Contains( Point* p );
bool Contains( const Edge& e );
bool Contains( Point* p, Point* q );
void Legalize( Point& point );
void Legalize( Point& opoint, Point& npoint );
/**
* Clears all references to all other triangles and points
*/
void Clear();
void ClearNeighbor( Triangle* triangle );
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior( bool b );
Triangle& NeighborAcross( Point& opoint );
void DebugPrint();
private:
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle?
bool interior_;
};
inline bool cmp( const Point* a, const Point* b )
{
if( a->y < b->y )
{
return true;
}
else if( a->y == b->y )
{
// Make sure q is point with greater x value
if( a->x < b->x )
{
return true;
}
}
return false;
}
/// Add two points_ component-wise.
inline Point operator +( const Point& a, const Point& b )
{
return Point( a.x + b.x, a.y + b.y );
}
/// Subtract two points_ component-wise.
inline Point operator -( const Point& a, const Point& b )
{
return Point( a.x - b.x, a.y - b.y );
}
/// Multiply point by scalar
inline Point operator *( double s, const Point& a )
{
return Point( s * a.x, s * a.y );
}
inline bool operator ==( const Point& a, const Point& b )
{
return a.x == b.x && a.y == b.y;
}
inline bool operator !=( const Point& a, const Point& b )
{
return !(a.x == b.x) && !(a.y == b.y);
}
/// Peform the dot product on two vectors.
inline double Dot( const Point& a, const Point& b )
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross( const Point& a, const Point& b )
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a point and a scalar. In 2D this produces
/// a point.
inline Point Cross( const Point& a, double s )
{
return Point( s * a.y, -s * a.x );
}
/// Perform the cross product on a scalar and a point. In 2D this produces
/// a point.
inline Point Cross( const double s, const Point& a )
{
return Point( -s * a.y, s * a.x );
}
inline Point* Triangle::GetPoint( const int& index )
{
return points_[index];
}
inline Triangle* Triangle::GetNeighbor( const int& index )
{
return neighbors_[index];
}
inline bool Triangle::Contains( Point* p )
{
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains( const Edge& e )
{
return Contains( e.p ) && Contains( e.q );
}
inline bool Triangle::Contains( Point* p, Point* q )
{
return Contains( p ) && Contains( q );
}
inline bool Triangle::IsInterior()
{
return interior_;
}
inline void Triangle::IsInterior( bool b )
{
interior_ = b;
}
}
#endif

View File

@ -0,0 +1,133 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef UTILS_H
#define UTILS_H
// Otherwise #defines like M_PI are undeclared under Visual Studio
#define _USE_MATH_DEFINES
#include <exception>
#include <math.h>
namespace p2t {
const double PI_3div4 = 3 * M_PI / 4;
const double PI_div2 = 1.57079632679489661923;
const double EPSILON = 1e-12;
enum Orientation {
CW, CCW, COLLINEAR
};
/**
* Forumla to calculate signed area<br>
* Positive if CCW<br>
* Negative if CW<br>
* 0 if collinear<br>
* <pre>
* A[P1,P2,P3] = (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y1 - y3*x1)
* = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3)
* </pre>
*/
Orientation Orient2d( Point& pa, Point& pb, Point& pc )
{
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
double detright = (pa.y - pc.y) * (pb.x - pc.x);
double val = detleft - detright;
if( val > -EPSILON && val < EPSILON )
{
return COLLINEAR;
}
else if( val > 0 )
{
return CCW;
}
return CW;
}
/*
* bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
* {
* double pdx = pd.x;
* double pdy = pd.y;
* double adx = pa.x - pdx;
* double ady = pa.y - pdy;
* double bdx = pb.x - pdx;
* double bdy = pb.y - pdy;
*
* double adxbdy = adx * bdy;
* double bdxady = bdx * ady;
* double oabd = adxbdy - bdxady;
*
* if (oabd <= EPSILON) {
* return false;
* }
*
* double cdx = pc.x - pdx;
* double cdy = pc.y - pdy;
*
* double cdxady = cdx * ady;
* double adxcdy = adx * cdy;
* double ocad = cdxady - adxcdy;
*
* if (ocad <= EPSILON) {
* return false;
* }
*
* return true;
* }
*
*/
bool InScanArea( Point& pa, Point& pb, Point& pc, Point& pd )
{
double oadb = (pa.x - pb.x) * (pd.y - pb.y) - (pd.x - pb.x) * (pa.y - pb.y);
if( oadb >= -EPSILON )
{
return false;
}
double oadc = (pa.x - pc.x) * (pd.y - pc.y) - (pd.x - pc.x) * (pa.y - pc.y);
if( oadc <= EPSILON )
{
return false;
}
return true;
}
}
#endif

View File

@ -0,0 +1,39 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef POLY2TRI_H
#define POLY2TRI_H
#include "common/shapes.h"
#include "sweep/cdt.h"
#endif

