Merged Tom's branch
This commit is contained in:
commit
dcb5d8f25c
|
@ -54,8 +54,8 @@ GAL::GAL() :
|
|||
|
||||
// Initialize the cursor shape
|
||||
SetCursorColor( COLOR4D( 1.0, 1.0, 1.0, 1.0 ) );
|
||||
SetCursorSize( 15 );
|
||||
SetCursorEnabled( true );
|
||||
SetCursorSize( 80 );
|
||||
SetCursorEnabled( false );
|
||||
|
||||
strokeFont.LoadNewStrokeFont( newstroke_font, newstroke_font_bufsize );
|
||||
}
|
||||
|
|
|
@ -82,7 +82,7 @@ OPENGL_GAL::OPENGL_GAL( wxWindow* aParent, wxEvtHandler* aMouseListener,
|
|||
|
||||
SetSize( aParent->GetSize() );
|
||||
screenSize = VECTOR2D( aParent->GetSize() );
|
||||
initCursor( 20 );
|
||||
initCursor( 80 );
|
||||
|
||||
// Grid color settings are different in Cairo and OpenGL
|
||||
SetGridColor( COLOR4D( 0.8, 0.8, 0.8, 0.1 ) );
|
||||
|
|
|
@ -439,7 +439,7 @@ SHAPE_LINE_CHAIN& SHAPE_LINE_CHAIN::Simplify()
|
|||
const VECTOR2I SHAPE_LINE_CHAIN::NearestPoint(const VECTOR2I& aP) const
|
||||
{
|
||||
int min_d = INT_MAX;
|
||||
int nearest;
|
||||
int nearest = 0;
|
||||
for ( int i = 0; i < SegmentCount() ; i++ )
|
||||
{
|
||||
int d = CSegment(i).Distance(aP);
|
||||
|
|
|
@ -27,8 +27,8 @@
|
|||
* @brief Simple profiling functions for measuring code execution time.
|
||||
*/
|
||||
|
||||
#ifndef __PROFILE_H
|
||||
#define __PROFILE_H
|
||||
#ifndef __TPROFILE_H
|
||||
#define __TPROFILE_H
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <stdint.h>
|
||||
|
@ -96,7 +96,6 @@ static inline uint64_t get_tics()
|
|||
gettimeofday( &tv, NULL );
|
||||
|
||||
return (uint64_t) tv.tv_sec * 1000000ULL + (uint64_t) tv.tv_usec;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
@ -144,3 +143,5 @@ static inline void prof_end( prof_counter* cnt )
|
|||
else
|
||||
cnt->value = get_tics() - cnt->value;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -452,6 +452,14 @@ void VIEW::ChangeLayerDepth( int aLayer, int aDepth )
|
|||
m_layers[aLayer].items->Query( r, visitor );
|
||||
}
|
||||
|
||||
int VIEW::GetTopLayer( ) const
|
||||
{
|
||||
if( m_topLayers.size() == 0 )
|
||||
return 0;
|
||||
|
||||
return *m_topLayers.begin();
|
||||
}
|
||||
|
||||
|
||||
void VIEW::SetTopLayer( int aLayer, bool aEnabled )
|
||||
{
|
||||
|
|
|
@ -60,11 +60,24 @@ WX_VIEW_CONTROLS::WX_VIEW_CONTROLS( VIEW* aView, wxWindow* aParentPanel ) :
|
|||
}
|
||||
|
||||
|
||||
void VIEW_CONTROLS::ShowCursor( bool aEnabled )
|
||||
{
|
||||
m_view->GetGAL()->SetCursorEnabled( aEnabled );
|
||||
}
|
||||
|
||||
|
||||
void WX_VIEW_CONTROLS::onMotion( wxMouseEvent& aEvent )
|
||||
{
|
||||
m_mousePosition.x = aEvent.GetX();
|
||||
m_mousePosition.y = aEvent.GetY();
|
||||
|
||||
if( m_forceCursorPosition )
|
||||
m_cursorPosition = m_view->ToScreen( m_forcedPosition );
|
||||
else if( m_snappingEnabled )
|
||||
m_cursorPosition = m_view->GetGAL()->GetGridPoint( m_mousePosition );
|
||||
else
|
||||
m_cursorPosition = m_mousePosition;
|
||||
|
||||
bool isAutoPanning = false;
|
||||
|
||||
if( m_autoPanEnabled )
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -268,6 +268,12 @@ class SEG {
|
|||
return (a - b).EuclideanNorm();
|
||||
}
|
||||
|
||||
ecoord SquaredLength() const
|
||||
{
|
||||
return (a - b).SquaredEuclideanNorm();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Function Index()
|
||||
*
|
||||
|
@ -301,18 +307,7 @@ inline VECTOR2I SEG::LineProject( const VECTOR2I& aP ) const
|
|||
{
|
||||
// fixme: numerical errors for large integers
|
||||
assert(false);
|
||||
/*const VECTOR2I d = aB - aA;
|
||||
ecoord det = d.Dot(d);
|
||||
ecoord dxdy = (ecoord) d.x * d.y;
|
||||
|
||||
ecoord qx =
|
||||
( (extended_type) aA.x * d.y * d.y + (extended_type) d.x * d.x * x - dxdy *
|
||||
(aA.y - y) ) / det;
|
||||
extended_type qy =
|
||||
( (extended_type) aA.y * d.x * d.x + (extended_type) d.y * d.y * y - dxdy *
|
||||
(aA.x - x) ) / det;
|
||||
|
||||
return VECTOR2<T> ( (T) qx, (T) qy );*/
|
||||
return VECTOR2I(0, 0);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -77,7 +77,10 @@ class SHAPE {
|
|||
* Returns a dynamically allocated copy of the shape
|
||||
* @retval copy of the shape
|
||||
*/
|
||||
virtual SHAPE* Clone() const { assert(false); };
|
||||
virtual SHAPE* Clone() const {
|
||||
assert(false);
|
||||
return NULL;
|
||||
};
|
||||
|
||||
/**
|
||||
* Function Collide()
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
* This program source code file is part of KiCad, a free EDA CAD application.
|
||||
*
|
||||
* Copyright (C) 2013 CERN
|
||||
* @author Jacobo Aragunde Pérez
|
||||
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
|
@ -25,266 +26,328 @@
|
|||
#ifndef __SHAPE_INDEX_H
|
||||
#define __SHAPE_INDEX_H
|
||||
|
||||
#include <boost/unordered_map.hpp>
|
||||
#include <vector>
|
||||
#include <geometry/shape.h>
|
||||
#include <geometry/rtree.h>
|
||||
|
||||
template <class T> const SHAPE *defaultShapeFunctor( const T aItem )
|
||||
|
||||
/**
|
||||
* shapeFunctor template function
|
||||
*
|
||||
* It is used by SHAPE_INDEX to get a SHAPE* from another type.
|
||||
* By default relies on T::GetShape() method, should be specialized if the T object
|
||||
* doesn't allow that method.
|
||||
* @param object generic T object
|
||||
* @return a SHAPE* object equivalent to object.
|
||||
*/
|
||||
template <class T>
|
||||
static const SHAPE* shapeFunctor( T aItem )
|
||||
{
|
||||
return aItem->GetShape();
|
||||
}
|
||||
|
||||
template <class T, const SHAPE *(ShapeFunctor)(const T) = defaultShapeFunctor<T> >
|
||||
|
||||
class SHAPE_INDEX_LIST {
|
||||
|
||||
struct ShapeEntry {
|
||||
ShapeEntry(T aParent)
|
||||
/**
|
||||
* shapeFunctor template function: specialization for T = SHAPE*
|
||||
*/
|
||||
template<>
|
||||
const SHAPE* shapeFunctor( SHAPE* aItem )
|
||||
{
|
||||
shape = ShapeFunctor(aParent);
|
||||
bbox = shape->BBox(0);
|
||||
parent = aParent;
|
||||
return aItem;
|
||||
}
|
||||
|
||||
~ShapeEntry()
|
||||
/**
|
||||
* boundingBox template method
|
||||
*
|
||||
* It is used by SHAPE_INDEX to get the bounding box of a generic T object.
|
||||
* By default relies on T::BBox() method, should be specialized if the T object
|
||||
* doesn't allow that method.
|
||||
* @param object generic T object
|
||||
* @return a BOX2I object containing the bounding box of the T object.
|
||||
*/
|
||||
template <class T>
|
||||
BOX2I boundingBox( T object )
|
||||
{
|
||||
|
||||
return shapeFunctor(object)->BBox();
|
||||
}
|
||||
|
||||
T parent;
|
||||
const SHAPE *shape;
|
||||
BOX2I bbox;
|
||||
};
|
||||
/**
|
||||
* acceptVisitor template method
|
||||
*
|
||||
* It is used by SHAPE_INDEX to implement Accept().
|
||||
* By default relies on V::operation() redefinition, should be specialized if V class
|
||||
* doesn't have its () operation defined to accept T objects.
|
||||
* @param object generic T object
|
||||
* @param visitor V visitor object
|
||||
*/
|
||||
template <class T, class V>
|
||||
void acceptVisitor( T object, V visitor )
|
||||
{
|
||||
visitor(object);
|
||||
}
|
||||
|
||||
typedef std::vector<ShapeEntry> ShapeVec;
|
||||
typedef typename std::vector<ShapeEntry>::iterator ShapeVecIter;
|
||||
/**
|
||||
* collide template method
|
||||
*
|
||||
* It is used by SHAPE_INDEX to implement Query().
|
||||
* By default relies on T::Collide(U) method, should be specialized if the T object
|
||||
* doesn't allow that method.
|
||||
* @param object generic T object
|
||||
* @param anotherObject generic U object
|
||||
* @param minDistance minimum collision distance
|
||||
* @return if object and anotherObject collide
|
||||
*/
|
||||
template <class T, class U>
|
||||
bool collide( T object, U anotherObject, int minDistance )
|
||||
{
|
||||
return shapeFunctor(object)->Collide( anotherObject, minDistance );
|
||||
}
|
||||
|
||||
template<class T, class V>
|
||||
bool queryCallback(T shape, void* context) {
|
||||
V* visitor = (V*) context;
|
||||
acceptVisitor<T,V>(shape, *visitor);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class T = SHAPE*>
|
||||
class SHAPE_INDEX {
|
||||
|
||||
public:
|
||||
|
||||
// "Normal" iterator interface, for STL algorithms.
|
||||
class iterator {
|
||||
SHAPE_INDEX();
|
||||
|
||||
~SHAPE_INDEX();
|
||||
|
||||
/**
|
||||
* Function Add()
|
||||
*
|
||||
* Adds a SHAPE to the index.
|
||||
* @param shape the new SHAPE
|
||||
*/
|
||||
void Add( T shape );
|
||||
|
||||
/**
|
||||
* Function Remove()
|
||||
*
|
||||
* Removes a SHAPE to the index.
|
||||
* @param shape the new SHAPE
|
||||
*/
|
||||
void Remove( T shape );
|
||||
|
||||
/**
|
||||
* Function RemoveAll()
|
||||
*
|
||||
* Removes all the contents of the index.
|
||||
*/
|
||||
void RemoveAll();
|
||||
|
||||
/**
|
||||
* Function Accept()
|
||||
*
|
||||
* Accepts a visitor for every SHAPE object contained in this INDEX.
|
||||
* @param visitor Visitor object to be run
|
||||
*/
|
||||
template<class V>
|
||||
void Accept( V visitor )
|
||||
{
|
||||
SHAPE_INDEX::Iterator iter = this->Begin();
|
||||
while(!iter.IsNull()) {
|
||||
T shape = *iter;
|
||||
acceptVisitor(shape, visitor);
|
||||
iter++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Function Reindex()
|
||||
*
|
||||
* Rebuilds the index. This should be used if the geometry of the objects
|
||||
* contained by the index has changed.
|
||||
*/
|
||||
void Reindex();
|
||||
|
||||
/**
|
||||
* Function Query()
|
||||
*
|
||||
* Runs a callback on every SHAPE object contained in the bounding box of (shape).
|
||||
* @param shape shape to search against
|
||||
* @param minDistance distance threshold
|
||||
* @param visitor object to be invoked on every object contained in the search area.
|
||||
*/
|
||||
|
||||
template<class V>
|
||||
int Query( const SHAPE *shape, int minDistance, V& visitor, bool aExact )
|
||||
{
|
||||
BOX2I box = shape->BBox();
|
||||
box.Inflate(minDistance);
|
||||
|
||||
int min[2] = {box.GetX(), box.GetY()};
|
||||
int max[2] = {box.GetRight(), box.GetBottom()};
|
||||
|
||||
return this->m_tree->Search(min, max, visitor);
|
||||
}
|
||||
|
||||
class Iterator
|
||||
{
|
||||
private:
|
||||
|
||||
typedef typename RTree<T, int, 2, float>::Iterator RTreeIterator;
|
||||
RTreeIterator iterator;
|
||||
|
||||
/**
|
||||
* Function Init()
|
||||
*
|
||||
* Setup the internal tree iterator.
|
||||
* @param tree pointer to a RTREE object
|
||||
*/
|
||||
void Init(RTree<T, int, 2, float>* tree) {
|
||||
tree->GetFirst(iterator);
|
||||
}
|
||||
|
||||
public:
|
||||
iterator() {};
|
||||
|
||||
iterator( ShapeVecIter aCurrent)
|
||||
: m_current(aCurrent) {};
|
||||
|
||||
iterator(const iterator &b) :
|
||||
m_current(b.m_current) {};
|
||||
|
||||
T operator*() const
|
||||
{
|
||||
return (*m_current).parent;
|
||||
/**
|
||||
* Iterator constructor
|
||||
*
|
||||
* Creates an iterator for the index object
|
||||
* @param index SHAPE_INDEX object to iterate
|
||||
*/
|
||||
Iterator(SHAPE_INDEX* index) {
|
||||
Init(index->m_tree);
|
||||
}
|
||||
|
||||
void operator++()
|
||||
{
|
||||
++m_current;
|
||||
/**
|
||||
* Operator * (prefix)
|
||||
*
|
||||
* Returns the next data element.
