Coding policy, Doxygen comment, and spelling fixes.

This commit is contained in:
Wayne Stambaugh 2023-10-12 12:27:30 -04:00
parent 50ec069a01
commit e3c491424b
2 changed files with 158 additions and 187 deletions

View File

@ -50,28 +50,28 @@
*/
const wxChar* traceBoardOutline = wxT( "KICAD_BOARD_OUTLINE" );
/**
* Function close_enough
* is a local and tunable method of qualifying the proximity of two points.
* Local and tunable method of qualifying the proximity of two points.
*
* @param aLeft is the first point
* @param aRight is the second point
* @param aLeft is the first point.
* @param aRight is the second point.
* @param aLimit is a measure of proximity that the caller knows about.
* @return bool - true if the two points are close enough, else false.
* @return true if the two points are close enough, else false.
*/
static bool close_enough( VECTOR2I aLeft, VECTOR2I aRight, unsigned aLimit )
{
return ( aLeft - aRight ).SquaredEuclideanNorm() <= SEG::Square( aLimit );
}
/**
* Function closer_to_first
* Local method which qualifies whether the start or end point of a segment is closest to a point.
*
* @param aRef is the reference point
* @param aFirst is the first point
* @param aSecond is the second point
* @return bool - true if the first point is closest to the reference, otherwise false.
* @return true if the first point is closest to the reference, otherwise false.
*/
static bool closer_to_first( VECTOR2I aRef, VECTOR2I aFirst, VECTOR2I aSecond )
{
@ -80,13 +80,13 @@ static bool closer_to_first( VECTOR2I aRef, VECTOR2I aFirst, VECTOR2I aSecond )
/**
* Searches for a PCB_SHAPE matching a given end point or start point in a list.
* Search for a #PCB_SHAPE matching a given end point or start point in a list.
*
* @param aShape The starting shape.
* @param aPoint The starting or ending point to search for.
* @param aList The list to remove from.
* @param aLimit is the distance from \a aPoint that still constitutes a valid find.
* @return PCB_SHAPE* - The first PCB_SHAPE that has a start or end point matching
* aPoint, otherwise NULL if none.
* @return The first #PCB_SHAPE that has a start or end point matching aPoint, otherwise nullptr.
*/
static PCB_SHAPE* findNext( PCB_SHAPE* aShape, const VECTOR2I& aPoint,
const std::vector<PCB_SHAPE*>& aList, unsigned aLimit )
@ -162,18 +162,6 @@ static bool isCopperOutside( const FOOTPRINT* aFootprint, SHAPE_POLY_SET& aShape
}
/* Build a polygon (with holes) from a PCB_SHAPE list, which is expected to be a closed main
* outline with perhaps closed inner outlines. These closed inner outlines are considered as
* holes in the main outline.
* @param aShapeList the initial list of SHAPEs (only lines, circles and arcs).
* @param aPolygons will contain the complex polygon.
* @param aErrorMax is the max error distance when polygonizing a curve (internal units)
* @param aChainingEpsilon is the max error distance when polygonizing a curve (internal units)
* @param aAllowDisjoint indicates multiple top-level outlines are allowed
* @param aErrorHandler = an optional error handler
* @param aAllowUseArcsInPolygons = an optional option to allow adding arcs in
* SHAPE_LINE_CHAIN polylines/polygons when building outlines from aShapeList
*/
bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SET& aPolygons,
int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint,
OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons )
@ -282,7 +270,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
{
// Polygon start point. Arbitrarily chosen end of the segment and build the poly
// from here.