View File

@ -0,0 +1,109 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "advancing_front.h"
namespace p2t {
AdvancingFront::AdvancingFront(Node& head, Node& tail)
{
head_ = &head;
tail_ = &tail;
search_node_ = &head;
}
Node* AdvancingFront::LocateNode(const double& x)
{
Node* node = search_node_;
if (x < node->value) {
while ((node = node->prev) != NULL) {
if (x >= node->value) {
search_node_ = node;
return node;
}
}
} else {
while ((node = node->next) != NULL) {
if (x < node->value) {
search_node_ = node->prev;
return node->prev;
}
}
}
return NULL;
}
Node* AdvancingFront::FindSearchNode(const double& x)
{
(void)x; // suppress compiler warnings "unused parameter 'x'"
// TODO: implement BST index
return search_node_;
}
Node* AdvancingFront::LocatePoint(const Point* point)
{
const double px = point->x;
Node* node = FindSearchNode(px);
const double nx = node->point->x;
if (px == nx) {
if (point != node->point) {
// We might have two nodes with same x value for a short time
if (point == node->prev->point) {
node = node->prev;
} else if (point == node->next->point) {
node = node->next;
} else {
assert(0);
}
}
} else if (px < nx) {
while ((node = node->prev) != NULL) {
if (point == node->point) {
break;
}
}
} else {
while ((node = node->next) != NULL) {
if (point == node->point)
break;
}
}
if(node) search_node_ = node;
return node;
}
AdvancingFront::~AdvancingFront()
{
}
}

View File

@ -0,0 +1,118 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ADVANCED_FRONT_H
#define ADVANCED_FRONT_H
#include "../common/shapes.h"
namespace p2t {
struct Node;
// Advancing front node
struct Node {
Point* point;
Triangle* triangle;
Node* next;
Node* prev;
double value;
Node(Point& p) : point(&p), triangle(NULL), next(NULL), prev(NULL), value(p.x)
{
}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), next(NULL), prev(NULL), value(p.x)
{
}
};
// Advancing front
class AdvancingFront {
public:
AdvancingFront(Node& head, Node& tail);
// Destructor
~AdvancingFront();
Node* head();
void set_head(Node* node);
Node* tail();
void set_tail(Node* node);
Node* search();
void set_search(Node* node);
/// Locate insertion point along advancing front
Node* LocateNode(const double& x);
Node* LocatePoint(const Point* point);
private:
Node* head_, *tail_, *search_node_;
Node* FindSearchNode(const double& x);
};
inline Node* AdvancingFront::head()
{
return head_;
}
inline void AdvancingFront::set_head(Node* node)
{
head_ = node;
}
inline Node* AdvancingFront::tail()
{
return tail_;
}
inline void AdvancingFront::set_tail(Node* node)
{
tail_ = node;
}
inline Node* AdvancingFront::search()
{
return search_node_;
}
inline void AdvancingFront::set_search(Node* node)
{
search_node_ = node;
}
}
#endif

View File

@ -0,0 +1,72 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cdt.h"
namespace p2t {
CDT::CDT(std::vector<Point*> polyline)
{
sweep_context_ = new SweepContext(polyline);
sweep_ = new Sweep;
}
void CDT::AddHole(std::vector<Point*> polyline)
{
sweep_context_->AddHole(polyline);
}
void CDT::AddPoint(Point* point) {
sweep_context_->AddPoint(point);
}
void CDT::Triangulate()
{
sweep_->Triangulate(*sweep_context_);
}
std::vector<p2t::Triangle*> CDT::GetTriangles()
{
return sweep_context_->GetTriangles();
}
std::list<p2t::Triangle*> CDT::GetMap()
{
return sweep_context_->GetMap();
}
CDT::~CDT()
{
delete sweep_context_;
delete sweep_;
}
}

View File

@ -0,0 +1,105 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CDT_H
#define CDT_H
#include "advancing_front.h"
#include "sweep_context.h"
#include "sweep.h"
/**
*
* @author Mason Green <mason.green@gmail.com>
*
*/
namespace p2t {
class CDT
{
public:
/**
* Constructor - add polyline with non repeating points
*
* @param polyline
*/
CDT(std::vector<Point*> polyline);
/**
* Destructor - clean up memory
*/
~CDT();
/**
* Add a hole
*
* @param polyline
*/
void AddHole(std::vector<Point*> polyline);
/**
* Add a steiner point
*
* @param point
*/
void AddPoint(Point* point);
/**
* Triangulate - do this AFTER you've added the polyline, holes, and Steiner points
*/
void Triangulate();
/**
* Get CDT triangles
*/
std::vector<Triangle*> GetTriangles();
/**
* Get triangle map
*/
std::list<Triangle*> GetMap();
private:
/**
* Internals
*/
SweepContext* sweep_context_;
Sweep* sweep_;
};
}
#endif