|
||||
*/
|
||||
T operator*() {
|
||||
return *iterator;
|
||||
}
|
||||
|
||||
iterator& operator++(int dummy)
|
||||
{
|
||||
++m_current;
|
||||
return *this;
|
||||
/**
|
||||
* Operator ++ (prefix)
|
||||
*
|
||||
* Shifts the iterator to the next element.
|
||||
*/
|
||||
bool operator++() {
|
||||
return ++iterator;
|
||||
}
|
||||
|
||||
bool operator ==( const iterator& rhs ) const
|
||||
{
|
||||
return m_current == rhs.m_current;
|
||||
/**
|
||||
* Operator ++ (postfix)
|
||||
*
|
||||
* Shifts the iterator to the next element.
|
||||
*/
|
||||
bool operator++(int) {
|
||||
return ++iterator;
|
||||
}
|
||||
|
||||
bool operator !=( const iterator& rhs ) const
|
||||
{
|
||||
return m_current != rhs.m_current;
|
||||
/**
|
||||
* Function IsNull()
|
||||
*
|
||||
* Checks if the iterator has reached the end.
|
||||
* @return true if it is in an invalid position (data finished)
|
||||
*/
|
||||
bool IsNull() {
|
||||
return iterator.IsNull();
|
||||
}
|
||||
|
||||
const iterator& operator=(const iterator& rhs)
|
||||
{
|
||||
m_current = rhs.m_current;
|
||||
return *this;
|
||||
/**
|
||||
* Function IsNotNull()
|
||||
*
|
||||
* Checks if the iterator has not reached the end.
|
||||
* @return true if it is in an valid position (data not finished)
|
||||
*/
|
||||
bool IsNotNull() {
|
||||
return iterator.IsNotNull();
|
||||
}
|
||||
|
||||
private:
|
||||
ShapeVecIter m_current;
|
||||
/**
|
||||
* Function Next()
|
||||
*
|
||||
* Returns the current element of the iterator and moves to the next
|
||||
* position.
|
||||
* @return SHAPE object pointed by the iterator before moving to the
|
||||
* next position.
|
||||
*/
|
||||
T Next() {
|
||||
T object = *iterator;
|
||||
++iterator;
|
||||
return object;
|
||||
}
|
||||
};
|
||||
|
||||
// "Query" iterator, for iterating over a set of spatially matching shapes.
|
||||
class query_iterator {
|
||||
public:
|
||||
|
||||
query_iterator()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
query_iterator( ShapeVecIter aCurrent, ShapeVecIter aEnd, SHAPE *aShape, int aMinDistance, bool aExact)
|
||||
: m_end(aEnd),
|
||||
m_current(aCurrent),
|
||||
m_shape(aShape),
|
||||
m_minDistance(aMinDistance),
|
||||
m_exact(aExact)
|
||||
{
|
||||
if(aShape)
|
||||
{
|
||||
m_refBBox = aShape->BBox();
|
||||
next();
|
||||
}
|
||||
}
|
||||
|
||||
query_iterator(const query_iterator &b)
|
||||
: m_end(b.m_end),
|
||||
m_current(b.m_current),
|
||||
m_shape(b.m_shape),
|
||||
m_minDistance(b.m_minDistance),
|
||||
m_exact(b.m_exact),
|
||||
m_refBBox(b.m_refBBox)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
|
||||
T operator*() const
|
||||
{
|
||||
return (*m_current).parent;
|
||||
}
|
||||
|
||||
query_iterator& operator++()
|
||||
{
|
||||
++m_current;
|
||||
next();
|
||||
return *this;
|
||||
}
|
||||
|
||||
query_iterator& operator++(int dummy)
|
||||
{
|
||||
++m_current;
|
||||
next();
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator ==( const query_iterator& rhs ) const
|
||||
{
|
||||
return m_current == rhs.m_current;
|
||||
}
|
||||
|
||||
bool operator !=( const query_iterator& rhs ) const
|
||||
{
|
||||
return m_current != rhs.m_current;
|
||||
}
|
||||
|
||||
const query_iterator& operator=(const query_iterator& rhs)
|
||||
{
|
||||
m_end = rhs.m_end;
|
||||
m_current = rhs.m_current;
|
||||
m_shape = rhs.m_shape;
|
||||
m_minDistance = rhs.m_minDistance;
|
||||
m_exact = rhs.m_exact;
|
||||
m_refBBox = rhs.m_refBBox;
|
||||
return *this;
|
||||
}
|
||||
/**
|
||||
* Function Begin()
|
||||
*
|
||||
* Creates an iterator for the current index object
|
||||
* @return iterator
|
||||
*/
|
||||
Iterator Begin();
|
||||
|
||||
private:
|
||||
|
||||
void next()
|
||||
{
|
||||
while(m_current != m_end)
|
||||
{
|
||||
if (m_refBBox.Distance(m_current->bbox) <= m_minDistance)
|
||||
{
|
||||
if(!m_exact || m_current->shape->Collide(m_shape, m_minDistance))
|
||||
return;
|
||||
}
|
||||
++m_current;
|
||||
}
|
||||
}
|
||||
|
||||
ShapeVecIter m_end;
|
||||
ShapeVecIter m_current;
|
||||
BOX2I m_refBBox;
|
||||
bool m_exact;
|
||||
SHAPE *m_shape;
|
||||
int m_minDistance;
|
||||
RTree<T, int, 2, float>* m_tree;
|
||||
};
|
||||
|
||||
void Add(T aItem)
|
||||
{
|
||||
ShapeEntry s (aItem);
|
||||
/*
|
||||
* Class members implementation
|
||||
*/
|
||||
|
||||
m_shapes.push_back(s);
|
||||
template<class T>
|
||||
SHAPE_INDEX<T>::SHAPE_INDEX() {
|
||||
this->m_tree = new RTree<T, int, 2, float>();
|
||||
}
|
||||
|
||||
void Remove(const T aItem)
|
||||
{
|
||||
ShapeVecIter i;
|
||||
|
||||
for(i=m_shapes.begin(); i!=m_shapes.end();++i)
|
||||
{
|
||||
if(i->parent == aItem)
|
||||
break;
|
||||
template<class T>
|
||||
SHAPE_INDEX<T>::~SHAPE_INDEX() {
|
||||
delete this->m_tree;
|
||||
}
|
||||
|
||||
if(i == m_shapes.end())
|
||||
return;
|
||||
|
||||
m_shapes.erase(i);
|
||||
template<class T>
|
||||
void SHAPE_INDEX<T>::Add(T shape) {
|
||||
BOX2I box = boundingBox(shape);
|
||||
int min[2]= {box.GetX(), box.GetY()};
|
||||
int max[2] = {box.GetRight(), box.GetBottom()};
|
||||
this->m_tree->Insert(min, max, shape);
|
||||
}
|
||||
|
||||
int Size() const
|
||||
{
|
||||
return m_shapes.size();
|
||||
template<class T>
|
||||
void SHAPE_INDEX<T>::Remove(T shape) {
|
||||
BOX2I box = boundingBox(shape);
|
||||
int min[2]= {box.GetX(), box.GetY()};
|
||||
int max[2] = {box.GetRight(), box.GetBottom()};
|
||||
this->m_tree->Remove(min, max, shape);
|
||||
}
|
||||
|
||||
template<class Visitor>
|
||||
int Query( const SHAPE *aShape, int aMinDistance, Visitor &v, bool aExact = true) //const
|
||||
{
|
||||
ShapeVecIter i;
|
||||
int n = 0;
|
||||
VECTOR2I::extended_type minDistSq = (VECTOR2I::extended_type) aMinDistance * aMinDistance;
|
||||
|
||||
BOX2I refBBox = aShape->BBox();
|
||||
|
||||
for(i = m_shapes.begin(); i!=m_shapes.end(); ++i)
|
||||
{
|
||||
if (refBBox.SquaredDistance(i->bbox) <= minDistSq)
|
||||
{
|
||||
if(!aExact || i->shape->Collide(aShape, aMinDistance))
|
||||
{
|
||||
n++;
|
||||
if(!v( i->parent ))
|
||||
return n;
|
||||
}
|
||||
}
|
||||
}
|
||||
return n;
|
||||
template<class T>
|
||||
void SHAPE_INDEX<T>::RemoveAll() {
|
||||
this->m_tree->RemoveAll();
|
||||
}
|
||||
|
||||
void Clear()
|
||||
{
|
||||
m_shapes.clear();
|
||||
template<class T>
|
||||
void SHAPE_INDEX<T>::Reindex() {
|
||||
RTree<T, int, 2, float>* newTree;
|
||||
newTree = new RTree<T, int, 2, float>();
|
||||
|
||||
SHAPE_INDEX::Iterator iter = this->Begin();
|
||||
while(!iter.IsNull()) {
|
||||
T shape = *iter;
|
||||
BOX2I box = boundingBox(shape);
|
||||
int min[2]= {box.GetX(), box.GetY()};
|
||||
int max[2] = {box.GetRight(), box.GetBottom()};
|
||||
newTree->Insert(min, max, shape);
|
||||
iter++;
|
||||
}
|
||||
delete this->m_tree;
|
||||
this->m_tree = newTree;
|
||||
}
|
||||
|
||||
query_iterator qbegin( SHAPE *aShape, int aMinDistance, bool aExact )
|
||||
{
|
||||
return query_iterator( m_shapes.begin(), m_shapes.end(), aShape, aMinDistance, aExact);
|
||||
template<class T>
|
||||
typename SHAPE_INDEX<T>::Iterator SHAPE_INDEX<T>::Begin() {
|
||||
return Iterator(this);
|
||||
}
|
||||
|
||||
const query_iterator qend()
|
||||
{
|
||||
return query_iterator( m_shapes.end(), m_shapes.end(), NULL, 0, false );
|
||||
}
|
||||
|
||||
iterator begin()
|
||||
{
|
||||
return iterator( m_shapes.begin() );
|
||||
}
|
||||
|
||||
iterator end()
|
||||
{
|
||||
return iterator( m_shapes.end() );
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
ShapeVec m_shapes;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,290 @@
|
|||
/*
|
||||
* This program source code file is part of KiCad, a free EDA CAD application.
|
||||
*
|
||||
* Copyright (C) 2013 CERN
|
||||
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, you may find one here:
|
||||
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
||||
* or you may search the http://www.gnu.org website for the version 2 license,
|
||||
* or you may write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
||||
*/
|
||||
|
||||
#ifndef __SHAPE_INDEX_LIST_H
|
||||
#define __SHAPE_INDEX_LIST_H
|
||||
|
||||
#include <boost/unordered_map.hpp>
|
||||
|
||||
template <class T> const SHAPE *defaultShapeFunctor( const T aItem )
|
||||
{
|
||||
return aItem->GetShape();
|
||||
}
|
||||
|
||||
template <class T, const SHAPE *(ShapeFunctor)(const T) = defaultShapeFunctor<T> >
|
||||
|
||||
class SHAPE_INDEX_LIST {
|
||||
|
||||
struct ShapeEntry {
|
||||
ShapeEntry(T aParent)
|
||||
{
|
||||
shape = ShapeFunctor(aParent);
|
||||
bbox = shape->BBox(0);
|
||||
parent = aParent;
|
||||
}
|
||||
|
||||
~ShapeEntry()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
T parent;
|
||||
const SHAPE *shape;
|
||||
BOX2I bbox;
|
||||
};
|
||||
|
||||
typedef std::vector<ShapeEntry> ShapeVec;
|
||||
typedef typename std::vector<ShapeEntry>::iterator ShapeVecIter;
|
||||
|
||||
public:
|
||||
|
||||
// "Normal" iterator interface, for STL algorithms.
|
||||
class iterator {
|
||||
|
||||
public:
|
||||
iterator() {};
|
||||
|
||||
iterator( ShapeVecIter aCurrent)
|
||||
: m_current(aCurrent) {};
|
||||
|
||||
iterator(const iterator &b) :
|
||||
m_current(b.m_current) {};
|
||||
|
||||
T operator*() const
|
||||
{
|
||||
return (*m_current).parent;
|
||||
}
|
||||
|
||||
void operator++()
|
||||
{
|
||||
++m_current;
|
||||
}
|
||||
|
||||
iterator& operator++(int dummy)
|
||||
{
|
||||
++m_current;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator ==( const iterator& rhs ) const
|
||||
{
|
||||
return m_current == rhs.m_current;
|
||||
}
|
||||
|
||||
bool operator !=( const iterator& rhs ) const
|
||||
{
|
||||
return m_current != rhs.m_current;
|
||||
}
|
||||
|
||||
const iterator& operator=(const iterator& rhs)
|
||||
{
|
||||
m_current = rhs.m_current;
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
ShapeVecIter m_current;
|
||||
};
|
||||
|
||||
// "Query" iterator, for iterating over a set of spatially matching shapes.