VECTOR2I startPt = graphic->GetEnd();
prevPt = startPt;
currContour.Append( prevPt );
@ -296,11 +283,11 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
case SHAPE_T::CIRCLE:
{
// As a non-first item, closed shapes can't be anything but self-intersecting
if( aErrorHandler )
{
wxASSERT( prevGraphic );
(*aErrorHandler)( _( "(self-intersecting)" ), prevGraphic, graphic, prevPt );
(*aErrorHandler)( _( "(self-intersecting)" ), prevGraphic, graphic,
prevPt );
}
selfIntersecting = true;
@ -315,7 +302,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
// Use the line segment end point furthest away from prevPt as we assume
// the other end to be ON prevPt or very close to it.
if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) )
nextPt = graphic->GetEnd();
else
@ -362,15 +348,14 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
break;
case SHAPE_T::BEZIER:
{
// We do not support Bezier curves in polygons, so approximate with a series
// of short lines and put those line segments into the !same! PATH.
{
VECTOR2I nextPt;
bool reverse = false;
// Use the end point furthest away from prevPt as we assume the other
// end to be ON prevPt or very close to it.
if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) )
{
nextPt = graphic->GetEnd();
@ -384,7 +369,8 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
// Ensure the approximated Bezier shape is built
// a good value is between (Bezier curve width / 2) and (Bezier curve width)
// ( and at least 0.05 mm to avoid very small segments)
int min_segm_length = std::max( pcbIUScale.mmToIU( 0.05 ), graphic->GetWidth() );
int min_segm_length = std::max( pcbIUScale.mmToIU( 0.05 ),
graphic->GetWidth() );
graphic->RebuildBezierToSegmentsPointsList( min_segm_length );
if( reverse )
@ -424,7 +410,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
}
// Get next closest segment.
PCB_SHAPE* nextGraphic = findNext( graphic, prevPt, aShapeList, aChainingEpsilon );
if( nextGraphic && !( nextGraphic->GetFlags() & SKIP_STRUCT ) )
@ -437,7 +422,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
}
// Finished, or ran into trouble...
if( close_enough( startPt, prevPt, aChainingEpsilon ) )
{
currContour.SetClosed( true );
@ -446,7 +430,8 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
else if( nextGraphic ) // encountered already-used segment, but not at the start
{
if( aErrorHandler )
(*aErrorHandler)( _( "(self-intersecting)" ), graphic, nextGraphic, prevPt );
(*aErrorHandler)( _( "(self-intersecting)" ), graphic, nextGraphic,
prevPt );
break;
}
@ -468,7 +453,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
}
// First, collect the parents of each contour
//
std::map<int, std::vector<int>> contourToParentIndexesMap;
for( size_t ii = 0; ii < contours.size(); ++ii )
@ -491,7 +475,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
}
// Next add those that are top-level outlines to the SHAPE_POLY_SET
//
std::map<int, int> contourToOutlineIdxMap;
for( const auto& [ contourIndex, parentIndexes ] : contourToParentIndexesMap )
@ -522,7 +505,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
}
// And finally add the holes
//
for( const auto& [ contourIndex, parentIndexes ] : contourToParentIndexesMap )
{
if( parentIndexes.size() %2 == 1 )
@ -546,7 +528,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
// All of the silliness that follows is to work around the segment iterator while checking
// for collisions.
// TODO: Implement proper segment and point iterators that follow std
for( auto seg1 = aPolygons.IterateSegmentsWithHoles(); seg1; seg1++ )
{
auto seg2 = seg1;
@ -584,9 +565,6 @@ bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SE
}
/* This function is used to test a board outlines graphic items for validity
* i.e. null or very small segments, rects and circles
*/
bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
OUTLINE_ERROR_HANDLER* aErrorHandler )
{
@ -621,7 +599,7 @@ bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
}
}
// Now Test vailidty of collected items
// Now Test validity of collected items
for( PCB_SHAPE* graphic : segList )
{
switch( graphic->GetShape() )
@ -637,7 +615,8 @@ bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
if( aErrorHandler )
{
(*aErrorHandler)( wxString::Format( _( "(Rectangle has null or very small size: %d nm)" ),
(*aErrorHandler)( wxString::Format( _( "(Rectangle has null or very small "
"size: %d nm)" ),
dim ),
graphic, nullptr, graphic->GetStart() );
}
@ -653,7 +632,8 @@ bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
if( aErrorHandler )
{
(*aErrorHandler)( wxString::Format( _( "(Circle has null or very small radius: %d nm)" ),
(*aErrorHandler)( wxString::Format( _( "(Circle has null or very small "
"radius: %d nm)" ),
(int)graphic->GetRadius() ),
graphic, nullptr, graphic->GetStart() );
}
@ -672,7 +652,8 @@ bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
if( aErrorHandler )
{
(*aErrorHandler)( wxString::Format( _( "(Segment has null or very small lenght: %d nm)" ), dim ),
(*aErrorHandler)( wxString::Format( _( "(Segment has null or very small "
"length: %d nm)" ), dim ),
graphic, nullptr, graphic->GetStart() );
}
}
@ -698,10 +679,6 @@ bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
}
/* This function is used to extract a board outlines (3D view, automatic zones build ...)