View File

@ -0,0 +1,817 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdexcept>
#include "sweep.h"
#include "sweep_context.h"
#include "advancing_front.h"
#include "../common/utils.h"
namespace p2t {
// Triangulate simple polygon with holes
void Sweep::Triangulate(SweepContext& tcx)
{
tcx.InitTriangulation();
tcx.CreateAdvancingFront(nodes_);
// Sweep points; build mesh
SweepPoints(tcx);
// Clean up
FinalizationPolygon(tcx);
}
void Sweep::SweepPoints(SweepContext& tcx)
{
for (int i = 1; i < tcx.point_count(); i++) {
Point& point = *tcx.GetPoint(i);
Node* node = &PointEvent(tcx, point);
for (unsigned int i = 0; i < point.edge_list.size(); i++) {
EdgeEvent(tcx, point.edge_list[i], node);
}
}
}
void Sweep::FinalizationPolygon(SweepContext& tcx)
{
// Get an Internal triangle to start with
Triangle* t = tcx.front()->head()->next->triangle;
Point* p = tcx.front()->head()->next->point;
while (!t->GetConstrainedEdgeCW(*p)) {
t = t->NeighborCCW(*p);
}
// Collect interior triangles constrained by edges
tcx.MeshClean(*t);
}
Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
{
Node& node = tcx.LocateNode(point);
Node& new_node = NewFrontTriangle(tcx, point, node);
// Only need to check +epsilon since point never have smaller
// x value than node due to how we fetch nodes from the front
if (point.x <= node.point->x + EPSILON) {
Fill(tcx, node);
}
//tcx.AddNode(new_node);
FillAdvancingFront(tcx, new_node);
return new_node;
}
void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
{
tcx.edge_event.constrained_edge = edge;
tcx.edge_event.right = (edge->p->x > edge->q->x);
if (IsEdgeSideOfTriangle(*node->triangle, *edge->p, *edge->q)) {
return;
}
// For now we will do all needed filling
// TODO: integrate with flip process might give some better performance
// but for now this avoid the issue with cases that needs both flips and fills
FillEdgeEvent(tcx, edge, node);
EdgeEvent(tcx, *edge->p, *edge->q, node->triangle, *edge->q);
}
void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point)
{
if (IsEdgeSideOfTriangle(*triangle, ep, eq)) {
return;
}
Point* p1 = triangle->PointCCW(point);
Orientation o1 = Orient2d(eq, *p1, ep);
if (o1 == COLLINEAR) {
if( triangle->Contains(&eq, p1)) {
triangle->MarkConstrainedEdge(&eq, p1 );
// We are modifying the constraint maybe it would be better to
// not change the given constraint and just keep a variable for the new constraint
tcx.edge_event.constrained_edge->q = p1;
triangle = &triangle->NeighborAcross(point);
EdgeEvent( tcx, ep, *p1, triangle, *p1 );
} else {
std::runtime_error("EdgeEvent - collinear points not supported");
assert(0);
}
return;
}
Point* p2 = triangle->PointCW(point);
Orientation o2 = Orient2d(eq, *p2, ep);
if (o2 == COLLINEAR) {
if( triangle->Contains(&eq, p2)) {
triangle->MarkConstrainedEdge(&eq, p2 );
// We are modifying the constraint maybe it would be better to
// not change the given constraint and just keep a variable for the new constraint
tcx.edge_event.constrained_edge->q = p2;
triangle = &triangle->NeighborAcross(point);
EdgeEvent( tcx, ep, *p2, triangle, *p2 );
} else {
std::runtime_error("EdgeEvent - collinear points not supported");
assert(0);
}
return;
}
if (o1 == o2) {
// Need to decide if we are rotating CW or CCW to get to a triangle
// that will cross edge
if (o1 == CW) {
triangle = triangle->NeighborCCW(point);
} else{
triangle = triangle->NeighborCW(point);
}
EdgeEvent(tcx, ep, eq, triangle, point);
} else {
// This triangle crosses constraint so lets flippin start!
FlipEdgeEvent(tcx, ep, eq, triangle, point);
}
}
bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq)
{
int index = triangle.EdgeIndex(&ep, &eq);
if (index != -1) {
triangle.MarkConstrainedEdge(index);
Triangle* t = triangle.GetNeighbor(index);
if (t) {
t->MarkConstrainedEdge(&ep, &eq);
}
return true;
}
return false;
}
Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node)
{
Triangle* triangle = new Triangle(point, *node.point, *node.next->point);
triangle->MarkNeighbor(*node.triangle);
tcx.AddToMap(triangle);
Node* new_node = new Node(point);
nodes_.push_back(new_node);
new_node->next = node.next;
new_node->prev = &node;
node.next->prev = new_node;
node.next = new_node;
if (!Legalize(tcx, *triangle)) {
tcx.MapTriangleToNodes(*triangle);
}
return *new_node;
}
void Sweep::Fill(SweepContext& tcx, Node& node)
{
Triangle* triangle = new Triangle(*node.prev->point, *node.point, *node.next->point);
// TODO: should copy the constrained_edge value from neighbor triangles
// for now constrained_edge values are copied during the legalize
triangle->MarkNeighbor(*node.prev->triangle);
triangle->MarkNeighbor(*node.triangle);
tcx.AddToMap(triangle);
// Update the advancing front
node.prev->next = node.next;
node.next->prev = node.prev;
// If it was legalized the triangle has already been mapped
if (!Legalize(tcx, *triangle)) {
tcx.MapTriangleToNodes(*triangle);
}
}
void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n)
{
// Fill right holes
Node* node = n.next;
while (node->next) {
// if HoleAngle exceeds 90 degrees then break.
if (LargeHole_DontFill(node)) break;
Fill(tcx, *node);
node = node->next;
}
// Fill left holes
node = n.prev;
while (node->prev) {
// if HoleAngle exceeds 90 degrees then break.
if (LargeHole_DontFill(node)) break;
Fill(tcx, *node);
node = node->prev;
}
// Fill right basins
if (n.next && n.next->next) {
double angle = BasinAngle(n);
if (angle < PI_3div4) {
FillBasin(tcx, n);
}
}
}
// True if HoleAngle exceeds 90 degrees.
bool Sweep::LargeHole_DontFill(Node* node) {
Node* nextNode = node->next;
Node* prevNode = node->prev;
if (!AngleExceeds90Degrees(node->point, nextNode->point, prevNode->point))
return false;
// Check additional points on front.
Node* next2Node = nextNode->next;
// "..Plus.." because only want angles on same side as point being added.
if ((next2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, next2Node->point, prevNode->point))
return false;
Node* prev2Node = prevNode->prev;
// "..Plus.." because only want angles on same side as point being added.
if ((prev2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, nextNode->point, prev2Node->point))
return false;
return true;
}
bool Sweep::AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb) {
double angle = Angle(*origin, *pa, *pb);
bool exceeds90Degrees = ((angle > PI_div2) || (angle < -PI_div2));
return exceeds90Degrees;
}
bool Sweep::AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb) {