|
||||
class query_iterator {
|
||||
public:
|
||||
|
||||
query_iterator()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
query_iterator( ShapeVecIter aCurrent, ShapeVecIter aEnd, SHAPE *aShape, int aMinDistance, bool aExact)
|
||||
: m_end(aEnd),
|
||||
m_current(aCurrent),
|
||||
m_shape(aShape),
|
||||
m_minDistance(aMinDistance),
|
||||
m_exact(aExact)
|
||||
{
|
||||
if(aShape)
|
||||
{
|
||||
m_refBBox = aShape->BBox();
|
||||
next();
|
||||
}
|
||||
}
|
||||
|
||||
query_iterator(const query_iterator &b)
|
||||
: m_end(b.m_end),
|
||||
m_current(b.m_current),
|
||||
m_shape(b.m_shape),
|
||||
m_minDistance(b.m_minDistance),
|
||||
m_exact(b.m_exact),
|
||||
m_refBBox(b.m_refBBox)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
|
||||
T operator*() const
|
||||
{
|
||||
return (*m_current).parent;
|
||||
}
|
||||
|
||||
query_iterator& operator++()
|
||||
{
|
||||
++m_current;
|
||||
next();
|
||||
return *this;
|
||||
}
|
||||
|
||||
query_iterator& operator++(int dummy)
|
||||
{
|
||||
++m_current;
|
||||
next();
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator ==( const query_iterator& rhs ) const
|
||||
{
|
||||
return m_current == rhs.m_current;
|
||||
}
|
||||
|
||||
bool operator !=( const query_iterator& rhs ) const
|
||||
{
|
||||
return m_current != rhs.m_current;
|
||||
}
|
||||
|
||||
const query_iterator& operator=(const query_iterator& rhs)
|
||||
{
|
||||
m_end = rhs.m_end;
|
||||
m_current = rhs.m_current;
|
||||
m_shape = rhs.m_shape;
|
||||
m_minDistance = rhs.m_minDistance;
|
||||
m_exact = rhs.m_exact;
|
||||
m_refBBox = rhs.m_refBBox;
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void next()
|
||||
{
|
||||
while(m_current != m_end)
|
||||
{
|
||||
if (m_refBBox.Distance(m_current->bbox) <= m_minDistance)
|
||||
{
|
||||
if(!m_exact || m_current->shape->Collide(m_shape, m_minDistance))
|
||||
return;
|
||||
}
|
||||
++m_current;
|
||||
}
|
||||
}
|
||||
|
||||
ShapeVecIter m_end;
|
||||
ShapeVecIter m_current;
|
||||
BOX2I m_refBBox;
|
||||
bool m_exact;
|
||||
SHAPE *m_shape;
|
||||
int m_minDistance;
|
||||
};
|
||||
|
||||
void Add(T aItem)
|
||||
{
|
||||
ShapeEntry s (aItem);
|
||||
|
||||
m_shapes.push_back(s);
|
||||
}
|
||||
|
||||
void Remove(const T aItem)
|
||||
{
|
||||
ShapeVecIter i;
|
||||
|
||||
for(i=m_shapes.begin(); i!=m_shapes.end();++i)
|
||||
{
|
||||
if(i->parent == aItem)
|
||||
break;
|
||||
}
|
||||
|
||||
if(i == m_shapes.end())
|
||||
return;
|
||||
|
||||
m_shapes.erase(i);
|
||||
}
|
||||
|
||||
int Size() const
|
||||
{
|
||||
return m_shapes.size();
|
||||
}
|
||||
|
||||
template<class Visitor>
|
||||
int Query( const SHAPE *aShape, int aMinDistance, Visitor &v, bool aExact = true) //const
|
||||
{
|
||||
ShapeVecIter i;
|
||||
int n = 0;
|
||||
VECTOR2I::extended_type minDistSq = (VECTOR2I::extended_type) aMinDistance * aMinDistance;
|
||||
|
||||
BOX2I refBBox = aShape->BBox();
|
||||
|
||||
for(i = m_shapes.begin(); i!=m_shapes.end(); ++i)
|
||||
{
|
||||
if (refBBox.SquaredDistance(i->bbox) <= minDistSq)
|
||||
{
|
||||
if(!aExact || i->shape->Collide(aShape, aMinDistance))
|
||||
{
|
||||
n++;
|
||||
if(!v( i->parent ))
|
||||
return n;
|
||||
}
|
||||
}
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
void Clear()
|
||||
{
|
||||
m_shapes.clear();
|
||||
}
|
||||
|
||||
query_iterator qbegin( SHAPE *aShape, int aMinDistance, bool aExact )
|
||||
{
|
||||
return query_iterator( m_shapes.begin(), m_shapes.end(), aShape, aMinDistance, aExact);
|
||||
}
|
||||
|
||||
const query_iterator qend()
|
||||
{
|
||||
return query_iterator( m_shapes.end(), m_shapes.end(), NULL, 0, false );
|
||||
}
|
||||
|
||||
iterator begin()
|
||||
{
|
||||
return iterator( m_shapes.begin() );
|
||||
}
|
||||
|
||||
iterator end()
|
||||
{
|
||||
return iterator( m_shapes.end() );
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
ShapeVec m_shapes;
|
||||
};
|
||||
|
||||
#endif
|
|
@ -362,6 +362,8 @@ public:
|
|||
*/
|
||||
void EnableTopLayer( bool aEnable );
|
||||
|
||||
int GetTopLayer() const;
|
||||
|
||||
/**
|
||||
* Function ClearTopLayers()
|
||||
* Removes all layers from the on-the-top set (they are no longer displayed over the rest of
|
||||
|
|
|
@ -46,9 +46,9 @@ class VIEW;
|
|||
class VIEW_CONTROLS
|
||||
{
|
||||
public:
|
||||
VIEW_CONTROLS( VIEW* aView ) : m_view( aView ), m_snappingEnabled( false ),
|
||||
m_grabMouse( false ), m_autoPanEnabled( false ), m_autoPanMargin( 0.1 ),
|
||||
m_autoPanSpeed( 0.15 ) {};
|
||||
VIEW_CONTROLS( VIEW* aView ) : m_view( aView ), m_forceCursorPosition( false ),
|
||||
m_snappingEnabled( false ), m_grabMouse( false ), m_autoPanEnabled( false ),
|
||||
m_autoPanMargin( 0.1 ), m_autoPanSpeed( 0.15 ) {};
|
||||
virtual ~VIEW_CONTROLS() {};
|
||||
|
||||
/**
|
||||
|
@ -121,6 +121,21 @@ public:
|
|||
*/
|
||||
virtual const VECTOR2D GetCursorPosition() const = 0;
|
||||
|
||||
|
||||
/**
|
||||
* Function ForceCursorPosition()
|
||||
* Places the cursor immediately at a given point. Mouse movement is ignored.
|
||||
* @param aEnabled enable forced cursor position
|
||||
* @param aPosition the position
|
||||
*/
|
||||
virtual void ForceCursorPosition( bool aEnabled, const VECTOR2D& aPosition = VECTOR2D(0, 0) )
|
||||
{
|
||||
m_forcedPosition = aPosition;
|
||||
m_forceCursorPosition = aEnabled;
|
||||
}
|
||||
|
||||
virtual void ShowCursor( bool aEnabled );
|
||||
|
||||
protected:
|
||||
/// Pointer to controlled VIEW.
|
||||
VIEW* m_view;
|
||||
|
@ -128,6 +143,15 @@ protected:
|
|||
/// Current mouse position
|
||||
VECTOR2D m_mousePosition;
|
||||
|
||||
/// Current cursor position
|
||||
VECTOR2D m_cursorPosition;
|
||||
|
||||
/// Forced cursor position
|
||||
VECTOR2D m_forcedPosition;
|
||||
|
||||
/// Is the forced cursor position enabled
|
||||
bool m_forceCursorPosition;
|
||||
|
||||
/// Should the cursor snap to grid or move freely
|
||||
bool m_snappingEnabled;
|
||||
|
||||
|
|
|
@ -1690,6 +1690,11 @@ public:
|
|||
*/
|
||||
void UpdateTitle();
|
||||
|
||||
void SetTopLayer( LAYER_NUM aLayer )
|
||||
{
|
||||
setTopLayer( aLayer );
|
||||
}
|
||||
|
||||
|
||||
DECLARE_EVENT_TABLE()
|
||||
};
|
||||
|
|
|
@ -206,8 +206,6 @@ PCB_PAINTER::PCB_PAINTER( GAL* aGal ) :
|
|||
|
||||
bool PCB_PAINTER::Draw( const VIEW_ITEM* aItem, int aLayer )
|
||||
{
|
||||
const BOARD_ITEM* item = static_cast<const BOARD_ITEM*>( aItem );
|
||||
|
||||
// the "cast" applied in here clarifies which overloaded draw() is called
|
||||
switch( item->Type() )
|
||||
{
|
||||
|
@ -284,7 +282,7 @@ void PCB_PAINTER::draw( const TRACK* aTrack, int aLayer )
|
|||
return;
|
||||
|
||||
NETINFO_ITEM* net = ( (BOARD*) aTrack->GetParent() )->FindNet( netNumber );
|
||||
if( net == NULL )
|
||||
if( !net )
|
||||
return;
|
||||
|
||||
std::string netName = std::string( net->GetShortNetname().mb_str() );
|
||||
|
|
|
@ -9,6 +9,12 @@ set(POLYGON_SRCS
|
|||
PolyLine.cpp
|
||||
polygon_test_point_inside.cpp
|
||||
clipper.cpp
|
||||
|
||||
poly2tri/common/shapes.cc
|
||||
poly2tri/sweep/sweep.cc
|
||||
poly2tri/sweep/cdt.cc
|
||||
poly2tri/sweep/advancing_front.cc
|
||||
poly2tri/sweep/sweep_context.cc
|
||||
)
|
||||
|
||||
add_library(polygon STATIC ${POLYGON_SRCS})
|
||||
|
|
|
@ -0,0 +1,367 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include "shapes.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace p2t {
|
||||
|
||||
Triangle::Triangle(Point& a, Point& b, Point& c)
|
||||
{
|
||||
points_[0] = &a; points_[1] = &b; points_[2] = &c;
|
||||
neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL;
|
||||
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
|
||||
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
|
||||
interior_ = false;
|
||||
}
|
||||
|
||||
// Update neighbor pointers
|
||||
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
|
||||
{
|
||||
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
|
||||
neighbors_[0] = t;
|
||||
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
|
||||
neighbors_[1] = t;
|
||||
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
|
||||
neighbors_[2] = t;
|
||||
else
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Exhaustive search to update neighbor pointers
|
||||
void Triangle::MarkNeighbor(Triangle& t)
|
||||
{
|
||||
if (t.Contains(points_[1], points_[2])) {
|
||||
neighbors_[0] = &t;
|
||||
t.MarkNeighbor(points_[1], points_[2], this);
|
||||
} else if (t.Contains(points_[0], points_[2])) {
|
||||
neighbors_[1] = &t;
|
||||
t.MarkNeighbor(points_[0], points_[2], this);
|
||||
} else if (t.Contains(points_[0], points_[1])) {
|
||||
neighbors_[2] = &t;
|
||||
t.MarkNeighbor(points_[0], points_[1], this);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Clears all references to all other triangles and points
|
||||
*/
|
||||
void Triangle::Clear()
|
||||
{
|
||||
Triangle *t;
|
||||
for( int i=0; i<3; i++ )
|
||||
{
|
||||
t = neighbors_[i];
|
||||
if( t != NULL )
|
||||
{
|
||||
t->ClearNeighbor( this );
|
||||
}
|
||||
}
|
||||
ClearNeighbors();
|
||||
points_[0]=points_[1]=points_[2] = NULL;
|
||||
}
|
||||
|
||||
void Triangle::ClearNeighbor(Triangle *triangle )
|
||||
{
|
||||
if( neighbors_[0] == triangle )
|
||||
{
|
||||
neighbors_[0] = NULL;
|
||||
}
|
||||
else if( neighbors_[1] == triangle )
|
||||
{
|
||||
neighbors_[1] = NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
neighbors_[2] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void Triangle::ClearNeighbors()
|
||||
{
|
||||
neighbors_[0] = NULL;
|
||||
neighbors_[1] = NULL;
|
||||
neighbors_[2] = NULL;
|
||||
}
|
||||
|
||||
void Triangle::ClearDelunayEdges()
|
||||
{
|
||||
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
|
||||
}
|
||||
|
||||
Point* Triangle::OppositePoint(Triangle& t, Point& p)
|
||||
{
|
||||
Point *cw = t.PointCW(p);
|
||||
double x = cw->x;
|
||||
double y = cw->y;
|
||||
x = p.x;
|
||||
y = p.y;
|
||||
return PointCW(*cw);
|
||||
}
|
||||
|
||||
// Legalized triangle by rotating clockwise around point(0)
|
||||
void Triangle::Legalize(Point& point)
|
||||
{
|
||||
points_[1] = points_[0];
|
||||
points_[0] = points_[2];
|
||||
points_[2] = &point;
|
||||
}
|
||||
|
||||
// Legalize triagnle by rotating clockwise around oPoint
|
||||
void Triangle::Legalize(Point& opoint, Point& npoint)
|
||||
{
|
||||
if (&opoint == points_[0]) {
|
||||
points_[1] = points_[0];
|
||||
points_[0] = points_[2];
|
||||
points_[2] = &npoint;
|
||||
} else if (&opoint == points_[1]) {
|
||||
points_[2] = points_[1];
|
||||
points_[1] = points_[0];
|
||||
points_[0] = &npoint;
|
||||
} else if (&opoint == points_[2]) {
|
||||
points_[0] = points_[2];
|
||||
points_[2] = points_[1];
|
||||
points_[1] = &npoint;
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
int Triangle::Index(const Point* p)
|
||||
{
|
||||
if (p == points_[0]) {
|
||||
return 0;
|
||||
} else if (p == points_[1]) {
|
||||
return 1;
|
||||
} else if (p == points_[2]) {
|
||||
return 2;
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
|
||||
{
|
||||
if (points_[0] == p1) {
|
||||
if (points_[1] == p2) {
|
||||
return 2;
|
||||
} else if (points_[2] == p2) {
|
||||
return 1;
|
||||
}
|
||||
} else if (points_[1] == p1) {
|
||||
if (points_[2] == p2) {
|
||||
return 0;
|
||||