* Any closed outline inside the main outline is a hole
* All contours should be closed, i.e. valid closed polygon vertices
*/
bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax,
int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler,
bool aAllowUseArcsInPolygons )
@ -741,10 +718,11 @@ bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aE
// gets an opportunity to use these segments
nullptr, aAllowUseArcsInPolygons );
// Here, we test to see if we should make holes or outlines. Holes are made if the footprint
// has copper outside of a single, closed outline. If there are multiple outlines, we assume
// that the footprint edges represent holes as we do not support multiple boards. Similarly, if
// any of the footprint pads are located outside of the edges, then the edges are holes
// Test to see if we should make holes or outlines. Holes are made if the footprint
// has copper outside of a single, closed outline. If there are multiple outlines,
// we assume that the footprint edges represent holes as we do not support multiple
// boards. Similarly, if any of the footprint pads are located outside of the edges,
// then the edges are holes
if( success && ( isCopperOutside( fp, fpOutlines ) || fpOutlines.OutlineCount() > 1 ) )
{
fpHoles.Append( fpOutlines );
@ -785,7 +763,6 @@ bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aE
// Couldn't create a valid polygon outline. Use the board edge cuts bounding box to
// create a rectangular outline, or, failing that, the bounding box of the items on
// the board.
BOX2I bbbox = aBoard->GetBoardEdgesBoundingBox();
// If null area, uses the global bounding box.
@ -945,17 +922,6 @@ int findEndSegments( SHAPE_LINE_CHAIN& aChain, SEG& aStartSeg, SEG& aEndSeg )
}
/**
* This function is used to extract a board outline for a footprint view.
*
* Notes:
* * Incomplete outlines will be closed by joining the end of the outline onto the bounding box
* (by simply projecting the end points) and then take the area that contains the copper.
* * If all copper lies inside a closed outline, than that outline will be treated as an external
* board outline.
* * If copper is located outside a closed outline, then that outline will be treated as a hole,
* and the outer edge will be formed using the bounding box.
*/
bool BuildFootprintPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax,
int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler )

View File

@ -33,49 +33,55 @@ const std::function<void( const wxString& msg, BOARD_ITEM* itemA, BOARD_ITEM* it
const VECTOR2I& pt )> OUTLINE_ERROR_HANDLER;
/**
* This function is used to test a board graphic items on Edge cut layer for validity
* i.e. null segments, 0 size rects and circles
* @param aBoard is the board to test
* @param aMinDist is the min lenght of a segment (or radius, or diagonal size of a rect)
* to be valid
* @param aErrorHandler = an optional error handler
* Test a board graphic items on edge cut layer for validity.
*
* @param aBoard is the board to test.
* @param aMinDist is the min length of a segment (or radius, or diagonal size of a rect)
* to be valid.
* @param aErrorHandler is an optional error handler.