double angle = Angle(*origin, *pa, *pb);
bool exceedsPlus90DegreesOrIsNegative = (angle > PI_div2) || (angle < 0);
return exceedsPlus90DegreesOrIsNegative;
}
double Sweep::Angle(Point& origin, Point& pa, Point& pb) {
/* Complex plane
* ab = cosA +i*sinA
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
* atan2(y,x) computes the principal value of the argument function
* applied to the complex number x+iy
* Where x = ax*bx + ay*by
* y = ax*by - ay*bx
*/
double px = origin.x;
double py = origin.y;
double ax = pa.x- px;
double ay = pa.y - py;
double bx = pb.x - px;
double by = pb.y - py;
double x = ax * by - ay * bx;
double y = ax * bx + ay * by;
double angle = atan2(x, y);
return angle;
}
double Sweep::BasinAngle(Node& node)
{
double ax = node.point->x - node.next->next->point->x;
double ay = node.point->y - node.next->next->point->y;
return atan2(ay, ax);
}
double Sweep::HoleAngle(Node& node)
{
/* Complex plane
* ab = cosA +i*sinA
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
* atan2(y,x) computes the principal value of the argument function
* applied to the complex number x+iy
* Where x = ax*bx + ay*by
* y = ax*by - ay*bx
*/
double ax = node.next->point->x - node.point->x;
double ay = node.next->point->y - node.point->y;
double bx = node.prev->point->x - node.point->x;
double by = node.prev->point->y - node.point->y;
return atan2(ax * by - ay * bx, ax * bx + ay * by);
}
bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
{
// To legalize a triangle we start by finding if any of the three edges
// violate the Delaunay condition
for (int i = 0; i < 3; i++) {
if (t.delaunay_edge[i])
continue;
Triangle* ot = t.GetNeighbor(i);
if (ot) {
Point* p = t.GetPoint(i);
Point* op = ot->OppositePoint(t, *p);
int oi = ot->Index(op);
// If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
// then we should not try to legalize
if (ot->constrained_edge[oi] || ot->delaunay_edge[oi]) {
t.constrained_edge[i] = ot->constrained_edge[oi];
continue;
}
bool inside = Incircle(*p, *t.PointCCW(*p), *t.PointCW(*p), *op);
if (inside) {
// Lets mark this shared edge as Delaunay
t.delaunay_edge[i] = true;
ot->delaunay_edge[oi] = true;
// Lets rotate shared edge one vertex CW to legalize it
RotateTrianglePair(t, *p, *ot, *op);
// We now got one valid Delaunay Edge shared by two triangles
// This gives us 4 new edges to check for Delaunay
// Make sure that triangle to node mapping is done only one time for a specific triangle
bool not_legalized = !Legalize(tcx, t);
if (not_legalized) {
tcx.MapTriangleToNodes(t);
}
not_legalized = !Legalize(tcx, *ot);
if (not_legalized)
tcx.MapTriangleToNodes(*ot);
// Reset the Delaunay edges, since they only are valid Delaunay edges
// until we add a new triangle or point.
// XXX: need to think about this. Can these edges be tried after we
// return to previous recursive level?
t.delaunay_edge[i] = false;
ot->delaunay_edge[oi] = false;
// If triangle have been legalized no need to check the other edges since
// the recursive legalization will handles those so we can end here.
return true;
}
}
}
return false;
}
bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd)
{
double adx = pa.x - pd.x;
double ady = pa.y - pd.y;
double bdx = pb.x - pd.x;
double bdy = pb.y - pd.y;
double adxbdy = adx * bdy;
double bdxady = bdx * ady;
double oabd = adxbdy - bdxady;
if (oabd <= 0)
return false;
double cdx = pc.x - pd.x;
double cdy = pc.y - pd.y;
double cdxady = cdx * ady;
double adxcdy = adx * cdy;
double ocad = cdxady - adxcdy;
if (ocad <= 0)
return false;
double bdxcdy = bdx * cdy;
double cdxbdy = cdx * bdy;
double alift = adx * adx + ady * ady;
double blift = bdx * bdx + bdy * bdy;
double clift = cdx * cdx + cdy * cdy;
double det = alift * (bdxcdy - cdxbdy) + blift * ocad + clift * oabd;
return det > 0;
}
void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op)
{
Triangle* n1, *n2, *n3, *n4;
n1 = t.NeighborCCW(p);
n2 = t.NeighborCW(p);
n3 = ot.NeighborCCW(op);
n4 = ot.NeighborCW(op);
bool ce1, ce2, ce3, ce4;
ce1 = t.GetConstrainedEdgeCCW(p);
ce2 = t.GetConstrainedEdgeCW(p);
ce3 = ot.GetConstrainedEdgeCCW(op);
ce4 = ot.GetConstrainedEdgeCW(op);
bool de1, de2, de3, de4;
de1 = t.GetDelunayEdgeCCW(p);
de2 = t.GetDelunayEdgeCW(p);
de3 = ot.GetDelunayEdgeCCW(op);
de4 = ot.GetDelunayEdgeCW(op);
t.Legalize(p, op);
ot.Legalize(op, p);
// Remap delaunay_edge
ot.SetDelunayEdgeCCW(p, de1);
t.SetDelunayEdgeCW(p, de2);
t.SetDelunayEdgeCCW(op, de3);
ot.SetDelunayEdgeCW(op, de4);
// Remap constrained_edge
ot.SetConstrainedEdgeCCW(p, ce1);
t.SetConstrainedEdgeCW(p, ce2);
t.SetConstrainedEdgeCCW(op, ce3);
ot.SetConstrainedEdgeCW(op, ce4);
// Remap neighbors
// XXX: might optimize the markNeighbor by keeping track of
// what side should be assigned to what neighbor after the
// rotation. Now mark neighbor does lots of testing to find
// the right side.
t.ClearNeighbors();
ot.ClearNeighbors();
if (n1) ot.MarkNeighbor(*n1);
if (n2) t.MarkNeighbor(*n2);
if (n3) t.MarkNeighbor(*n3);
if (n4) ot.MarkNeighbor(*n4);
t.MarkNeighbor(ot);
}
void Sweep::FillBasin(SweepContext& tcx, Node& node)
{
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
tcx.basin.left_node = node.next->next;
} else {
tcx.basin.left_node = node.next;
}
// Find the bottom and right node
tcx.basin.bottom_node = tcx.basin.left_node;
while (tcx.basin.bottom_node->next
&& tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y) {
tcx.basin.bottom_node = tcx.basin.bottom_node->next;
}
if (tcx.basin.bottom_node == tcx.basin.left_node) {
// No valid basin
return;
}
tcx.basin.right_node = tcx.basin.bottom_node;
while (tcx.basin.right_node->next
&& tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y) {
tcx.basin.right_node = tcx.basin.right_node->next;
}
if (tcx.basin.right_node == tcx.basin.bottom_node) {
// No valid basins
return;
}
tcx.basin.width = tcx.basin.right_node->point->x - tcx.basin.left_node->point->x;
tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y;
FillBasinReq(tcx, tcx.basin.bottom_node);
}
void Sweep::FillBasinReq(SweepContext& tcx, Node* node)
{
// if shallow stop filling
if (IsShallow(tcx, *node)) {
return;
}
Fill(tcx, *node);
if (node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node) {
return;
} else if (node->prev == tcx.basin.left_node) {
Orientation o = Orient2d(*node->point, *node->next->point, *node->next->next->point);
if (o == CW) {
return;
}
node = node->next;
} else if (node->next == tcx.basin.right_node) {
Orientation o = Orient2d(*node->point, *node->prev->point, *node->prev->prev->point);