} else if (points_[0] == p2) {
|
||||
return 2;
|
||||
}
|
||||
} else if (points_[2] == p1) {
|
||||
if (points_[0] == p2) {
|
||||
return 1;
|
||||
} else if (points_[1] == p2) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
void Triangle::MarkConstrainedEdge(const int index)
|
||||
{
|
||||
constrained_edge[index] = true;
|
||||
}
|
||||
|
||||
void Triangle::MarkConstrainedEdge(Edge& edge)
|
||||
{
|
||||
MarkConstrainedEdge(edge.p, edge.q);
|
||||
}
|
||||
|
||||
// Mark edge as constrained
|
||||
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
|
||||
{
|
||||
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
|
||||
constrained_edge[2] = true;
|
||||
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
|
||||
constrained_edge[1] = true;
|
||||
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
|
||||
constrained_edge[0] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// The point counter-clockwise to given point
|
||||
Point* Triangle::PointCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return points_[2];
|
||||
} else if (&point == points_[1]) {
|
||||
return points_[0];
|
||||
} else if (&point == points_[2]) {
|
||||
return points_[1];
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// The point counter-clockwise to given point
|
||||
Point* Triangle::PointCCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return points_[1];
|
||||
} else if (&point == points_[1]) {
|
||||
return points_[2];
|
||||
} else if (&point == points_[2]) {
|
||||
return points_[0];
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// The neighbor clockwise to given point
|
||||
Triangle* Triangle::NeighborCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return neighbors_[1];
|
||||
} else if (&point == points_[1]) {
|
||||
return neighbors_[2];
|
||||
}
|
||||
return neighbors_[0];
|
||||
}
|
||||
|
||||
// The neighbor counter-clockwise to given point
|
||||
Triangle* Triangle::NeighborCCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return neighbors_[2];
|
||||
} else if (&point == points_[1]) {
|
||||
return neighbors_[0];
|
||||
}
|
||||
return neighbors_[1];
|
||||
}
|
||||
|
||||
bool Triangle::GetConstrainedEdgeCCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return constrained_edge[2];
|
||||
} else if (&p == points_[1]) {
|
||||
return constrained_edge[0];
|
||||
}
|
||||
return constrained_edge[1];
|
||||
}
|
||||
|
||||
bool Triangle::GetConstrainedEdgeCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return constrained_edge[1];
|
||||
} else if (&p == points_[1]) {
|
||||
return constrained_edge[2];
|
||||
}
|
||||
return constrained_edge[0];
|
||||
}
|
||||
|
||||
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
constrained_edge[2] = ce;
|
||||
} else if (&p == points_[1]) {
|
||||
constrained_edge[0] = ce;
|
||||
} else {
|
||||
constrained_edge[1] = ce;
|
||||
}
|
||||
}
|
||||
|
||||
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
constrained_edge[1] = ce;
|
||||
} else if (&p == points_[1]) {
|
||||
constrained_edge[2] = ce;
|
||||
} else {
|
||||
constrained_edge[0] = ce;
|
||||
}
|
||||
}
|
||||
|
||||
bool Triangle::GetDelunayEdgeCCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return delaunay_edge[2];
|
||||
} else if (&p == points_[1]) {
|
||||
return delaunay_edge[0];
|
||||
}
|
||||
return delaunay_edge[1];
|
||||
}
|
||||
|
||||
bool Triangle::GetDelunayEdgeCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return delaunay_edge[1];
|
||||
} else if (&p == points_[1]) {
|
||||
return delaunay_edge[2];
|
||||
}
|
||||
return delaunay_edge[0];
|
||||
}
|
||||
|
||||
void Triangle::SetDelunayEdgeCCW(Point& p, bool e)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
delaunay_edge[2] = e;
|
||||
} else if (&p == points_[1]) {
|
||||
delaunay_edge[0] = e;
|
||||
} else {
|
||||
delaunay_edge[1] = e;
|
||||
}
|
||||
}
|
||||
|
||||
void Triangle::SetDelunayEdgeCW(Point& p, bool e)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
delaunay_edge[1] = e;
|
||||
} else if (&p == points_[1]) {
|
||||
delaunay_edge[2] = e;
|
||||
} else {
|
||||
delaunay_edge[0] = e;
|
||||
}
|
||||
}
|
||||
|
||||
// The neighbor across to given point
|
||||
Triangle& Triangle::NeighborAcross(Point& opoint)
|
||||
{
|
||||
if (&opoint == points_[0]) {
|
||||
return *neighbors_[0];
|
||||
} else if (&opoint == points_[1]) {
|
||||
return *neighbors_[1];
|
||||
}
|
||||
return *neighbors_[2];
|
||||
}
|
||||
|
||||
void Triangle::DebugPrint()
|
||||
{
|
||||
using namespace std;
|
||||
cout << points_[0]->x << "," << points_[0]->y << " ";
|
||||
cout << points_[1]->x << "," << points_[1]->y << " ";
|
||||
cout << points_[2]->x << "," << points_[2]->y << endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,325 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
// Include guard
|
||||
#ifndef SHAPES_H
|
||||
#define SHAPES_H
|
||||
|
||||
#include <vector>
|
||||
#include <cstddef>
|
||||
#include <assert.h>
|
||||
#include <cmath>
|
||||
|
||||
namespace p2t {
|
||||
|
||||
struct Edge;
|
||||
|
||||
struct Point {
|
||||
|
||||
double x, y;
|
||||
|
||||
/// Default constructor does nothing (for performance).
|
||||
Point()
|
||||
{
|
||||
x = 0.0;
|
||||
y = 0.0;
|
||||
}
|
||||
|
||||
/// The edges this point constitutes an upper ending point
|
||||
std::vector<Edge*> edge_list;
|
||||
|
||||
/// Construct using coordinates.
|
||||
Point(double x, double y) : x(x), y(y) {}
|
||||
|
||||
/// Set this point to all zeros.
|
||||
void set_zero()
|
||||
{
|
||||
x = 0.0;
|
||||
y = 0.0;
|
||||
}
|
||||
|
||||
/// Set this point to some specified coordinates.
|
||||
void set(double x_, double y_)
|
||||
{
|
||||
x = x_;
|
||||
y = y_;
|
||||
}
|
||||
|
||||
/// Negate this point.
|
||||
Point operator -() const
|
||||
{
|
||||
Point v;
|
||||
v.set(-x, -y);
|
||||
return v;
|
||||
}
|
||||
|
||||
/// Add a point to this point.
|
||||
void operator +=(const Point& v)
|
||||
{
|
||||
x += v.x;
|
||||
y += v.y;
|
||||
}
|
||||
|
||||
/// Subtract a point from this point.
|
||||
void operator -=(const Point& v)
|
||||
{
|
||||
x -= v.x;
|
||||
y -= v.y;
|
||||
}
|
||||
|
||||
/// Multiply this point by a scalar.
|
||||
void operator *=(double a)
|
||||
{
|
||||
x *= a;
|
||||
y *= a;
|
||||
}
|
||||
|
||||
/// Get the length of this point (the norm).
|
||||
double Length() const
|
||||
{
|
||||
return sqrt(x * x + y * y);
|
||||
}
|
||||
|
||||
/// Convert this point into a unit point. Returns the Length.
|
||||
double Normalize()
|
||||
{
|
||||
double len = Length();
|
||||
x /= len;
|
||||
y /= len;
|
||||
return len;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Represents a simple polygon's edge
|
||||
struct Edge {
|
||||
|
||||
Point* p, *q;
|
||||
|
||||
/// Constructor
|
||||
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
|
||||
{
|
||||
if (p1.y > p2.y) {
|
||||
q = &p1;
|
||||
p = &p2;
|
||||
} else if (p1.y == p2.y) {
|
||||
if (p1.x > p2.x) {
|
||||
q = &p1;
|
||||
p = &p2;
|
||||
} else if (p1.x == p2.x) {
|
||||
// Repeat points
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
q->edge_list.push_back(this);
|
||||
}
|
||||
};
|
||||
|
||||
// Triangle-based data structures are know to have better performance than quad-edge structures
|
||||
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
|
||||
// "Triangulations in CGAL"
|
||||
class Triangle {
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
Triangle(Point& a, Point& b, Point& c);
|
||||
|
||||
/// Flags to determine if an edge is a Constrained edge
|
||||
bool constrained_edge[3];
|
||||
/// Flags to determine if an edge is a Delauney edge
|
||||
bool delaunay_edge[3];
|
||||
|
||||
Point* GetPoint(const int& index);
|
||||
Point* PointCW(Point& point);
|
||||
Point* PointCCW(Point& point);
|
||||
Point* OppositePoint(Triangle& t, Point& p);
|
||||
|
||||
Triangle* GetNeighbor(const int& index);
|
||||
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
|
||||
void MarkNeighbor(Triangle& t);
|
||||
|
||||
void MarkConstrainedEdge(const int index);
|
||||
void MarkConstrainedEdge(Edge& edge);
|
||||
void MarkConstrainedEdge(Point* p, Point* q);
|
||||
|
||||
int Index(const Point* p);
|
||||
int EdgeIndex(const Point* p1, const Point* p2);
|
||||
|
||||
Triangle* NeighborCW(Point& point);
|
||||
Triangle* NeighborCCW(Point& point);
|
||||
bool GetConstrainedEdgeCCW(Point& p);
|
||||
bool GetConstrainedEdgeCW(Point& p);
|
||||
void SetConstrainedEdgeCCW(Point& p, bool ce);
|
||||
void SetConstrainedEdgeCW(Point& p, bool ce);
|
||||
bool GetDelunayEdgeCCW(Point& p);
|
||||
bool GetDelunayEdgeCW(Point& p);
|
||||
void SetDelunayEdgeCCW(Point& p, bool e);
|
||||
void SetDelunayEdgeCW(Point& p, bool e);
|
||||
|
||||
bool Contains(Point* p);
|
||||
bool Contains(const Edge& e);
|
||||
bool Contains(Point* p, Point* q);
|
||||
void Legalize(Point& point);
|
||||
void Legalize(Point& opoint, Point& npoint);
|
||||
/**
|
||||
* Clears all references to all other triangles and points
|
||||
*/
|
||||
void Clear();
|
||||
void ClearNeighbor(Triangle *triangle );
|
||||
void ClearNeighbors();
|
||||
void ClearDelunayEdges();
|
||||
|
||||
inline bool IsInterior();
|
||||
inline void IsInterior(bool b);
|
||||
|
||||
Triangle& NeighborAcross(Point& opoint);
|
||||
|
||||
void DebugPrint();
|
||||
|
||||
private:
|
||||
|
||||
/// Triangle points
|
||||
Point* points_[3];
|
||||
/// Neighbor list
|
||||
Triangle* neighbors_[3];
|
||||
|
||||
/// Has this triangle been marked as an interior triangle?
|
||||
bool interior_;
|
||||
};
|
||||
|
||||
inline bool cmp(const Point* a, const Point* b)
|
||||
{
|
||||
if (a->y < b->y) {
|
||||
return true;
|
||||
} else if (a->y == b->y) {
|
||||
// Make sure q is point with greater x value
|
||||
if (a->x < b->x) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Add two points_ component-wise.
|
||||
inline Point operator +(const Point& a, const Point& b)
|
||||
{
|
||||
return Point(a.x + b.x, a.y + b.y);
|
||||
}
|
||||
|
||||
/// Subtract two points_ component-wise.
|
||||
inline Point operator -(const Point& a, const Point& b)
|
||||
{
|
||||
return Point(a.x - b.x, a.y - b.y);
|
||||
}
|
||||
|
||||
/// Multiply point by scalar
|
||||
inline Point operator *(double s, const Point& a)
|
||||
{
|
||||
return Point(s * a.x, s * a.y);
|
||||
}
|
||||
|
||||
inline bool operator ==(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x == b.x && a.y == b.y;
|
||||
}
|
||||
|
||||
inline bool operator !=(const Point& a, const Point& b)
|
||||
{
|
||||
return !(a.x == b.x) && !(a.y == b.y);
|
||||
}
|
||||
|
||||
/// Peform the dot product on two vectors.
|
||||
inline double Dot(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x * b.x + a.y * b.y;
|
||||
}
|
||||
|
||||
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
||||
inline double Cross(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x * b.y - a.y * b.x;
|
||||
}
|
||||
|
||||
/// Perform the cross product on a point and a scalar. In 2D this produces
|
||||
/// a point.
|
||||
inline Point Cross(const Point& a, double s)
|
||||
{
|
||||
return Point(s * a.y, -s * a.x);
|
||||
}
|
||||
|
||||
/// Perform the cross product on a scalar and a point. In 2D this produces
|
||||
/// a point.