*/
bool TestBoardOutlinesGraphicItems( BOARD* aBoard, int aMinDist,
OUTLINE_ERROR_HANDLER* aErrorHandler );
/**
* Function ConvertOutlineToPolygon
* build a polygon set (with holes) from a PCB_SHAPE list, which is expected to be one or more
* top-level closed outlines, with zero or more holes in each. Optionally, it can be limited to
* a single top-level closed outline.
* Build a polygon set with holes from a #PCB_SHAPE list.
*
* The shape list is expected to be one or more top-level closed outlines with zero or more
* holes in each. Optionally, it can be limited to a single top-level closed outline.
*
* @param aShapeList the initial list of drawsegments (only lines, circles and arcs).
* @param aPolygons will contain the complex polygon.
* @param aErrorMax is the max error distance when polygonizing a curve (internal units)
* @param aChainingEpsilon is the max distance from one endPt to the next startPt (internal units)
* @param aAllowDisjoint indicates multiple top-level outlines are allowed
* @param aErrorHandler = an optional error handler
* @param aAllowUseArcsInPolygons = an optional option to allow adding arcs in
* SHAPE_LINE_CHAIN polylines/polygons when building outlines from aShapeList
* This is mainly for export to STEP files
* @return true if success, false if a contour is not valid (self intersecting)
* @param aErrorMax is the max error distance when polygonizing a curve (internal units).
* @param aChainingEpsilon is the max distance from one endPt to the next startPt (internal units).
* @param aAllowDisjoint indicates multiple top-level outlines are allowed.
* @param aErrorHandler is an optional error handler.
* @param aAllowUseArcsInPolygons is an option to allow adding arcs in #SHAPE_LINE_CHAIN
* polylines/polygons when building outlines from aShapeList
* This is mainly for export to STEP files.
* @return true if success, false if a contour is not valid (self intersecting).
*/
bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aShapeList, SHAPE_POLY_SET& aPolygons,
int aErrorMax, int aChainingEpsilon, bool aAllowDisjoint,
OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons = false );
OUTLINE_ERROR_HANDLER* aErrorHandler,
bool aAllowUseArcsInPolygons = false );
/**
* Extracts the board outlines and build a closed polygon from lines, arcs and circle items on
* edge cut layer. Any closed outline inside the main outline is a hole. All contours should be
* closed, i.e. are valid vertices for a closed polygon.
* @param aBoard is the board to build outlines
* Extract the board outlines and build a closed polygon from lines, arcs and circle items on
* edge cut layer.
*
* Any closed outline inside the main outline is a hole. All contours should be closed, i.e. are
* valid vertices for a closed polygon.
*
* @param aBoard is the board to build outlines.
* @param aOutlines will contain the outlines ( complex polygons ).
* @param aErrorMax is the max error distance when polygonizing a curve (internal units)
* @param aChainingEpsilon is the max distance from one endPt to the next startPt (internal units)
* @param aErrorHandler = an optional error handler
* @param aAllowUseArcsInPolygons = an optional option to allow adding arcs in
* SHAPE_LINE_CHAIN polylines/polygons when building outlines from aShapeList
* This is mainly for export to STEP files
* @return true if success, false if a contour is not valid
* @param aErrorMax is the max error distance when polygonizing a curve (internal units).
* @param aChainingEpsilon is the max distance from one endPt to the next startPt (internal units),
* @param aErrorHandler = an optional error handler.
* @param aAllowUseArcsInPolygons is an option to allow adding arcs in #SHAPE_LINE_CHAIN
* polylines/polygons when building outlines from aShapeList
* This is mainly for export to STEP files.
* @return true if success, false if a contour is not valid.
*/
extern bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines,
int aErrorMax, int aChainingEpsilon,
@ -84,9 +90,8 @@ extern bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines,
/**
* This function is used to extract a board outline for a footprint view.
* Extract a board outline for a footprint view.
*
* Notes:
* * Incomplete outlines will be closed by joining the end of the outline onto the bounding box
* (by simply projecting the end points) and then take the area that contains the copper.
* * If all copper lies inside a closed outline, than that outline will be treated as an external