if (o == CCW) {
return;
}
node = node->prev;
} else {
// Continue with the neighbor node with lowest Y value
if (node->prev->point->y < node->next->point->y) {
node = node->prev;
} else {
node = node->next;
}
}
FillBasinReq(tcx, node);
}
bool Sweep::IsShallow(SweepContext& tcx, Node& node)
{
double height;
if (tcx.basin.left_highest) {
height = tcx.basin.left_node->point->y - node.point->y;
} else {
height = tcx.basin.right_node->point->y - node.point->y;
}
// if shallow stop filling
if (tcx.basin.width > height) {
return true;
}
return false;
}
void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
{
if (tcx.edge_event.right) {
FillRightAboveEdgeEvent(tcx, edge, node);
} else {
FillLeftAboveEdgeEvent(tcx, edge, node);
}
}
void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
{
while (node->next->point->x < edge->p->x) {
// Check if next node is below the edge
if (Orient2d(*edge->q, *node->next->point, *edge->p) == CCW) {
FillRightBelowEdgeEvent(tcx, edge, *node);
} else {
node = node->next;
}
}
}
void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
if (node.point->x < edge->p->x) {
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
// Concave
FillRightConcaveEdgeEvent(tcx, edge, node);
} else{
// Convex
FillRightConvexEdgeEvent(tcx, edge, node);
// Retry this one
FillRightBelowEdgeEvent(tcx, edge, node);
}
}
}
void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
Fill(tcx, *node.next);
if (node.next->point != edge->p) {
// Next above or below edge?
if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
// Below
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
// Next is concave
FillRightConcaveEdgeEvent(tcx, edge, node);
} else {
// Next is convex
}
}
}
}
void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
// Next concave or convex?
if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) {
// Concave
FillRightConcaveEdgeEvent(tcx, edge, *node.next);
} else{
// Convex
// Next above or below edge?
if (Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) {
// Below
FillRightConvexEdgeEvent(tcx, edge, *node.next);
} else{
// Above
}
}
}
void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
{
while (node->prev->point->x > edge->p->x) {
// Check if next node is below the edge
if (Orient2d(*edge->q, *node->prev->point, *edge->p) == CW) {
FillLeftBelowEdgeEvent(tcx, edge, *node);
} else {
node = node->prev;
}
}
}
void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
if (node.point->x > edge->p->x) {
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
// Concave
FillLeftConcaveEdgeEvent(tcx, edge, node);
} else {
// Convex
FillLeftConvexEdgeEvent(tcx, edge, node);
// Retry this one
FillLeftBelowEdgeEvent(tcx, edge, node);
}
}
}
void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
// Next concave or convex?
if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
// Concave
FillLeftConcaveEdgeEvent(tcx, edge, *node.prev);
} else{
// Convex
// Next above or below edge?
if (Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) {
// Below
FillLeftConvexEdgeEvent(tcx, edge, *node.prev);
} else{
// Above
}
}
}
void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
Fill(tcx, *node.prev);
if (node.prev->point != edge->p) {
// Next above or below edge?
if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
// Below
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
// Next is concave
FillLeftConcaveEdgeEvent(tcx, edge, node);
} else{
// Next is convex
}
}
}
}
void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p)
{
Triangle& ot = t->NeighborAcross(p);
Point& op = *ot.OppositePoint(*t, p);
if (&ot == NULL) {
// If we want to integrate the fillEdgeEvent do it here
// With current implementation we should never get here
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
assert(0);
}
if (InScanArea(p, *t->PointCCW(p), *t->PointCW(p), op)) {
// Lets rotate shared edge one vertex CW
RotateTrianglePair(*t, p, ot, op);
tcx.MapTriangleToNodes(*t);
tcx.MapTriangleToNodes(ot);
if (p == eq && op == ep) {
if (eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) {
t->MarkConstrainedEdge(&ep, &eq);
ot.MarkConstrainedEdge(&ep, &eq);
Legalize(tcx, *t);
Legalize(tcx, ot);
} else {
// XXX: I think one of the triangles should be legalized here?
}
} else {
Orientation o = Orient2d(eq, op, ep);
t = &NextFlipTriangle(tcx, (int)o, *t, ot, p, op);
FlipEdgeEvent(tcx, ep, eq, t, p);
}
} else {
Point& newP = NextFlipPoint(ep, eq, ot, op);
FlipScanEdgeEvent(tcx, ep, eq, *t, ot, newP);
EdgeEvent(tcx, ep, eq, t, p);
}
}
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op)
{
if (o == CCW) {
// ot is not crossing edge after flip
int edge_index = ot.EdgeIndex(&p, &op);
ot.delaunay_edge[edge_index] = true;
Legalize(tcx, ot);
ot.ClearDelunayEdges();
return t;
}
// t is not crossing edge after flip
int edge_index = t.EdgeIndex(&p, &op);
t.delaunay_edge[edge_index] = true;
Legalize(tcx, t);
t.ClearDelunayEdges();
return ot;
}
Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op)
{
Orientation o2d = Orient2d(eq, op, ep);
if (o2d == CW) {
// Right
return *ot.PointCCW(op);
} else if (o2d == CCW) {
// Left
return *ot.PointCW(op);
}
//throw new RuntimeException("[Unsupported] Opposing point on constrained edge");
assert(0);
// Never executed, due tu assert( 0 ). Just to avoid compil warning
return ep;
}
void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle,
Triangle& t, Point& p)
{
Triangle& ot = t.NeighborAcross(p);
Point& op = *ot.OppositePoint(t, p);
if (&t.NeighborAcross(p) == NULL) {
// If we want to integrate the fillEdgeEvent do it here
// With current implementation we should never get here
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
assert(0);
}
if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) {
// flip with new edge op->eq
FlipEdgeEvent(tcx, eq, op, &ot, op);
// TODO: Actually I just figured out that it should be possible to
// improve this by getting the next ot and op before the the above
// flip and continue the flipScanEdgeEvent here
// set new ot and op here and loop back to inScanArea test
// also need to set a new flip_triangle first
// Turns out at first glance that this is somewhat complicated
// so it will have to wait.
} else{
Point& newP = NextFlipPoint(ep, eq, ot, op);
FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP);
}
}
Sweep::~Sweep() {
// Clean up memory
for( unsigned i = 0; i < nodes_.size(); i++ )
{
delete nodes_[i];
}
}
}