|
||||
inline Point Cross(const double s, const Point& a)
|
||||
{
|
||||
return Point(-s * a.y, s * a.x);
|
||||
}
|
||||
|
||||
inline Point* Triangle::GetPoint(const int& index)
|
||||
{
|
||||
return points_[index];
|
||||
}
|
||||
|
||||
inline Triangle* Triangle::GetNeighbor(const int& index)
|
||||
{
|
||||
return neighbors_[index];
|
||||
}
|
||||
|
||||
inline bool Triangle::Contains(Point* p)
|
||||
{
|
||||
return p == points_[0] || p == points_[1] || p == points_[2];
|
||||
}
|
||||
|
||||
inline bool Triangle::Contains(const Edge& e)
|
||||
{
|
||||
return Contains(e.p) && Contains(e.q);
|
||||
}
|
||||
|
||||
inline bool Triangle::Contains(Point* p, Point* q)
|
||||
{
|
||||
return Contains(p) && Contains(q);
|
||||
}
|
||||
|
||||
inline bool Triangle::IsInterior()
|
||||
{
|
||||
return interior_;
|
||||
}
|
||||
|
||||
inline void Triangle::IsInterior(bool b)
|
||||
{
|
||||
interior_ = b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
|
@ -0,0 +1,123 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef UTILS_H
|
||||
#define UTILS_H
|
||||
|
||||
// Otherwise #defines like M_PI are undeclared under Visual Studio
|
||||
#define _USE_MATH_DEFINES
|
||||
|
||||
#include <exception>
|
||||
#include <math.h>
|
||||
|
||||
namespace p2t {
|
||||
|
||||
const double PI_3div4 = 3 * M_PI / 4;
|
||||
const double PI_div2 = 1.57079632679489661923;
|
||||
const double EPSILON = 1e-12;
|
||||
|
||||
enum Orientation { CW, CCW, COLLINEAR };
|
||||
|
||||
/**
|
||||
* Forumla to calculate signed area<br>
|
||||
* Positive if CCW<br>
|
||||
* Negative if CW<br>
|
||||
* 0 if collinear<br>
|
||||
* <pre>
|
||||
* A[P1,P2,P3] = (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y1 - y3*x1)
|
||||
* = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3)
|
||||
* </pre>
|
||||
*/
|
||||
Orientation Orient2d(Point& pa, Point& pb, Point& pc)
|
||||
{
|
||||
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
|
||||
double detright = (pa.y - pc.y) * (pb.x - pc.x);
|
||||
double val = detleft - detright;
|
||||
if (val > -EPSILON && val < EPSILON) {
|
||||
return COLLINEAR;
|
||||
} else if (val > 0) {
|
||||
return CCW;
|
||||
}
|
||||
return CW;
|
||||
}
|
||||
|
||||
/*
|
||||
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
|
||||
{
|
||||
double pdx = pd.x;
|
||||
double pdy = pd.y;
|
||||
double adx = pa.x - pdx;
|
||||
double ady = pa.y - pdy;
|
||||
double bdx = pb.x - pdx;
|
||||
double bdy = pb.y - pdy;
|
||||
|
||||
double adxbdy = adx * bdy;
|
||||
double bdxady = bdx * ady;
|
||||
double oabd = adxbdy - bdxady;
|
||||
|
||||
if (oabd <= EPSILON) {
|
||||
return false;
|
||||
}
|
||||
|
||||
double cdx = pc.x - pdx;
|
||||
double cdy = pc.y - pdy;
|
||||
|
||||
double cdxady = cdx * ady;
|
||||
double adxcdy = adx * cdy;
|
||||
double ocad = cdxady - adxcdy;
|
||||
|
||||
if (ocad <= EPSILON) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
|
||||
{
|
||||
double oadb = (pa.x - pb.x)*(pd.y - pb.y) - (pd.x - pb.x)*(pa.y - pb.y);
|
||||
if (oadb >= -EPSILON) {
|
||||
return false;
|
||||
}
|
||||
|
||||
double oadc = (pa.x - pc.x)*(pd.y - pc.y) - (pd.x - pc.x)*(pa.y - pc.y);
|
||||
if (oadc <= EPSILON) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,39 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef POLY2TRI_H
|
||||
#define POLY2TRI_H
|
||||
|
||||
#include "common/shapes.h"
|
||||
#include "sweep/cdt.h"
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,109 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include "advancing_front.h"
|
||||
|
||||
namespace p2t {
|
||||
|
||||
AdvancingFront::AdvancingFront(Node& head, Node& tail)
|
||||
{
|
||||
head_ = &head;
|
||||
tail_ = &tail;
|
||||
search_node_ = &head;
|
||||
}
|
||||
|
||||
Node* AdvancingFront::LocateNode(const double& x)
|
||||
{
|
||||
Node* node = search_node_;
|
||||
|
||||
if (x < node->value) {
|
||||
while ((node = node->prev) != NULL) {
|
||||
if (x >= node->value) {
|
||||
search_node_ = node;
|
||||
return node;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
while ((node = node->next) != NULL) {
|
||||
if (x < node->value) {
|
||||
search_node_ = node->prev;
|
||||
return node->prev;
|
||||
}
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Node* AdvancingFront::FindSearchNode(const double& x)
|
||||
{
|
||||
(void)x; // suppress compiler warnings "unused parameter 'x'"
|
||||
// TODO: implement BST index
|
||||
return search_node_;
|
||||
}
|
||||
|
||||
Node* AdvancingFront::LocatePoint(const Point* point)
|
||||
{
|
||||
const double px = point->x;
|
||||
Node* node = FindSearchNode(px);
|
||||
const double nx = node->point->x;
|
||||
|
||||
if (px == nx) {
|
||||
if (point != node->point) {
|
||||
// We might have two nodes with same x value for a short time
|
||||
if (point == node->prev->point) {
|
||||
node = node->prev;
|
||||
} else if (point == node->next->point) {
|
||||
node = node->next;
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
} else if (px < nx) {
|
||||
while ((node = node->prev) != NULL) {
|
||||
if (point == node->point) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
while ((node = node->next) != NULL) {
|
||||
if (point == node->point)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(node) search_node_ = node;
|
||||
return node;
|
||||
}
|
||||
|
||||
AdvancingFront::~AdvancingFront()
|
||||
{
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,118 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef ADVANCED_FRONT_H
|
||||
#define ADVANCED_FRONT_H
|
||||
|
||||
#include "../common/shapes.h"
|
||||
|
||||
namespace p2t {
|
||||
|
||||
struct Node;
|
||||
|
||||
// Advancing front node
|
||||
struct Node {
|
||||
Point* point;
|
||||
Triangle* triangle;
|
||||
|
||||
Node* next;
|
||||
Node* prev;
|
||||
|
||||
double value;
|
||||
|
||||
Node(Point& p) : point(&p), triangle(NULL), next(NULL), prev(NULL), value(p.x)
|
||||
{
|
||||
}
|
||||
|
||||
Node(Point& p, Triangle& t) : point(&p), triangle(&t), next(NULL), prev(NULL), value(p.x)
|
||||
{
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Advancing front
|
||||
class AdvancingFront {
|
||||
public:
|
||||
|
||||
AdvancingFront(Node& head, Node& tail);
|
||||
// Destructor
|
||||
~AdvancingFront();
|
||||
|
||||
Node* head();
|
||||
void set_head(Node* node);
|
||||
Node* tail();
|
||||
void set_tail(Node* node);
|
||||
Node* search();
|
||||
void set_search(Node* node);
|
||||
|
||||
/// Locate insertion point along advancing front
|
||||
Node* LocateNode(const double& x);
|
||||
|
||||
Node* LocatePoint(const Point* point);
|
||||
|
||||
private:
|
||||
|
||||
Node* head_, *tail_, *search_node_;
|
||||
|
||||
Node* FindSearchNode(const double& x);
|
||||
};
|
||||
|
||||
inline Node* AdvancingFront::head()
|
||||
{
|
||||
return head_;
|
||||
}
|
||||
inline void AdvancingFront::set_head(Node* node)
|
||||
{
|
||||
head_ = node;
|
||||
}
|
||||
|
||||
inline Node* AdvancingFront::tail()
|
||||
{
|
||||
return tail_;
|
||||
}
|
||||
inline void AdvancingFront::set_tail(Node* node)
|
||||
{
|
||||
tail_ = node;
|
||||
}
|
||||
|
||||
inline Node* AdvancingFront::search()
|
||||
{
|
||||
return search_node_;
|
||||
}
|
||||
|
||||
inline void AdvancingFront::set_search(Node* node)
|
||||
{
|
||||
search_node_ = node;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,72 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include "cdt.h"
|
||||
|
||||
namespace p2t {
|
||||
|
||||
CDT::CDT(std::vector<Point*> polyline)
|
||||
{
|
||||
sweep_context_ = new SweepContext(polyline);
|
||||
sweep_ = new Sweep;
|
||||
}
|
||||
|
||||
void CDT::AddHole(std::vector<Point*> polyline)
|
||||
{
|
||||
sweep_context_->AddHole(polyline);
|
||||
}
|
||||
|
||||
void CDT::AddPoint(Point* point) {
|
||||
sweep_context_->AddPoint(point);
|
||||
}
|
||||
|
||||
void CDT::Triangulate()
|
||||
{
|
||||
sweep_->Triangulate(*sweep_context_);
|
||||
}
|
||||
|
||||
std::vector<p2t::Triangle*> CDT::GetTriangles()
|
||||
{
|
||||
return sweep_context_->GetTriangles();
|
||||
}
|
||||
|
||||
std::list<p2t::Triangle*> CDT::GetMap()
|
||||
{
|
||||
return sweep_context_->GetMap();
|
||||
}
|
||||
|
||||
CDT::~CDT()
|
||||
{
|
||||
delete sweep_context_;
|
||||
delete sweep_;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,105 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef CDT_H
|
||||
#define CDT_H
|
||||
|
||||
#include "advancing_front.h"
|
||||
#include "sweep_context.h"
|
||||
#include "sweep.h"
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Mason Green <mason.green@gmail.com>
|
||||
*
|
||||
*/
|
||||
|
||||
namespace p2t {
|
||||
|
||||
class CDT
|
||||
{
|
||||
public:
|
||||
|
||||
/**
|
||||
* Constructor - add polyline with non repeating points
|
||||
*
|
||||
* @param polyline
|
||||
*/
|
||||
CDT(std::vector<Point*> polyline);
|
||||
|
||||
/**
|
||||
* Destructor - clean up memory
|
||||
*/
|
||||
~CDT();
|
||||
|
||||
/**
|
||||
* Add a hole
|
||||
*
|
||||
* @param polyline
|
||||
*/
|
||||
void AddHole(std::vector<Point*> polyline);
|
||||
|
||||
/**
|
||||
* Add a steiner point
|
||||
*
|
||||
* @param point
|
||||
*/
|
||||
void AddPoint(Point* point);
|
||||
|
||||
/**
|
||||
* Triangulate - do this AFTER you've added the polyline, holes, and Steiner points
|
||||
*/
|
||||
void Triangulate();
|
||||
|
||||
/**
|
||||
* Get CDT triangles
|
||||
*/
|
||||
std::vector<Triangle*> GetTriangles();
|
||||
|
||||
/**
|
||||
* Get triangle map
|
||||
*/
|
||||
std::list<Triangle*> GetMap();
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
* Internals
|
||||
*/
|
||||
|
||||
SweepContext* sweep_context_;
|
||||
Sweep* sweep_;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,813 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include <stdexcept>
|
||||
#include "sweep.h"
|
||||
#include "sweep_context.h"
|
||||
#include "advancing_front.h"
|
||||
#include "../common/utils.h"
|
||||
|
||||
namespace p2t {
|
||||
|
||||
// Triangulate simple polygon with holes
|
||||
void Sweep::Triangulate(SweepContext& tcx)
|
||||
{
|
||||
tcx.InitTriangulation();
|
||||
tcx.CreateAdvancingFront(nodes_);
|
||||
// Sweep points; build mesh
|
||||
SweepPoints(tcx);
|
||||
// Clean up
|
||||
FinalizationPolygon(tcx);
|
||||
}
|
||||
|
||||
void Sweep::SweepPoints(SweepContext& tcx)
|
||||
{
|
||||
for (int i = 1; i < tcx.point_count(); i++) {
|
||||
Point& point = *tcx.GetPoint(i);
|
||||
Node* node = &PointEvent(tcx, point);
|
||||
for (unsigned int i = 0; i < point.edge_list.size(); i++) {
|
||||
EdgeEvent(tcx, point.edge_list[i], node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FinalizationPolygon(SweepContext& tcx)
|
||||
{
|
||||
// Get an Internal triangle to start with
|
||||
Triangle* t = tcx.front()->head()->next->triangle;
|
||||
Point* p = tcx.front()->head()->next->point;
|
||||
while (!t->GetConstrainedEdgeCW(*p)) {
|
||||
t = t->NeighborCCW(*p);
|
||||
}
|
||||
|
||||
// Collect interior triangles constrained by edges
|
||||
tcx.MeshClean(*t);
|
||||
}
|
||||
|
||||
Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
|
||||
{
|
||||
Node& node = tcx.LocateNode(point);
|
||||
Node& new_node = NewFrontTriangle(tcx, point, node);
|
||||
|
||||
// Only need to check +epsilon since point never have smaller
|
||||
// x value than node due to how we fetch nodes from the front
|
||||
if (point.x <= node.point->x + EPSILON) {
|
||||
Fill(tcx, node);
|
||||
}
|
||||
|
||||
//tcx.AddNode(new_node);
|
||||
|
||||
FillAdvancingFront(tcx, new_node);
|
||||
return new_node;
|
||||
}
|
||||
|
||||
void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
|
||||
{
|
||||
tcx.edge_event.constrained_edge = edge;
|
||||
tcx.edge_event.right = (edge->p->x > edge->q->x);
|
||||
|
||||
if (IsEdgeSideOfTriangle(*node->triangle, *edge->p, *edge->q)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// For now we will do all needed filling
|
||||
// TODO: integrate with flip process might give some better performance
|
||||
// but for now this avoid the issue with cases that needs both flips and fills
|
||||
FillEdgeEvent(tcx, edge, node);
|
||||
EdgeEvent(tcx, *edge->p, *edge->q, node->triangle, *edge->q);
|
||||
}
|
||||
|
||||
void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point)
|
||||
{
|
||||
if (IsEdgeSideOfTriangle(*triangle, ep, eq)) {
|
||||
return;
|
||||
}
|
||||
|
||||
Point* p1 = triangle->PointCCW(point);
|
||||
Orientation o1 = Orient2d(eq, *p1, ep);
|
||||
if (o1 == COLLINEAR) {
|
||||
if( triangle->Contains(&eq, p1)) {
|
||||
triangle->MarkConstrainedEdge(&eq, p1 );
|
||||
// We are modifying the constraint maybe it would be better to
|
||||
// not change the given constraint and just keep a variable for the new constraint
|
||||
tcx.edge_event.constrained_edge->q = p1;
|
||||
triangle = &triangle->NeighborAcross(point);
|
||||
EdgeEvent( tcx, ep, *p1, triangle, *p1 );
|
||||
} else {
|
||||
std::runtime_error("EdgeEvent - collinear points not supported");
|
||||
assert(0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
Point* p2 = triangle->PointCW(point);
|
||||
Orientation o2 = Orient2d(eq, *p2, ep);
|
||||
if (o2 == COLLINEAR) {
|
||||
if( triangle->Contains(&eq, p2)) {
|
||||
triangle->MarkConstrainedEdge(&eq, p2 );
|
||||
// We are modifying the constraint maybe it would be better to
|
||||
// not change the given constraint and just keep a variable for the new constraint
|
||||
tcx.edge_event.constrained_edge->q = p2;
|
||||
triangle = &triangle->NeighborAcross(point);
|
||||
EdgeEvent( tcx, ep, *p2, triangle, *p2 );
|
||||
} else {
|
||||
std::runtime_error("EdgeEvent - collinear points not supported");
|
||||
assert(0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (o1 == o2) {
|
||||
// Need to decide if we are rotating CW or CCW to get to a triangle
|
||||
// that will cross edge
|
||||
if (o1 == CW) {
|
||||
triangle = triangle->NeighborCCW(point);
|
||||
} else{
|
||||
triangle = triangle->NeighborCW(point);
|
||||
}
|
||||
EdgeEvent(tcx, ep, eq, triangle, point);
|
||||
} else {
|
||||
// This triangle crosses constraint so lets flippin start!