View File

@ -0,0 +1,284 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and
* Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation',
* International Journal of Geographical Information Science
*
* "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com
*/
#ifndef SWEEP_H
#define SWEEP_H
#include <vector>
namespace p2t {
class SweepContext;
struct Node;
struct Point;
struct Edge;
class Triangle;
class Sweep
{
public:
/**
* Triangulate
*
* @param tcx
*/
void Triangulate(SweepContext& tcx);
/**
* Destructor - clean up memory
*/
~Sweep();
private:
/**
* Start sweeping the Y-sorted point set from bottom to top
*
* @param tcx
*/
void SweepPoints(SweepContext& tcx);
/**
* Find closes node to the left of the new point and
* create a new triangle. If needed new holes and basins
* will be filled to.
*
* @param tcx
* @param point
* @return
*/
Node& PointEvent(SweepContext& tcx, Point& point);
/**
*
*
* @param tcx
* @param edge
* @param node
*/
void EdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
/**
* Creates a new front triangle and legalize it
*
* @param tcx
* @param point
* @param node
* @return
*/
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
/**
* Adds a triangle to the advancing front to fill a hole.
* @param tcx
* @param node - middle node, that is the bottom of the hole
*/
void Fill(SweepContext& tcx, Node& node);
/**
* Returns true if triangle was legalized
*/
bool Legalize(SweepContext& tcx, Triangle& t);
/**
* <b>Requirement</b>:<br>
* 1. a,b and c form a triangle.<br>
* 2. a and d is know to be on opposite side of bc<br>
* <pre>
* a
* +
* / \
* / \
* b/ \c
* +-------+
* / d \
* / \
* </pre>
* <b>Fact</b>: d has to be in area B to have a chance to be inside the circle formed by
* a,b and c<br>
* d is outside B if orient2d(a,b,d) or orient2d(c,a,d) is CW<br>
* This preknowledge gives us a way to optimize the incircle test
* @param pa - triangle point, opposite d
* @param pb - triangle point
* @param pc - triangle point
* @param pd - point opposite a
* @return true if d is inside circle, false if on circle edge
*/
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
/**
* Rotates a triangle pair one vertex CW
*<pre>
* n2 n2
* P +-----+ P +-----+
* | t /| |\ t |
* | / | | \ |
* n1| / |n3 n1| \ |n3
* | / | after CW | \ |
* |/ oT | | oT \|
* +-----+ oP +-----+
* n4 n4
* </pre>
*/
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
/**
* Fills holes in the Advancing Front
*
*
* @param tcx
* @param n
*/
void FillAdvancingFront(SweepContext& tcx, Node& n);
// Decision-making about when to Fill hole.
// Contributed by ToolmakerSteve2
bool LargeHole_DontFill(Node* node);
bool AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb);
bool AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb);
double Angle(Point& origin, Point& pa, Point& pb);
/**
*
* @param node - middle node
* @return the angle between 3 front nodes
*/
double HoleAngle(Node& node);
/**
* The basin angle is decided against the horizontal line [1,0]
*/
double BasinAngle(Node& node);
/**
* Fills a basin that has formed on the Advancing Front to the right
* of given node.<br>
* First we decide a left,bottom and right node that forms the
* boundaries of the basin. Then we do a reqursive fill.
*
* @param tcx
* @param node - starting node, this or next node will be left node
*/
void FillBasin(SweepContext& tcx, Node& node);
/**
* Recursive algorithm to fill a Basin with triangles
*
* @param tcx
* @param node - bottom_node
*/
void FillBasinReq(SweepContext& tcx, Node* node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p);
/**
* After a flip we have two triangles and know that only one will still be
* intersecting the edge. So decide which to contiune with and legalize the other
*
* @param tcx
* @param o - should be the result of an orient2d( eq, op, ep )
* @param t - triangle 1
* @param ot - triangle 2
* @param p - a point shared by both triangles
* @param op - another point shared by both triangles
* @return returns the triangle still intersecting the edge
*/
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
/**
* When we need to traverse from one triangle to the next we need
* the point in current triangle that is the opposite point to the next
* triangle.
*
* @param ep
* @param eq
* @param ot
* @param op
* @return
*/
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
/**
* Scan part of the FlipScan algorithm<br>
* When a triangle pair isn't flippable we will scan for the next
* point that is inside the flip triangle scan area. When found
* we generate a new flipEdgeEvent
*
* @param tcx
* @param ep - last point on the edge we are traversing
* @param eq - first point on the edge we are traversing
* @param flipTriangle - the current triangle sharing the point eq with edge
* @param t
* @param p
*/
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FinalizationPolygon(SweepContext& tcx);
std::vector<Node*> nodes_;
};
}
#endif