|
||||
FlipEdgeEvent(tcx, ep, eq, triangle, point);
|
||||
}
|
||||
}
|
||||
|
||||
bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq)
|
||||
{
|
||||
int index = triangle.EdgeIndex(&ep, &eq);
|
||||
|
||||
if (index != -1) {
|
||||
triangle.MarkConstrainedEdge(index);
|
||||
Triangle* t = triangle.GetNeighbor(index);
|
||||
if (t) {
|
||||
t->MarkConstrainedEdge(&ep, &eq);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node)
|
||||
{
|
||||
Triangle* triangle = new Triangle(point, *node.point, *node.next->point);
|
||||
|
||||
triangle->MarkNeighbor(*node.triangle);
|
||||
tcx.AddToMap(triangle);
|
||||
|
||||
Node* new_node = new Node(point);
|
||||
nodes_.push_back(new_node);
|
||||
|
||||
new_node->next = node.next;
|
||||
new_node->prev = &node;
|
||||
node.next->prev = new_node;
|
||||
node.next = new_node;
|
||||
|
||||
if (!Legalize(tcx, *triangle)) {
|
||||
tcx.MapTriangleToNodes(*triangle);
|
||||
}
|
||||
|
||||
return *new_node;
|
||||
}
|
||||
|
||||
void Sweep::Fill(SweepContext& tcx, Node& node)
|
||||
{
|
||||
Triangle* triangle = new Triangle(*node.prev->point, *node.point, *node.next->point);
|
||||
|
||||
// TODO: should copy the constrained_edge value from neighbor triangles
|
||||
// for now constrained_edge values are copied during the legalize
|
||||
triangle->MarkNeighbor(*node.prev->triangle);
|
||||
triangle->MarkNeighbor(*node.triangle);
|
||||
|
||||
tcx.AddToMap(triangle);
|
||||
|
||||
// Update the advancing front
|
||||
node.prev->next = node.next;
|
||||
node.next->prev = node.prev;
|
||||
|
||||
// If it was legalized the triangle has already been mapped
|
||||
if (!Legalize(tcx, *triangle)) {
|
||||
tcx.MapTriangleToNodes(*triangle);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n)
|
||||
{
|
||||
|
||||
// Fill right holes
|
||||
Node* node = n.next;
|
||||
|
||||
while (node->next) {
|
||||
// if HoleAngle exceeds 90 degrees then break.
|
||||
if (LargeHole_DontFill(node)) break;
|
||||
Fill(tcx, *node);
|
||||
node = node->next;
|
||||
}
|
||||
|
||||
// Fill left holes
|
||||
node = n.prev;
|
||||
|
||||
while (node->prev) {
|
||||
// if HoleAngle exceeds 90 degrees then break.
|
||||
if (LargeHole_DontFill(node)) break;
|
||||
Fill(tcx, *node);
|
||||
node = node->prev;
|
||||
}
|
||||
|
||||
// Fill right basins
|
||||
if (n.next && n.next->next) {
|
||||
double angle = BasinAngle(n);
|
||||
if (angle < PI_3div4) {
|
||||
FillBasin(tcx, n);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// True if HoleAngle exceeds 90 degrees.
|
||||
bool Sweep::LargeHole_DontFill(Node* node) {
|
||||
|
||||
Node* nextNode = node->next;
|
||||
Node* prevNode = node->prev;
|
||||
if (!AngleExceeds90Degrees(node->point, nextNode->point, prevNode->point))
|
||||
return false;
|
||||
|
||||
// Check additional points on front.
|
||||
Node* next2Node = nextNode->next;
|
||||
// "..Plus.." because only want angles on same side as point being added.
|
||||
if ((next2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, next2Node->point, prevNode->point))
|
||||
return false;
|
||||
|
||||
Node* prev2Node = prevNode->prev;
|
||||
// "..Plus.." because only want angles on same side as point being added.
|
||||
if ((prev2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, nextNode->point, prev2Node->point))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Sweep::AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb) {
|
||||
double angle = Angle(*origin, *pa, *pb);
|
||||
bool exceeds90Degrees = ((angle > PI_div2) || (angle < -PI_div2));
|
||||
return exceeds90Degrees;
|
||||
}
|
||||
|
||||
bool Sweep::AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb) {
|
||||
double angle = Angle(*origin, *pa, *pb);
|
||||
bool exceedsPlus90DegreesOrIsNegative = (angle > PI_div2) || (angle < 0);
|
||||
return exceedsPlus90DegreesOrIsNegative;
|
||||
}
|
||||
|
||||
double Sweep::Angle(Point& origin, Point& pa, Point& pb) {
|
||||
/* Complex plane
|
||||
* ab = cosA +i*sinA
|
||||
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
|
||||
* atan2(y,x) computes the principal value of the argument function
|
||||
* applied to the complex number x+iy
|
||||
* Where x = ax*bx + ay*by
|
||||
* y = ax*by - ay*bx
|
||||
*/
|
||||
double px = origin.x;
|
||||
double py = origin.y;
|
||||
double ax = pa.x- px;
|
||||
double ay = pa.y - py;
|
||||
double bx = pb.x - px;
|
||||
double by = pb.y - py;
|
||||
double x = ax * by - ay * bx;
|
||||
double y = ax * bx + ay * by;
|
||||
double angle = atan2(x, y);
|
||||
return angle;
|
||||
}
|
||||
|
||||
double Sweep::BasinAngle(Node& node)
|
||||
{
|
||||
double ax = node.point->x - node.next->next->point->x;
|
||||
double ay = node.point->y - node.next->next->point->y;
|
||||
return atan2(ay, ax);
|
||||
}
|
||||
|
||||
double Sweep::HoleAngle(Node& node)
|
||||
{
|
||||
/* Complex plane
|
||||
* ab = cosA +i*sinA
|
||||
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
|
||||
* atan2(y,x) computes the principal value of the argument function
|
||||
* applied to the complex number x+iy
|
||||
* Where x = ax*bx + ay*by
|
||||
* y = ax*by - ay*bx
|
||||
*/
|
||||
double ax = node.next->point->x - node.point->x;
|
||||
double ay = node.next->point->y - node.point->y;
|
||||
double bx = node.prev->point->x - node.point->x;
|
||||
double by = node.prev->point->y - node.point->y;
|
||||
return atan2(ax * by - ay * bx, ax * bx + ay * by);
|
||||
}
|
||||
|
||||
bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
|
||||
{
|
||||
// To legalize a triangle we start by finding if any of the three edges
|
||||
// violate the Delaunay condition
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (t.delaunay_edge[i])
|
||||
continue;
|
||||
|
||||
Triangle* ot = t.GetNeighbor(i);
|
||||
|
||||
if (ot) {
|
||||
Point* p = t.GetPoint(i);
|
||||
Point* op = ot->OppositePoint(t, *p);
|
||||
int oi = ot->Index(op);
|
||||
|
||||
// If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
|
||||
// then we should not try to legalize
|
||||
if (ot->constrained_edge[oi] || ot->delaunay_edge[oi]) {
|
||||
t.constrained_edge[i] = ot->constrained_edge[oi];
|
||||
continue;
|
||||
}
|
||||
|
||||
bool inside = Incircle(*p, *t.PointCCW(*p), *t.PointCW(*p), *op);
|
||||
|
||||
if (inside) {
|
||||
// Lets mark this shared edge as Delaunay
|
||||
t.delaunay_edge[i] = true;
|
||||
ot->delaunay_edge[oi] = true;
|
||||
|
||||
// Lets rotate shared edge one vertex CW to legalize it
|
||||
RotateTrianglePair(t, *p, *ot, *op);
|
||||
|
||||
// We now got one valid Delaunay Edge shared by two triangles
|
||||
// This gives us 4 new edges to check for Delaunay
|
||||
|
||||
// Make sure that triangle to node mapping is done only one time for a specific triangle
|
||||
bool not_legalized = !Legalize(tcx, t);
|
||||
if (not_legalized) {
|
||||
tcx.MapTriangleToNodes(t);
|
||||
}
|
||||
|
||||
not_legalized = !Legalize(tcx, *ot);
|
||||
if (not_legalized)
|
||||
tcx.MapTriangleToNodes(*ot);
|
||||
|
||||
// Reset the Delaunay edges, since they only are valid Delaunay edges
|
||||
// until we add a new triangle or point.
|
||||
// XXX: need to think about this. Can these edges be tried after we
|
||||
// return to previous recursive level?
|
||||
t.delaunay_edge[i] = false;
|
||||
ot->delaunay_edge[oi] = false;
|
||||
|
||||
// If triangle have been legalized no need to check the other edges since
|
||||
// the recursive legalization will handles those so we can end here.
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd)
|
||||
{
|
||||
double adx = pa.x - pd.x;
|
||||
double ady = pa.y - pd.y;
|
||||
double bdx = pb.x - pd.x;
|
||||
double bdy = pb.y - pd.y;
|
||||
|
||||
double adxbdy = adx * bdy;
|
||||
double bdxady = bdx * ady;
|
||||
double oabd = adxbdy - bdxady;
|
||||
|
||||
if (oabd <= 0)
|
||||
return false;
|
||||
|
||||
double cdx = pc.x - pd.x;
|
||||
double cdy = pc.y - pd.y;
|
||||
|
||||
double cdxady = cdx * ady;
|
||||
double adxcdy = adx * cdy;
|
||||
double ocad = cdxady - adxcdy;
|
||||
|
||||
if (ocad <= 0)
|
||||
return false;
|
||||
|
||||
double bdxcdy = bdx * cdy;
|
||||
double cdxbdy = cdx * bdy;
|
||||
|
||||
double alift = adx * adx + ady * ady;
|
||||
double blift = bdx * bdx + bdy * bdy;
|
||||
double clift = cdx * cdx + cdy * cdy;
|
||||
|
||||
double det = alift * (bdxcdy - cdxbdy) + blift * ocad + clift * oabd;
|
||||
|
||||
return det > 0;
|
||||
}
|
||||
|
||||
void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op)
|
||||
{
|
||||
Triangle* n1, *n2, *n3, *n4;
|
||||
n1 = t.NeighborCCW(p);
|
||||
n2 = t.NeighborCW(p);
|
||||
n3 = ot.NeighborCCW(op);
|
||||
n4 = ot.NeighborCW(op);
|
||||
|
||||
bool ce1, ce2, ce3, ce4;
|
||||
ce1 = t.GetConstrainedEdgeCCW(p);
|
||||
ce2 = t.GetConstrainedEdgeCW(p);
|
||||
ce3 = ot.GetConstrainedEdgeCCW(op);
|
||||
ce4 = ot.GetConstrainedEdgeCW(op);
|
||||
|
||||
bool de1, de2, de3, de4;
|
||||
de1 = t.GetDelunayEdgeCCW(p);
|
||||
de2 = t.GetDelunayEdgeCW(p);
|
||||
de3 = ot.GetDelunayEdgeCCW(op);
|
||||
de4 = ot.GetDelunayEdgeCW(op);
|
||||
|
||||
t.Legalize(p, op);
|
||||
ot.Legalize(op, p);
|
||||
|
||||
// Remap delaunay_edge
|
||||
ot.SetDelunayEdgeCCW(p, de1);
|
||||
t.SetDelunayEdgeCW(p, de2);
|
||||
t.SetDelunayEdgeCCW(op, de3);
|
||||
ot.SetDelunayEdgeCW(op, de4);
|
||||
|
||||
// Remap constrained_edge
|
||||
ot.SetConstrainedEdgeCCW(p, ce1);
|
||||
t.SetConstrainedEdgeCW(p, ce2);
|
||||
t.SetConstrainedEdgeCCW(op, ce3);
|
||||
ot.SetConstrainedEdgeCW(op, ce4);
|
||||
|
||||
// Remap neighbors
|
||||
// XXX: might optimize the markNeighbor by keeping track of
|
||||
// what side should be assigned to what neighbor after the
|
||||
// rotation. Now mark neighbor does lots of testing to find
|
||||
// the right side.