View File

@ -0,0 +1,216 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "sweep_context.h"
#include <algorithm>
#include "advancing_front.h"
namespace p2t {
SweepContext::SweepContext(std::vector<Point*> polyline) :
front_(0),
head_(0),
tail_(0),
af_head_(0),
af_middle_(0),
af_tail_(0)
{
basin = Basin();
edge_event = EdgeEvent();
points_ = polyline;
InitEdges(points_);
}
void SweepContext::AddHole(std::vector<Point*> polyline)
{
InitEdges(polyline);
for(unsigned int i = 0; i < polyline.size(); i++) {
points_.push_back(polyline[i]);
}
}
void SweepContext::AddPoint(Point* point) {
points_.push_back(point);
}
std::vector<Triangle*> SweepContext::GetTriangles()
{
return triangles_;
}
std::list<Triangle*> SweepContext::GetMap()
{
return map_;
}
void SweepContext::InitTriangulation()
{
double xmax(points_[0]->x), xmin(points_[0]->x);
double ymax(points_[0]->y), ymin(points_[0]->y);
// Calculate bounds.
for (unsigned int i = 0; i < points_.size(); i++) {
Point& p = *points_[i];
if (p.x > xmax)
xmax = p.x;
if (p.x < xmin)
xmin = p.x;
if (p.y > ymax)
ymax = p.y;
if (p.y < ymin)
ymin = p.y;
}
double dx = kAlpha * (xmax - xmin);
double dy = kAlpha * (ymax - ymin);
head_ = new Point(xmax + dx, ymin - dy);
tail_ = new Point(xmin - dx, ymin - dy);
// Sort points along y-axis
std::sort(points_.begin(), points_.end(), cmp);
}
void SweepContext::InitEdges(std::vector<Point*> polyline)
{
int num_points = polyline.size();
for (int i = 0; i < num_points; i++) {
int j = i < num_points - 1 ? i + 1 : 0;
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
}
}
Point* SweepContext::GetPoint(const int& index)
{
return points_[index];
}
void SweepContext::AddToMap(Triangle* triangle)
{
map_.push_back(triangle);
}
Node& SweepContext::LocateNode(Point& point)
{
// TODO implement search tree
return *front_->LocateNode(point.x);
}
void SweepContext::CreateAdvancingFront(std::vector<Node*> nodes)
{
(void) nodes;
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
map_.push_back(triangle);
af_head_ = new Node(*triangle->GetPoint(1), *triangle);
af_middle_ = new Node(*triangle->GetPoint(0), *triangle);
af_tail_ = new Node(*triangle->GetPoint(2));
front_ = new AdvancingFront(*af_head_, *af_tail_);
// TODO: More intuitive if head is middles next and not previous?
// so swap head and tail
af_head_->next = af_middle_;
af_middle_->next = af_tail_;
af_middle_->prev = af_head_;
af_tail_->prev = af_middle_;
}
void SweepContext::RemoveNode(Node* node)
{
delete node;
}
void SweepContext::MapTriangleToNodes(Triangle& t)
{
for (int i = 0; i < 3; i++) {
if (!t.GetNeighbor(i)) {
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
if (n)
n->triangle = &t;
}
}
}
void SweepContext::RemoveFromMap(Triangle* triangle)
{
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle)
{
std::vector<Triangle *> triangles;
triangles.push_back(&triangle);
while(!triangles.empty()){
Triangle *t = triangles.back();
triangles.pop_back();
if (t != NULL && !t->IsInterior()) {
t->IsInterior(true);
triangles_.push_back(t);
for (int i = 0; i < 3; i++) {
if (!t->constrained_edge[i])
triangles.push_back(t->GetNeighbor(i));
}
}
}
}
SweepContext::~SweepContext()
{
// Clean up memory
delete head_;
delete tail_;
delete front_;
delete af_head_;
delete af_middle_;
delete af_tail_;
typedef std::list<Triangle*> type_list;
for(type_list::iterator iter = map_.begin(); iter != map_.end(); ++iter) {
Triangle* ptr = *iter;
delete ptr;
}
for(unsigned int i = 0; i < edge_list.size(); i++) {
delete edge_list[i];
}
}
}