|
||||
t.ClearNeighbors();
|
||||
ot.ClearNeighbors();
|
||||
if (n1) ot.MarkNeighbor(*n1);
|
||||
if (n2) t.MarkNeighbor(*n2);
|
||||
if (n3) t.MarkNeighbor(*n3);
|
||||
if (n4) ot.MarkNeighbor(*n4);
|
||||
t.MarkNeighbor(ot);
|
||||
}
|
||||
|
||||
void Sweep::FillBasin(SweepContext& tcx, Node& node)
|
||||
{
|
||||
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
tcx.basin.left_node = node.next->next;
|
||||
} else {
|
||||
tcx.basin.left_node = node.next;
|
||||
}
|
||||
|
||||
// Find the bottom and right node
|
||||
tcx.basin.bottom_node = tcx.basin.left_node;
|
||||
while (tcx.basin.bottom_node->next
|
||||
&& tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y) {
|
||||
tcx.basin.bottom_node = tcx.basin.bottom_node->next;
|
||||
}
|
||||
if (tcx.basin.bottom_node == tcx.basin.left_node) {
|
||||
// No valid basin
|
||||
return;
|
||||
}
|
||||
|
||||
tcx.basin.right_node = tcx.basin.bottom_node;
|
||||
while (tcx.basin.right_node->next
|
||||
&& tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y) {
|
||||
tcx.basin.right_node = tcx.basin.right_node->next;
|
||||
}
|
||||
if (tcx.basin.right_node == tcx.basin.bottom_node) {
|
||||
// No valid basins
|
||||
return;
|
||||
}
|
||||
|
||||
tcx.basin.width = tcx.basin.right_node->point->x - tcx.basin.left_node->point->x;
|
||||
tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y;
|
||||
|
||||
FillBasinReq(tcx, tcx.basin.bottom_node);
|
||||
}
|
||||
|
||||
void Sweep::FillBasinReq(SweepContext& tcx, Node* node)
|
||||
{
|
||||
// if shallow stop filling
|
||||
if (IsShallow(tcx, *node)) {
|
||||
return;
|
||||
}
|
||||
|
||||
Fill(tcx, *node);
|
||||
|
||||
if (node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node) {
|
||||
return;
|
||||
} else if (node->prev == tcx.basin.left_node) {
|
||||
Orientation o = Orient2d(*node->point, *node->next->point, *node->next->next->point);
|
||||
if (o == CW) {
|
||||
return;
|
||||
}
|
||||
node = node->next;
|
||||
} else if (node->next == tcx.basin.right_node) {
|
||||
Orientation o = Orient2d(*node->point, *node->prev->point, *node->prev->prev->point);
|
||||
if (o == CCW) {
|
||||
return;
|
||||
}
|
||||
node = node->prev;
|
||||
} else {
|
||||
// Continue with the neighbor node with lowest Y value
|
||||
if (node->prev->point->y < node->next->point->y) {
|
||||
node = node->prev;
|
||||
} else {
|
||||
node = node->next;
|
||||
}
|
||||
}
|
||||
|
||||
FillBasinReq(tcx, node);
|
||||
}
|
||||
|
||||
bool Sweep::IsShallow(SweepContext& tcx, Node& node)
|
||||
{
|
||||
double height;
|
||||
|
||||
if (tcx.basin.left_highest) {
|
||||
height = tcx.basin.left_node->point->y - node.point->y;
|
||||
} else {
|
||||
height = tcx.basin.right_node->point->y - node.point->y;
|
||||
}
|
||||
|
||||
// if shallow stop filling
|
||||
if (tcx.basin.width > height) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
|
||||
{
|
||||
if (tcx.edge_event.right) {
|
||||
FillRightAboveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
FillLeftAboveEdgeEvent(tcx, edge, node);
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
|
||||
{
|
||||
while (node->next->point->x < edge->p->x) {
|
||||
// Check if next node is below the edge
|
||||
if (Orient2d(*edge->q, *node->next->point, *edge->p) == CCW) {
|
||||
FillRightBelowEdgeEvent(tcx, edge, *node);
|
||||
} else {
|
||||
node = node->next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
if (node.point->x < edge->p->x) {
|
||||
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
// Concave
|
||||
FillRightConcaveEdgeEvent(tcx, edge, node);
|
||||
} else{
|
||||
// Convex
|
||||
FillRightConvexEdgeEvent(tcx, edge, node);
|
||||
// Retry this one
|
||||
FillRightBelowEdgeEvent(tcx, edge, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
Fill(tcx, *node.next);
|
||||
if (node.next->point != edge->p) {
|
||||
// Next above or below edge?
|
||||
if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
|
||||
// Below
|
||||
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
// Next is concave
|
||||
FillRightConcaveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
// Next is convex
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
// Next concave or convex?
|
||||
if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) {
|
||||
// Concave
|
||||
FillRightConcaveEdgeEvent(tcx, edge, *node.next);
|
||||
} else{
|
||||
// Convex
|
||||
// Next above or below edge?
|
||||
if (Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) {
|
||||
// Below
|
||||
FillRightConvexEdgeEvent(tcx, edge, *node.next);
|
||||
} else{
|
||||
// Above
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
|
||||
{
|
||||
while (node->prev->point->x > edge->p->x) {
|
||||
// Check if next node is below the edge
|
||||
if (Orient2d(*edge->q, *node->prev->point, *edge->p) == CW) {
|
||||
FillLeftBelowEdgeEvent(tcx, edge, *node);
|
||||
} else {
|
||||
node = node->prev;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
if (node.point->x > edge->p->x) {
|
||||
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
|
||||
// Concave
|
||||
FillLeftConcaveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
// Convex
|
||||
FillLeftConvexEdgeEvent(tcx, edge, node);
|
||||
// Retry this one
|
||||
FillLeftBelowEdgeEvent(tcx, edge, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
// Next concave or convex?
|
||||
if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
|
||||
// Concave
|
||||
FillLeftConcaveEdgeEvent(tcx, edge, *node.prev);
|
||||
} else{
|
||||
// Convex
|
||||
// Next above or below edge?
|
||||
if (Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) {
|
||||
// Below
|
||||
FillLeftConvexEdgeEvent(tcx, edge, *node.prev);
|
||||
} else{
|
||||
// Above
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
Fill(tcx, *node.prev);
|
||||
if (node.prev->point != edge->p) {
|
||||
// Next above or below edge?
|
||||
if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
|
||||
// Below
|
||||
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
|
||||
// Next is concave
|
||||
FillLeftConcaveEdgeEvent(tcx, edge, node);
|
||||
} else{
|
||||
// Next is convex
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p)
|
||||
{
|
||||
Triangle& ot = t->NeighborAcross(p);
|
||||
Point& op = *ot.OppositePoint(*t, p);
|
||||
|
||||
if (&ot == NULL) {
|
||||
// If we want to integrate the fillEdgeEvent do it here
|
||||
// With current implementation we should never get here
|
||||
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
if (InScanArea(p, *t->PointCCW(p), *t->PointCW(p), op)) {
|
||||
// Lets rotate shared edge one vertex CW
|
||||
RotateTrianglePair(*t, p, ot, op);
|
||||
tcx.MapTriangleToNodes(*t);
|
||||
tcx.MapTriangleToNodes(ot);
|
||||
|
||||
if (p == eq && op == ep) {
|
||||
if (eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) {
|
||||
t->MarkConstrainedEdge(&ep, &eq);
|
||||
ot.MarkConstrainedEdge(&ep, &eq);
|
||||
Legalize(tcx, *t);
|
||||
Legalize(tcx, ot);
|
||||
} else {
|
||||
// XXX: I think one of the triangles should be legalized here?
|
||||
}
|
||||
} else {
|
||||
Orientation o = Orient2d(eq, op, ep);
|
||||
t = &NextFlipTriangle(tcx, (int)o, *t, ot, p, op);
|
||||
FlipEdgeEvent(tcx, ep, eq, t, p);
|
||||
}
|
||||
} else {
|
||||
Point& newP = NextFlipPoint(ep, eq, ot, op);
|
||||
FlipScanEdgeEvent(tcx, ep, eq, *t, ot, newP);
|
||||
EdgeEvent(tcx, ep, eq, t, p);
|
||||
}
|
||||
}
|
||||
|
||||
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op)
|
||||
{
|
||||
if (o == CCW) {
|
||||
// ot is not crossing edge after flip
|
||||
int edge_index = ot.EdgeIndex(&p, &op);
|
||||
ot.delaunay_edge[edge_index] = true;
|
||||
Legalize(tcx, ot);
|
||||
ot.ClearDelunayEdges();
|
||||
return t;
|
||||
}
|
||||
|
||||
// t is not crossing edge after flip
|
||||
int edge_index = t.EdgeIndex(&p, &op);
|
||||
|
||||
t.delaunay_edge[edge_index] = true;
|
||||
Legalize(tcx, t);
|
||||
t.ClearDelunayEdges();
|
||||
return ot;
|
||||
}
|
||||
|
||||
Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op)
|
||||
{
|
||||
Orientation o2d = Orient2d(eq, op, ep);
|
||||
if (o2d == CW) {
|
||||
// Right
|
||||
return *ot.PointCCW(op);
|
||||
} else if (o2d == CCW) {
|
||||
// Left
|
||||
return *ot.PointCW(op);
|
||||
} else{
|
||||
//throw new RuntimeException("[Unsupported] Opposing point on constrained edge");
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle,
|
||||
Triangle& t, Point& p)
|
||||
{
|
||||
Triangle& ot = t.NeighborAcross(p);
|
||||
Point& op = *ot.OppositePoint(t, p);
|
||||
|
||||
if (&t.NeighborAcross(p) == NULL) {
|
||||
// If we want to integrate the fillEdgeEvent do it here
|
||||
// With current implementation we should never get here
|
||||
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) {
|
||||
// flip with new edge op->eq
|
||||
FlipEdgeEvent(tcx, eq, op, &ot, op);
|
||||
// TODO: Actually I just figured out that it should be possible to
|
||||
// improve this by getting the next ot and op before the the above
|
||||
// flip and continue the flipScanEdgeEvent here
|
||||
// set new ot and op here and loop back to inScanArea test
|
||||
// also need to set a new flip_triangle first
|
||||
// Turns out at first glance that this is somewhat complicated
|
||||
// so it will have to wait.
|
||||
} else{
|
||||
Point& newP = NextFlipPoint(ep, eq, ot, op);
|
||||
FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP);
|
||||
}
|
||||
}
|
||||
|
||||
Sweep::~Sweep() {
|
||||
|
||||
// Clean up memory
|
||||
for(int i = 0; i < nodes_.size(); i++) {
|
||||
delete nodes_[i];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,285 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
/**
|
||||
* Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and
|
||||
* Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation',
|
||||
* International Journal of Geographical Information Science
|
||||
*
|
||||
* "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com
|
||||
*/
|
||||
|
||||
#ifndef SWEEP_H
|
||||
#define SWEEP_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace p2t {
|
||||
|
||||
class SweepContext;
|
||||
struct Node;
|
||||
struct Point;
|
||||
struct Edge;
|
||||
class Triangle;
|
||||
|
||||
class Sweep
|
||||
{
|
||||
public:
|
||||
|
||||
/**
|
||||
* Triangulate
|
||||
*
|
||||
* @param tcx
|
||||
*/
|
||||
void Triangulate(SweepContext& tcx);
|
||||
|
||||
/**
|
||||
* Destructor - clean up memory
|
||||
*/
|
||||
~Sweep();
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
* Start sweeping the Y-sorted point set from bottom to top
|
||||
*
|
||||
* @param tcx
|
||||
*/
|
||||
void SweepPoints(SweepContext& tcx);
|
||||
|
||||
/**
|
||||
* Find closes node to the left of the new point and
|
||||
* create a new triangle. If needed new holes and basins
|
||||
* will be filled to.
|
||||
*
|
||||
* @param tcx
|
||||
* @param point
|
||||
* @return
|
||||
*/
|
||||
Node& PointEvent(SweepContext& tcx, Point& point);
|
||||
|
||||
/**
|
||||
*
|
||||
*
|
||||
* @param tcx
|
||||
* @param edge
|
||||
* @param node
|
||||
*/
|
||||
void EdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
|
||||
|
||||
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
|
||||
|
||||
/**
|
||||
* Creates a new front triangle and legalize it
|
||||
*
|
||||
* @param tcx
|
||||
* @param point
|
||||
* @param node
|
||||
* @return
|
||||
*/
|
||||
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
|
||||
|
||||
/**
|
||||
* Adds a triangle to the advancing front to fill a hole.
|
||||
* @param tcx
|
||||
* @param node - middle node, that is the bottom of the hole
|
||||
*/
|
||||
void Fill(SweepContext& tcx, Node& node);
|
||||
|
||||
/**
|
||||
* Returns true if triangle was legalized
|
||||
*/
|
||||
bool Legalize(SweepContext& tcx, Triangle& t);
|
||||
|
||||
/**
|
||||
* <b>Requirement</b>:<br>
|
||||
* 1. a,b and c form a triangle.<br>
|
||||
* 2. a and d is know to be on opposite side of bc<br>
|
||||
* <pre>
|
||||
* a
|
||||
* +
|
||||
* / \
|
||||
* / \
|
||||
* b/ \c
|
||||
* +-------+
|
||||
* / d \
|
||||
* / \
|
||||
* </pre>
|
||||
* <b>Fact</b>: d has to be in area B to have a chance to be inside the circle formed by
|
||||
* a,b and c<br>
|
||||
* d is outside B if orient2d(a,b,d) or orient2d(c,a,d) is CW<br>
|
||||
* This preknowledge gives us a way to optimize the incircle test
|
||||
* @param a - triangle point, opposite d
|
||||
* @param b - triangle point
|
||||
* @param c - triangle point
|
||||
* @param d - point opposite a
|
||||
* @return true if d is inside circle, false if on circle edge
|
||||
*/
|
||||
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
|
||||
|
||||
/**
|
||||
* Rotates a triangle pair one vertex CW
|
||||
*<pre>
|
||||
* n2 n2
|
||||
* P +-----+ P +-----+
|
||||
* | t /| |\ t |
|
||||
* | / | | \ |
|
||||
* n1| / |n3 n1| \ |n3
|
||||
* | / | after CW | \ |
|
||||
* |/ oT | | oT \|
|
||||
* +-----+ oP +-----+
|
||||
* n4 n4
|
||||
* </pre>
|
||||
*/
|
||||
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
|
||||
|
||||
/**
|
||||
* Fills holes in the Advancing Front
|
||||
*
|
||||
*
|
||||
* @param tcx
|
||||
* @param n
|
||||
*/
|
||||
void FillAdvancingFront(SweepContext& tcx, Node& n);
|
||||
|
||||
// Decision-making about when to Fill hole.