View File

@ -0,0 +1,186 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SWEEP_CONTEXT_H
#define SWEEP_CONTEXT_H
#include <list>
#include <vector>
#include <cstddef>
namespace p2t {
// Inital triangle factor, seed triangle will extend 30% of
// PointSet width to both left and right.
const double kAlpha = 0.3;
struct Point;
class Triangle;
struct Node;
struct Edge;
class AdvancingFront;
class SweepContext {
public:
/// Constructor
SweepContext(std::vector<Point*> polyline);
/// Destructor
~SweepContext();
void set_head(Point* p1);
Point* head();
void set_tail(Point* p1);
Point* tail();
int point_count();
Node& LocateNode(Point& point);
void RemoveNode(Node* node);
void CreateAdvancingFront(std::vector<Node*> nodes);
/// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
void AddToMap(Triangle* triangle);
Point* GetPoint(const int& index);
Point* GetPoints();
void RemoveFromMap(Triangle* triangle);
void AddHole(std::vector<Point*> polyline);
void AddPoint(Point* point);
AdvancingFront* front();
void MeshClean(Triangle& triangle);
std::vector<Triangle*> GetTriangles();
std::list<Triangle*> GetMap();
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL), width(0.0), left_highest(false)
{
}
void Clear()
{
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
};
struct EdgeEvent {
Edge* constrained_edge;
bool right;
EdgeEvent() : constrained_edge(NULL), right(false)
{
}
};
Basin basin;
EdgeEvent edge_event;
private:
friend class Sweep;
std::vector<Triangle*> triangles_;
std::list<Triangle*> map_;
std::vector<Point*> points_;
// Advancing front
AdvancingFront* front_;
// head point used with advancing front
Point* head_;
// tail point used with advancing front
Point* tail_;
Node *af_head_, *af_middle_, *af_tail_;
void InitTriangulation();
void InitEdges(std::vector<Point*> polyline);
};
inline AdvancingFront* SweepContext::front()
{
return front_;
}
inline int SweepContext::point_count()
{
return points_.size();
}
inline void SweepContext::set_head(Point* p1)
{
head_ = p1;
}
inline Point* SweepContext::head()
{
return head_;
}
inline void SweepContext::set_tail(Point* p1)
{
tail_ = p1;
}
inline Point* SweepContext::tail()
{
return tail_;
}
}
#endif

89
polygon/polygons_defs.h Normal file
View File

@ -0,0 +1,89 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012-2014 KiCad Developers, see CHANGELOG.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* file polygons_defs.h
* definitions to use boost::polygon in KiCad.
*/
#ifndef _POLYGONS_DEFS_H_
#define _POLYGONS_DEFS_H_
#include <boost/polygon/polygon.hpp>
// Define some types used here from boost::polygon
namespace bpl = boost::polygon; // bpl = boost polygon library
using namespace bpl::operators; // +, -, =, ...
// Definitions needed by boost::polygon
typedef int coordinate_type;
/**
* KI_POLYGON defines a single polygon ( boost::polygon_data type.
* When holes are created in a KPolygon, they are
* linked to main outline by overlapping segments,
* so there is always one polygon and one list of corners
* coordinates are int
*/
typedef bpl::polygon_data<int> KI_POLYGON;
/**
* KI_POLYGON_SET defines a set of single KI_POLYGON.
* A KI_POLYGON_SET is used to store a set of polygons
* when performing operations between 2 polygons
* or 2 sets of polygons
* The result of operations like and, xor... between 2 polygons
* is always stored in a KI_POLYGON_SET, because these operations
* can create many polygons
*/
typedef std::vector<KI_POLYGON> KI_POLYGON_SET;
/**
* KI_POLY_POINT defines a point for boost::polygon.
* KI_POLY_POINT store x and y coordinates (int)
*/
typedef bpl::point_data<int> KI_POLY_POINT;
/**
* KI_POLYGON_WITH_HOLES defines a single polygon with holes
* When holes are created in a KI_POLYGON_WITH_HOLES, they are
* stored as separate single polygons,
* KI_POLYGON_WITH_HOLES store always one polygon for the external outline
* and one list of polygons (holes) which can be empty
*/
typedef bpl::polygon_with_holes_data<int> KI_POLYGON_WITH_HOLES;
/**
* KI_POLYGON_WITH_HOLES_SET defines a set of KI_POLYGON_WITH_HOLES.
* A KI_POLYGON_WITH_HOLES_SET is used to store a set of polygons with holes
* when performing operations between 2 polygons
* or 2 sets of polygons with holes
* The result of operations like and, xor... between 2 polygons with holes
* is always stored in a KI_POLYGON_WITH_HOLES_SET, because these operations
* can create many separate polygons with holespolygons
*/
typedef std::vector<KI_POLYGON_WITH_HOLES> KI_POLYGON_WITH_HOLES_SET;
#endif // #ifndef _POLYGONS_DEFS_H_