|
||||
// Contributed by ToolmakerSteve2
|
||||
bool LargeHole_DontFill(Node* node);
|
||||
bool AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb);
|
||||
bool AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb);
|
||||
double Angle(Point& origin, Point& pa, Point& pb);
|
||||
|
||||
/**
|
||||
*
|
||||
* @param node - middle node
|
||||
* @return the angle between 3 front nodes
|
||||
*/
|
||||
double HoleAngle(Node& node);
|
||||
|
||||
/**
|
||||
* The basin angle is decided against the horizontal line [1,0]
|
||||
*/
|
||||
double BasinAngle(Node& node);
|
||||
|
||||
/**
|
||||
* Fills a basin that has formed on the Advancing Front to the right
|
||||
* of given node.<br>
|
||||
* First we decide a left,bottom and right node that forms the
|
||||
* boundaries of the basin. Then we do a reqursive fill.
|
||||
*
|
||||
* @param tcx
|
||||
* @param node - starting node, this or next node will be left node
|
||||
*/
|
||||
void FillBasin(SweepContext& tcx, Node& node);
|
||||
|
||||
/**
|
||||
* Recursive algorithm to fill a Basin with triangles
|
||||
*
|
||||
* @param tcx
|
||||
* @param node - bottom_node
|
||||
* @param cnt - counter used to alternate on even and odd numbers
|
||||
*/
|
||||
void FillBasinReq(SweepContext& tcx, Node* node);
|
||||
|
||||
bool IsShallow(SweepContext& tcx, Node& node);
|
||||
|
||||
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
|
||||
|
||||
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
|
||||
|
||||
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
|
||||
|
||||
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
|
||||
|
||||
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p);
|
||||
|
||||
/**
|
||||
* After a flip we have two triangles and know that only one will still be
|
||||
* intersecting the edge. So decide which to contiune with and legalize the other
|
||||
*
|
||||
* @param tcx
|
||||
* @param o - should be the result of an orient2d( eq, op, ep )
|
||||
* @param t - triangle 1
|
||||
* @param ot - triangle 2
|
||||
* @param p - a point shared by both triangles
|
||||
* @param op - another point shared by both triangles
|
||||
* @return returns the triangle still intersecting the edge
|
||||
*/
|
||||
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
|
||||
|
||||
/**
|
||||
* When we need to traverse from one triangle to the next we need
|
||||
* the point in current triangle that is the opposite point to the next
|
||||
* triangle.
|
||||
*
|
||||
* @param ep
|
||||
* @param eq
|
||||
* @param ot
|
||||
* @param op
|
||||
* @return
|
||||
*/
|
||||
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
|
||||
|
||||
/**
|
||||
* Scan part of the FlipScan algorithm<br>
|
||||
* When a triangle pair isn't flippable we will scan for the next
|
||||
* point that is inside the flip triangle scan area. When found
|
||||
* we generate a new flipEdgeEvent
|
||||
*
|
||||
* @param tcx
|
||||
* @param ep - last point on the edge we are traversing
|
||||
* @param eq - first point on the edge we are traversing
|
||||
* @param flipTriangle - the current triangle sharing the point eq with edge
|
||||
* @param t
|
||||
* @param p
|
||||
*/
|
||||
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
|
||||
|
||||
void FinalizationPolygon(SweepContext& tcx);
|
||||
|
||||
std::vector<Node*> nodes_;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,216 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include "sweep_context.h"
|
||||
#include <algorithm>
|
||||
#include "advancing_front.h"
|
||||
|
||||
namespace p2t {
|
||||
|
||||
SweepContext::SweepContext(std::vector<Point*> polyline) :
|
||||
front_(0),
|
||||
head_(0),
|
||||
tail_(0),
|
||||
af_head_(0),
|
||||
af_middle_(0),
|
||||
af_tail_(0)
|
||||
{
|
||||
basin = Basin();
|
||||
edge_event = EdgeEvent();
|
||||
|
||||
points_ = polyline;
|
||||
|
||||
InitEdges(points_);
|
||||
}
|
||||
|
||||
void SweepContext::AddHole(std::vector<Point*> polyline)
|
||||
{
|
||||
InitEdges(polyline);
|
||||
for(unsigned int i = 0; i < polyline.size(); i++) {
|
||||
points_.push_back(polyline[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void SweepContext::AddPoint(Point* point) {
|
||||
points_.push_back(point);
|
||||
}
|
||||
|
||||
std::vector<Triangle*> SweepContext::GetTriangles()
|
||||
{
|
||||
return triangles_;
|
||||
}
|
||||
|
||||
std::list<Triangle*> SweepContext::GetMap()
|
||||
{
|
||||
return map_;
|
||||
}
|
||||
|
||||
void SweepContext::InitTriangulation()
|
||||
{
|
||||
double xmax(points_[0]->x), xmin(points_[0]->x);
|
||||
double ymax(points_[0]->y), ymin(points_[0]->y);
|
||||
|
||||
// Calculate bounds.
|
||||
for (unsigned int i = 0; i < points_.size(); i++) {
|
||||
Point& p = *points_[i];
|
||||
if (p.x > xmax)
|
||||
xmax = p.x;
|
||||
if (p.x < xmin)
|
||||
xmin = p.x;
|
||||
if (p.y > ymax)
|
||||
ymax = p.y;
|
||||
if (p.y < ymin)
|
||||
ymin = p.y;
|
||||
}
|
||||
|
||||
double dx = kAlpha * (xmax - xmin);
|
||||
double dy = kAlpha * (ymax - ymin);
|
||||
head_ = new Point(xmax + dx, ymin - dy);
|
||||
tail_ = new Point(xmin - dx, ymin - dy);
|
||||
|
||||
// Sort points along y-axis
|
||||
std::sort(points_.begin(), points_.end(), cmp);
|
||||
|
||||
}
|
||||
|
||||
void SweepContext::InitEdges(std::vector<Point*> polyline)
|
||||
{
|
||||
int num_points = polyline.size();
|
||||
for (int i = 0; i < num_points; i++) {
|
||||
int j = i < num_points - 1 ? i + 1 : 0;
|
||||
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
|
||||
}
|
||||
}
|
||||
|
||||
Point* SweepContext::GetPoint(const int& index)
|
||||
{
|
||||
return points_[index];
|
||||
}
|
||||
|
||||
void SweepContext::AddToMap(Triangle* triangle)
|
||||
{
|
||||
map_.push_back(triangle);
|
||||
}
|
||||
|
||||
Node& SweepContext::LocateNode(Point& point)
|
||||
{
|
||||
// TODO implement search tree
|
||||
return *front_->LocateNode(point.x);
|
||||
}
|
||||
|
||||
void SweepContext::CreateAdvancingFront(std::vector<Node*> nodes)
|
||||
{
|
||||
|
||||
(void) nodes;
|
||||
// Initial triangle
|
||||
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
|
||||
|
||||
map_.push_back(triangle);
|
||||
|
||||
af_head_ = new Node(*triangle->GetPoint(1), *triangle);
|
||||
af_middle_ = new Node(*triangle->GetPoint(0), *triangle);
|
||||
af_tail_ = new Node(*triangle->GetPoint(2));
|
||||
front_ = new AdvancingFront(*af_head_, *af_tail_);
|
||||
|
||||
// TODO: More intuitive if head is middles next and not previous?
|
||||
// so swap head and tail
|
||||
af_head_->next = af_middle_;
|
||||
af_middle_->next = af_tail_;
|
||||
af_middle_->prev = af_head_;
|
||||
af_tail_->prev = af_middle_;
|
||||
}
|
||||
|
||||
void SweepContext::RemoveNode(Node* node)
|
||||
{
|
||||
delete node;
|
||||
}
|
||||
|
||||
void SweepContext::MapTriangleToNodes(Triangle& t)
|
||||
{
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (!t.GetNeighbor(i)) {
|
||||
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
|
||||
if (n)
|
||||
n->triangle = &t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SweepContext::RemoveFromMap(Triangle* triangle)
|
||||
{
|
||||
map_.remove(triangle);
|
||||
}
|
||||
|
||||
void SweepContext::MeshClean(Triangle& triangle)
|
||||
{
|
||||
std::vector<Triangle *> triangles;
|
||||
triangles.push_back(&triangle);
|
||||
|
||||
while(!triangles.empty()){
|
||||
Triangle *t = triangles.back();
|
||||
triangles.pop_back();
|
||||
|
||||
if (t != NULL && !t->IsInterior()) {
|
||||
t->IsInterior(true);
|
||||
triangles_.push_back(t);
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (!t->constrained_edge[i])
|
||||
triangles.push_back(t->GetNeighbor(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SweepContext::~SweepContext()
|
||||
{
|
||||
|
||||
// Clean up memory
|
||||
|
||||
delete head_;
|
||||
delete tail_;
|
||||
delete front_;
|
||||
delete af_head_;
|
||||
delete af_middle_;
|
||||
delete af_tail_;
|
||||
|
||||
typedef std::list<Triangle*> type_list;
|
||||
|
||||
for(type_list::iterator iter = map_.begin(); iter != map_.end(); ++iter) {
|
||||
Triangle* ptr = *iter;
|
||||
delete ptr;
|
||||
}
|
||||
|
||||
for(unsigned int i = 0; i < edge_list.size(); i++) {
|
||||
delete edge_list[i];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||||
* http://code.google.com/p/poly2tri/
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific
|
||||
* prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef SWEEP_CONTEXT_H
|
||||
#define SWEEP_CONTEXT_H
|
||||
|
||||
#include <list>
|
||||
#include <vector>
|
||||
#include <cstddef>
|
||||
|
||||
namespace p2t {
|
||||
|
||||
// Inital triangle factor, seed triangle will extend 30% of
|
||||
// PointSet width to both left and right.
|
||||
const double kAlpha = 0.3;
|
||||
|
||||
struct Point;
|
||||
class Triangle;
|
||||
struct Node;
|
||||
struct Edge;
|
||||
class AdvancingFront;
|
||||
|
||||
class SweepContext {
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
SweepContext(std::vector<Point*> polyline);
|
||||
/// Destructor
|
||||
~SweepContext();
|
||||
|
||||
void set_head(Point* p1);
|
||||
|
||||
Point* head();
|
||||
|
||||
void set_tail(Point* p1);
|
||||
|
||||
Point* tail();
|
||||
|
||||
int point_count();
|
||||
|
||||
Node& LocateNode(Point& point);
|
||||
|
||||
void RemoveNode(Node* node);
|
||||
|
||||
void CreateAdvancingFront(std::vector<Node*> nodes);
|
||||
|
||||
/// Try to map a node to all sides of this triangle that don't have a neighbor
|
||||
void MapTriangleToNodes(Triangle& t);
|
||||
|
||||
void AddToMap(Triangle* triangle);
|
||||
|
||||
Point* GetPoint(const int& index);
|
||||
|
||||
Point* GetPoints();
|
||||
|
||||
void RemoveFromMap(Triangle* triangle);
|
||||
|
||||
void AddHole(std::vector<Point*> polyline);
|
||||
|
||||
void AddPoint(Point* point);
|
||||
|
||||
AdvancingFront* front();
|
||||
|
||||
void MeshClean(Triangle& triangle);
|
||||
|
||||
std::vector<Triangle*> GetTriangles();
|
||||
std::list<Triangle*> GetMap();
|
||||
|
||||
std::vector<Edge*> edge_list;
|
||||
|
||||
struct Basin {
|
||||
Node* left_node;
|
||||
Node* bottom_node;
|
||||
Node* right_node;
|
||||
double width;
|
||||
bool left_highest;
|
||||
|
||||
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL), width(0.0), left_highest(false)
|
||||
{
|
||||
}
|
||||
|
||||
void Clear()
|
||||
{
|
||||
left_node = NULL;
|
||||
bottom_node = NULL;
|
||||
right_node = NULL;
|
||||
width = 0.0;
|
||||
left_highest = false;
|
||||
}
|
||||
};
|
||||
|
||||
struct EdgeEvent {
|
||||
Edge* constrained_edge;
|
||||
bool right;
|
||||
|
||||
EdgeEvent() : constrained_edge(NULL), right(false)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
Basin basin;
|
||||
EdgeEvent edge_event;
|
||||
|
||||
private:
|
||||
|
||||
friend class Sweep;
|
||||
|
||||
std::vector<Triangle*> triangles_;
|
||||
std::list<Triangle*> map_;
|
||||
std::vector<Point*> points_;
|
||||
|
||||
// Advancing front
|
||||
AdvancingFront* front_;
|
||||
// head point used with advancing front
|
||||
Point* head_;
|
||||
// tail point used with advancing front
|
||||
Point* tail_;
|
||||
|
||||
Node *af_head_, *af_middle_, *af_tail_;
|
||||
|
||||
void InitTriangulation();
|
||||
void InitEdges(std::vector<Point*> polyline);
|
||||
|
||||
};
|
||||
|
||||
inline AdvancingFront* SweepContext::front()
|
||||
{
|
||||
return front_;
|
||||
}
|
||||
|
||||
inline int SweepContext::point_count()
|
||||
{
|
||||
return points_.size();
|
||||
}
|
||||
|
||||
inline void SweepContext::set_head(Point* p1)
|
||||
{
|
||||
head_ = p1;
|
||||
}
|
||||
|
||||
inline Point* SweepContext::head()
|
||||
{
|
||||
return head_;
|
||||
}
|
||||
|
||||
inline void SweepContext::set_tail(Point* p1)
|
||||
{
|
||||
tail_ = p1;
|
||||
}
|
||||
|
||||
inline Point* SweepContext::tail()
|
||||
{
|
||||
return tail_;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue